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Abstract

We show that the full automorphism group of a circulant digraph of square-free order
is either the intersection of two 2-closed groups, each of which is the wreath product
of 2-closed groups of smaller degree, or contains a transitive normal subgroup which
is the direct product of two 2-closed groups of smaller degree.

The work in this paper makes contributions to the solutions of two problems
in graph theory. The most general, known as the König problem, asks for a
concrete characterization of all automorphism groups of graphs. While it is
known that every group is isomorphic to the automorphism group of a graph
[12], determining the concrete characterization seems intractable. Thus, the
natural approach is to consider either certain classes of graphs, or certain
classes of groups. The second problem considered in this paper was posed by
Elspas and Turner [11], when they asked for a polynomial time algorithm to
calculate the full automorphism group of a circulant graph. (Note that it is
unclear if a polynomial time algorithm exists.) That is, they essentially asked
for an efficient solution to the König problem restricted to the class of graphs
consisting of circulant graphs. In this paper, we will consider the class of cir-
culant graphs of square-free order. We will show that the full automorphism
group of a circulant digraph of square-free order is either the intersection of
two 2-closed groups, each of which is the wreath product of 2-closed groups of
smaller degree, or contains a transitive normal subgroup which is the direct
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product of two 2-closed groups of smaller degree. Several remarks are now in
order. First, in the latter case, the possible over groups of the direct product of
the 2-closed groups of smaller degree are found in this paper. Second, although
this result in and of itself will not solve Elspas and Turner’s original problem
for circulant graphs of square-free order, we will show in a subsequent pa-
per [22] that a polynomial time algorithm to calculate the full automorphism
group of a circulant digraph of square-free order can be derived using this
result. This algorithm is only polynomial time provided that the prime power
decomposition on the order of the graph is known. Finally, several results have
been previously obtained on Elspas and Turner’s problem. The full automor-
phism groups of circulant digraphs of prime order [2] and [1], prime-squared
order [18] (see [10] for another proof of this result), odd prime power order
[19], and of a product of two distinct primes [18] have been obtained, and all
of these results lead to polynomial time algorithms.

The proof of these results are presented in the four sections that follow. The
first section includes preliminaries: primarily results from other sources that
are used in this paper, and definitions. The second section looks at the struc-
ture of actions on blocks. More specifically, it uses results from the Classifica-
tion of Finite Simple Groups and the structure of specific groups to prove
Lemma 16, showing that faithful doubly-transitive nonsolvable actions on
blocks must be equivalent. In the third section, under the hypothesis that
a certain kind of block system exists, we prove results about the structure
of blocks that are minimal with respect to the partial order defined in the
preliminaries. Finally, we use the results of sections 2 and 3 to establish the
main results described above.

1 Preliminaries

All groups and graphs in this paper are finite. For permutation group termi-
nology not defined in this paper, see [8], and for graph theory terminology, see
[3].

Definition 1. Let S ⊂ Zn such that 0 6∈ S. We define a circulant digraph
Γ = Γ(Zn, S) by V (Γ) = Zn and E(Γ) = {ij : i − j ∈ S}. If S = −S, then
Γ(Zn, S) is a circulant graph. Note that the function x → x + 1 is contained
in Aut(Γ), the automorphism group of Γ, so that Aut(Γ) is a transitive group.

While we are motivated by the problem of finding the full automorphism group
of a circulant digraph, our results hold for a (perhaps) larger class of groups,
which we now define.

Definition 2. Let Ω be a set and G ≤ SΩ be transitive. Let G act on Ω× Ω
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by g(ω1, ω2) = (g(ω1), g(ω2)) for every g ∈ G and ω1, ω2 ∈ Ω. We define the
2-closure of G, denoted G(2), to be the largest subgroup of SΩ whose orbits
on Ω × Ω are the same as G’s. Let O1, . . . ,Or be the orbits of G acting on
Ω × Ω. Define digraphs Γ1, . . . , Γr by V (Γi) = Ω and E(Γi) = Oi. Each Γi,
1 ≤ i ≤ r, is an orbital digraph of G, and it is straightforward to show that
G(2) = ∩r

i=1Aut(Γi). Note that B is a complete block system of G if and only if
B is a complete block system of G(2). A vertex-transitive graph is a graph whose
automorphism group acts transitively on the vertices of the graph. Clearly the
automorphism group of a vertex-transitive graph or digraph is 2-closed.

