
Approximate Integration and Simpson’s Rule
To approximate

Z b

a
f (x)dx,

let [a,b] be subdivided inton subintervals each of lengthhn =
b−a

n
.

The subdivision points arex0 = a, x1 = a + h, . . . ,x j = a + jh, . . . ,xn = b with valuesy j = f (x j).

1. Trapezoid Rule
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This is obtained by repeating the area of the trapezoid (degree 1 polynomial) approximationhn
(

1
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2y1
)

over
successive subintervals. It is an exact approximation for linear f (x) (degree 1 polynomials).

2. Simpson’s Rule
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, wheren is even.

This is obtained by repeating the area of the quadratic (degree 2 polynomials) approximationhn
(
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)

over successive pairs of subintervals. It is an exact approximation for cubics (degree 3 polynomials).
Note
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3. Improvements

R2,n = Bn, Boole’s Rule, is obtained using the area of a quartic (degree 4 polynomial) approximation, is an exact
approximation for quintics (degree 5 polynomials), requiresn to be a multiple of 4, and uses the coefficients:
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One can show

R2,n =
16Sn −S n

2

15
.

The pattern can be used to define theRichardson’s extrapolates (used inRomberg Integration by takingm → ∞, with
n = 2m):

Rm,n =
4mRm−1,n −Rm−1, n
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4m
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.
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4. Derivation of Simpson’s Rule via Interpolating Polynomials

f(x)
g(x), an interpolating polynomial

p q r
TheLagrange interpolating polynomial which is a polynomial that passes through the same points asf atx = p, x = q
andx = r is

g(x) =
(x−q)(x− r)
(p−q)(p− r)

f (p)+
(x− p)(x− r)
(q− p)(q− r)

f (q)+
(x− p)(x−q)

(r− p)(r−q)
f (r).

Z r

p
f (x)dx is approximately

Z r

p
g(x)dx =
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dx · f (p)+
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dx · f (q)+
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p
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(r− p)(r−q)
dx · f (r).

In Simpson’s rule we are interested in the case thatq− p = r−q = h, that is,q = p + h andr = p +2h. We show the

last integral is 1/3. Use substitutionu =
x− p
r− p

=
x− p
2h

so 2hu+ p = x. Then 2hdu = dx and
x−q
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=
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=
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= 2u−1. The last integral becomes
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By similar computations we could get the other two integrals, but there is an easier way. By symmetry the first one is
alsoh 1

3. The casef (p) = f (q) = f (r) shows the three integrals must add to 2h so the middle one ish 4
3.

5. Derivation of Simpson’s Rule by attempting to cancel errors

Considerf (x) = x2. On the one hand
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3. On the other hand the Trapezoid approximation is
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We want to averageTn = 1
3 +E andTn

2
= 1

3 +4E to cancel or reduce the termE which appears, whereE = 1
6n2 . Since
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= 1 we see4
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2
gives the exact value of13 for the integral. This expression, which isSn, is a better

approximation than the Trapezoid rule in this case.


