A note on the Riemann sphere

Realise the Riemann sphere as the unit diameter sphere S^2 given in ${\bf R}^3$ as

$$u^{2} + v^{2} + (w - \frac{1}{2})^{2} = (\frac{1}{2})^{2}$$

and regard the uv-plane tangent to this sphere as \mathbf{C} , the complex z-plane.

Stereographic projection is the map from $C \longrightarrow S^2$ determined by that point of intersection of the chord \overline{zN} with S^2 , where z is in the uv-plane and N is the north pole (0,0,1) of S^2 .

The line from N to z = (u, v, 0) has direction vector (u, v, -1) and so has equation $\mathcal{L}(t) = N + t(u, v, -1)$ (here, we freely identify z = u + iv with the ordered triple (u, v, 0) as required).

Observe that $\mathcal{L}(0) = N$ and $\mathcal{L}(1) = (u, v, 0) = z$. The point of S^2 punctured by \mathcal{L} will therefore have 0 < t < 1. Denote this t by t_z . Since $\mathcal{L}(t_z)$ is a point of S^2 , this implies $\mathcal{L}(t_z) = (ut_z, vt_z, 1 - t_z)$ satisfies $(u^2 + v^2 + 1)t_z^2 - t_z = 0$. It follows that either $t_z = 0$ (giving the north pole of S^2) or $t_z = 1/(u^2 + v^2 + 1)$. This latter choice yields the intersection point

$$\mathcal{L}(t_z) = \frac{(u, v, u^2 + v^2)}{u^2 + v^2 + 1}$$

and defines the mapping of stereographic projection, sending the complex plane to the sphere.

This mapping from C to $S^2 \setminus N$ is given explicitly by

$$ho: \mathbf{C} \longrightarrow S^2 \setminus N: z \longmapsto rac{(\operatorname{Re} z, \operatorname{Im} z, |z|^2)}{1 + |z|^2}.$$

If d is the usual Euclidean metric in C and d' that on S^2 inherited from \mathbb{R}^3 , then d(z, w) = |z - w| and, after much arithmetic,

$$d(\rho(z),\rho(w)) = \frac{|z-w|}{\sqrt{(1+|z|^2)(1+|w|^2)}} = \frac{d(z,w)}{\sqrt{(1+|z|^2)(1+|w|^2)}}.$$

Evidently, $d'(\rho(z), \rho(w)) = 0$ iff d(z, w) = 0. Convergence properties in ${\bf C}$ and $S^2 \setminus N$ are therefore easily related. Observe that $z \to \infty$ implies $\rho(z) \to (0,0,1) = N$. Thus, convergence to ∞ in the complex plane corresponds to convergence to the north pole of the Riemann sphere.

The metric $d(\rho(z), \rho(w))$ is the *chordal metric* of the Riemann sphere S^2 , regarded as the extended complex plane $\mathbb{C} \cup \{\infty\}$.