Definition 3. Let G be a transitive permutation group of degree mk that
admits a complete block system B of m blocks of size k. If g ∈ G, then g
permutes the m blocks of B and hence induces a permutation in Sm, which
we denote by g/B. We define G/B = {g/B : g ∈ G}. Let fixB(G) = {g ∈ G :
g(B) = B for every B ∈ B}.

Definition 4. If G ≤ Aut(Γ), for some vertex-transitive graph Γ, define a
graph Γ/B with vertex set V (Γ/B) = B and edge set

E(Γ/B) =
{
(B, B′) :

some vertex of B is adjacent
to some vertex of B′, B 6= B′

}
.

We observe that G/B ≤ Aut(Γ/B).

The following is a standard construction for obtaining vertex-transitive di-
graphs of larger order from vertex-transitive digraphs of smaller order.

Definition 5. Let Γ1 and Γ2 be vertex-transitive digraphs. Let

E = {((x, x′), (y, y′)) : xy ∈ E(Γ1), x
′, y′ ∈ V (Γ2) or x = y and x′y′ ∈ E(Γ2)}.

Define the wreath (or lexicographic) product of Γ1 and Γ2, denoted Γ1 o Γ2, to
be the digraph such that V (Γ1 o Γ2) = V (Γ1) × V (Γ2) and E(Γ1 o Γ2) = E.
We remark that the wreath product of a circulant digraph of order m and a
circulant digraph of order n is circulant.

Definition 6. Let G and H be groups acting on X and Y , respectively. We
define the wreath product of X and Y , denoted G oH, to be the permutation
group that acts on X × Y consisting of all permutations of the form (x, y) →
(g(x), hx(y)), where g ∈ G and hg ∈ H.

Clearly Aut(Γ1) oAut(Γ2) ≤ Aut(Γ1 oΓ2). For information about the converse,
see [23].

Much of our proof exploits the fact that if G is a transitive permutation
group that contains a regular cyclic subgroup R, then every block system of
G is formed by the orbits of a normal subgroup of R (see, for example, [25,
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Exercise 6.5]). As inclusion induces a natural partial order on the subgroups
of a cyclic group, we have a natural partial order on the block systems of R.

Definition 7. Let X be the set of all possible complete block systems of
(Zn)L. Define a partial order on X by B � C if and only if every block of C is
a union of blocks of B.

Although this partial order depends on the value of n, for the purposes of this
paper we will be using assuming that n is predetermined, so we can write ≺
in place of the more general ≺n.

The following is not necessarily the usual definition of equivalent representa-
tions, but is equivalent (see [8, Theorem 1.6B]).

Definition 8. Let G act transitively on the sets Ω and Γ, and let H be the
stabilizer of a point in the first action. We say the actions are equivalent if H
is also the stabilizer of some point in the second action.

With these definitions in hand, we state some results from other publications
that will be used in this paper.

Theorem 9. ([13], Theorem 1.49) If H is a nonsolvable doubly transitive per-
mutation group of degree m that contains an m-cycle, then one of the following
holds:

(i) H ∼= Am or Sm;

(ii) m = 11 and H = PSL2(11) or M11;

(iii) m = 23 and H ∼= M23;

(iv) m = (qd − 1)/(q − 1) for some prime power q and H is isomorphic to a
subgroup of PΓLd(q) containing PSLd(q).

Theorem 10. [8, Theorem 3.5B] Let G be a transitive group of prime degree
p. Then either G is non-solvable and doubly transitive or we may relabel the
set upon which G acts with elements of Fp so that G ≤ AGL(1, p) = {x →
ax + b : a ∈ F∗p, b ∈ Fp}.

Definition 11. Let G be a permutation group acting on the set Ω and B ⊆ Ω
either a block of G or a union of orbits of G. Then for any g ∈ G and any
x ∈ Ω, g|B(x) = g(x) if x ∈ B and g|B(x) = x if x 6∈ B.

