Approximate I ntegration and Simpson’s Rule

/: f(x) dx,

L : b—
let [a, b] be subdivided intam subintervals each of lengtiy = Ta.
The subdivision points ane = a, x; =a+h, ...,xj =a+ jh, ..., x, = bwith valuesy; = f(x;).

To approximate

1. Trapezoid Rule
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This is obtained by repeating the area of the trapezoid &edrpolynomial) approximatiohn(%yoJr %yl) over
successive subintervals. It is an exact approximationiealr f (x) (degree 1 polynomials).

2. Simpson’sRule
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This is obtained by repeating the area of the quadratic éegrpolynomials) approximatidm (%yo+ §y1+ %yz)
over successive pairs of subintervals. It is an exact appration for cubics (degree 3 polynomials).
Note
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3. Improvements

Ro.n = Bn, Boole's Rule, is obtained using the area of a quartic (degree 4 polyngraggroximation, is an exact
approximation for quintics (degree 5 polynomials), regairto be a multiple of 4, and uses the coefficients:
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The pattern can be used to define Riehardson’s extrapolates (used inRomberg Integration by takingm — o, with
n=2":
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4. Derivation of Simpson’s Rulevia I nterpolating Polynomials

f(x)

g(x), an interpolating polynomial

p q r
TheLagrangeinterpolating polynomial which is a polynomial that passes through the same pointsatis= p, x=q
andx=r is

g(X) _ (X_q)(x_r) f(p)+ (X_ p)(X—r) f

~(p-a)(p-T) (@-p)@-r) (q)+?r(—$8(—$f(r)
/pr f(x) dx is approximately
/g dx_/$dx f(p +/ Eq +/ dx-f(r).
In Simpson’s rule we are interested in the case thatp=r — q= h, thatis,g= p+handr = p+ 2h. We show the
last integral is 3. Use substitution = %’ = XT so Zhu+ p=x. Then hdu = dx and g = Zhurtz_ 9_
2huh— h_ 2u— 1. The last integral becomes
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By similar computations we could get the other two integriaig there is an easier way. By symmetry the first one is
alsoh%. The case (p) = f(q) = f(r) shows the three integrals must add tos® the middle one ib‘g‘.
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5. Derivation of Simpson’s Rule by attempting to cancel errors

1
Considerf (x) = x?. On the one hangﬂolx2 dx = § ’0 = % On the other hand the Trapezoid approximation is
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imilarly Ton = - 4+ ——— = = +4—.
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We want to averag®, = % +E andTg = % + 4E to cancel or reduce the terehwhich appears, wheie = %2. Since

4T, — Ty = 1 we seelT, — %Tg gives the exact value of for the integral. This expression, which$s, is a better
approximation than the Trapezoid rule in this case.