Let G be a transitive permutation group that admits a complete block system
B of m blocks of size k, where B is formed by the orbits of some normal
subgroup N / G. Furthermore, assume that fixG(B)|B is primitive for every
B ∈ B, and that fixG(B) is not faithful. Define an equivalence relation ≡
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on B by B ≡ B′ if and only if the subgroups of fixG(B) that fix B and B′,
point-wise respectively, are equal. We denote these subgroups by fixG(B)B and
fixG(B)B′ , respectively. Denote the equivalence classes of ≡ by C0, . . . , Ca and
let Ei = ∪B∈Ci

B. The following result was proven in [9] in the case where
k = p. It is straightforward to generalize this result to k being composite
provided that fixG(B)|B is primitive for every B ∈ B and the action of fixG(B)
is not faithful.

Lemma 12. (Dobson, [9]) Let ~X be a vertex-transitive digraph for which

G ≤ Aut( ~X) as above. Then fixG(B)|Ei
≤ Aut( ~X) for every 0 ≤ i ≤ a.

Furthermore, {Ei : 0 ≤ i ≤ a} is a complete block system of G.

As the 2-closure of a group G is equal to the intersection of the automorphism
groups of the orbital digraphs of G, we have the following.

Lemma 13. Let G be a transitive group as above. Then fixG(B)|Ei
≤ G(2) for

every 0 ≤ i ≤ a. Furthermore, {Ei : 0 ≤ i ≤ a} is a complete block system of
G.

Lemma 14 ([17]). For permutation groups G ≤ SX and H ≤ SY , the fol-
lowing hold:

(1) Let G×H act canonically on X × Y . Then (G×H)(2) = G(2) ×H(2),
(2) Let G oH act canonically on X × Y . Then (G oH)(2) = G(2) oH(2).

To conclude our preliminary section, we give a short result that will be used
repeatedly in later sections of this paper.

Lemma 15. Let G ≤ Smk contain a regular cyclic subgroup 〈ρ〉. Assume that
G admits a complete block system B of m blocks of size k formed by the orbits
of 〈ρm〉. Furthermore, assume that fixG(B)|B admits a complete block system
of r blocks of size s formed by the orbits of 〈ρmr〉|B for some B ∈ B (rs = k).
Then G admits a complete block system C of mr blocks of size s formed by the
orbits of 〈ρmr〉.

Proof. If fixG(B)|B admits a complete block system CB of r blocks of size s
formed by the orbits of 〈ρmr〉|B for some B ∈ B, then g(CB) is a complete
block system of fixG(B)|B′ , where g(B) = B′. As 〈ρm〉|B′ ≤ fixG(B)|B′ , every
complete block system of fixG(B)|B′ is formed by the orbits of 〈ρma〉|B′ for
some a ∈ Zk. As for every divisor d of k, there is a unique subgroup of 〈ρm〉|B′

of order d, we conclude that the blocks of g(CB) ar e the orbits of 〈ρmr〉|B′ .
Hence for every B ∈ B, the orbits of 〈ρmr〉|B form a complete block system
CB of fixG(B)|B. But then if g ∈ G, then g(CB) = CB′ for some B′ so that
C = ∪B∈BCB is a complete block system of G.
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2 Faithful doubly-transitive nonsolvable actions are equivalent

In this section, we consider a transitive permutation group G that contains a
regular cyclic subgroup and admits a complete block system B. We hypoth-
esize that fixG(B) acts faithfully, and that fixG(B)|B is doubly transitive and
nonsolvable for every B ∈ B. We use results from the Classification of Fi-
nite Simple Groups to determine specific permutation groups that may satisfy
these hypotheses, and establish the structure we need on each of these specific
permutation groups.

We begin this section with the statement and proof of its main result, even
though the proof cites the subsequent results on specific groups. In this way,
we are able to demonstrate clearly the motivation for the results on specific
groups that follow.

Lemma 16. Let G ≤ Smk admit a complete block system B of m blocks of
size k, and contain a regular cyclic subgroup 〈ρ〉. Assume that fixG(B) acts
faithfully on B ∈ B and that fixG(B)|B is doubly transitive and nonsolvable for
every B ∈ B. Then fixG(B)|B is equivalent to fixB(B)|B′ for every B, B′ ∈ B.

Proof. Let H = 〈fixG(B), ρ〉. Then fixH(B) = fixG(B). Let B ∈ B. Perusing
the list of doubly transitive groups given in [5, Theorem 5.3], we have (assum-
ing towards a contradiction that there exist B1, B2 such that fixG(B)|B1 is not
equivalent to fixG(B)|B2) that since fixH(B)|B has more than one representa-
tion, it has exactly two representations. Define an equivalence relation≡ on the
elements permuted by Smk by i ≡ j if and only if StabfixH(B)(i) = StabfixH(B)(j).
As fixH(B)|B has two representations, there are m/2 elements in each equiv-
alence class of ≡ and these equivalence classes of ≡ form a complete block
system C of 2k blocks of size m/2 formed by the orbits of 〈ρ2k〉. Then H/C
admits a complete block system D of 2 blocks of size k formed by the orbits
of 〈ρ2〉/C. Let D = {D1, D2}. Furthermore, fixH/C(D)|D1 is doubly transitive
and nonsolvable and fixH/C(D)|D1 is not equivalent to fixH/C(D)|D2 .

As ρ ∈ H, fixH/C(D)|D1 contains a k-cycle. Hence fixH/C(D)|D1 contains a
k-cycle and has two representations. By Theorem 9 and [5, Theorem 5.3],
together with k composite, we need only consider the cases where

soc(fixH/C(D)|D1)
∼= A6 (k = 6),

PSLd(q) (k = (qd− 1)/(q− 1) and d > 2), or PSL2(11) (with k = 11). If k = 6
and soc(fixH/C(D)|D1)

∼= A6, then as fixH/C(D)|D1 contains a 6-cycle,

fixH/C(D)|D1
∼= S6,

contradicting Lemma 17 (stated and proven later). If k = (qd − 1)/(q − 1)
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and soc(fixH/C(D)|D1)
∼= PSLd(q), then by Corollary 22 (stated and proven

later) H/C does not contain a 2k-cycle, a contradiction. Finally, if k = 11 and
soc(fixH/C(D)|D1)

∼= PSL2(11), then by Lemma 18 (stated and proven later),
H/C does not contains a 2k-cycle, a contradiction.

Lemma 17. Let G ≤ S12 admit a complete block system B of 2 blocks of size
6. Let B = {B1, B2}. Assume that fixG(B) acts faithfully on B ∈ B and that
fixG(B) ∼= S6 but fixG(B)|B1 is not equivalent to fixG(B)|B2. Then G does not
contain a 12-cycle.

Proof. Assume that G contains a 12-cycle, 〈ρ〉. Then B is formed by the orbits
of 〈ρ2〉 and ρ2 ∈ fixG(B). Then conjugation by ρ induces an automorphism α
from fixG(B)|B1 to fixG(B)|B2 . As fixG(B)|B1 is not equivalent to fixG(B)|B2 , α
is an outer automorphism of S6.

The group S6 has two kinds of elements of order 3: (a) 3-cycles, and (b) the
product of two disjoint 3-cycles. Any element of type (b) is the square of a
6-cycle, but no element of type (a) is the square of a 6-cycle. It is well-known
that there is an outer automorphism of S6 that interchanges type (a) and type
(b) (cf. [24], 11.4.3, pp. 310-311). Thus, this outer automorphism cannot take
any 6-cycle to another 6-cycle.

However, modulo inner automorphisms, there is only one outer automorphism
of S6. Hence, as α is an outer automorphism of S6, α(ρ2|B1) is not a 6-cycle
so that ρ−1ρ2ρ 6∈ 〈ρ〉, a contradiction.

Lemma 18. Suppose G admits a complete block system B = {B1, B2} of 2
blocks of size 11. Assume that K = fixG(B), that K|B is doubly-transitive for
each B ∈ B, and that soc(K) ∼= PSL2(11). Assume G has a transitive, cyclic
subgroup 〈ρ〉. Then the action of K|B1 is equivalent to the action of K|B2.

Proof. Without loss of generality, assume that soc(K) = PSL2(11). We want
to show that if x ∈ B1, there is some y ∈ B2 for which StabK(x) = StabK(y).

Define f : K → K by f(k) = ρ−1kρ. Then f is an automorphism of K, so
it is well-known that there is some a ∈ PGL2(11) for which f(k) = a−1ka
for all k ∈ K (cf. [6, p. 7], or the on-line version [7]). Let P = 〈ρ2〉, a Sylow
11-subgroup of K. Then ρ centralizes P , so a is in the centralizer in PGL2(11)
of P , which is P . This means there is some ρ2i ∈ P , such that a = ρ2i. Hence
f(k) = ρ−1kρ = a−1ka = ρ−2ikρ2i for all k ∈ K. Thus, ρ2i−1kρ1−2i = k for
every k ∈ K. So we have StabK(x) = ρ2i−1StabK(x)ρ1−2i = StabK(ρ2i−1(x)),
completing the proof with y = ρ2i−1(x).

The rest of this section deals with the group PSLd(q) with d ≥ 3. Several of
these results were proven by Dr. Dave Witte, to assist us with this work. Since

7



they have not appeared elsewhere, the proofs are included here.

Note 1. In the remainder of this section, if V is a vector space, then P(V ) is
used to denote the set of all one-dimensional subspaces of the vector space.

Lemma 19. Let k = (qd − 1)/(q − 1), with d ≥ 3, write q = pr with p prime,
and let k′ = k/ gcd(r, k). Let ρ′ be an element of order k′ in PGLd(q) that acts
semi-regularly on P((Fq)

d). Then ρ′ is not conjugate to (ρ′)−1 in PΓLd(q).

Proof. Let ρ̂′ be any lift of ρ′ to GLd(q). The cardinality of the linear span
of any ρ̂′-orbit is at least (q − 1)k′, which is greater than qd−1, so we see that
ρ̂′ is irreducible. Thus, by Schur’s Lemma, the centralizer of ρ̂′ in Mat(d, q)
is a finite field. ¿From the cardinality, we conclude that the centralizer is
isomorphic to Fqd . Abusing notation, we may assume that this centralizer is

actually Fqd itself. Thus, we may assume that ρ̂′ ∈ F×qd and that the centralizer

of ρ̂′ in GLd(q) is F×qd .

Suppose g ∈ PΓLd(q) with g−1ρ′g = (ρ′)−1. Because g inverts ρ′, it must
normalize F×qd , the centralizer of ρ′ in GLd(q). Therefore, the map Fqd → Fqd

defined by t 7→ g−1tg is clearly a field automorphism (i.e., it is bijective and
respects addition and multiplication). So there is a natural number j, such
that g−1tg = tp

j
for all t ∈ Fqd . (Because tp

rd
= tq

d
= t for all t ∈ Fqd ,

we may and do assume j ≤ rd/2.) Because g−1ρ′g = (ρ′)−1, we must have
pj ≡ −1 (mod k′), so

pj+1 ≥ k′ ≥ prd − 1

r(pr − 1)
=

pr(d−1)

r
+

pr(d−2)

r
+· · · > pr(d−1)

r
+

pr(d−2)

r
>

pr(d−1)

r
+1.

It therefore suffices to show pr(d−1)/r ≥ prd/2, for this implies j > rd/2, a
contradiction.

Case 1. Assume (p, r) 6= (2, 3). We have r ≤ pr/2 ≤ p(rd/2)−r, so

pr(d−1)

r
≥ pr(d−1)

p(rd/2)−r
= prd/2.

Therefore, j > rd/2, a contradiction.

Case 2. Assume (p, r) = (2, 3) and d ≥ 4. We have

pr(d−1)

r
=

8d−1

3
> 8d−2 ≥ 8d/2 = prd/2,

so j > rd/2, a contradiction.

8



Case 3. Assume (p, r, d) = (2, 3, 3). We have

pj + 1 >
pr(d−1)

r
+

pr(d−2)

r
=

23(3−1)

3
+

23(3−2)

3

= 24 > 16
√

2 + 1 = 29/2 + 1 = prd/2 + 1.

Therefore, j > rd/2, a contradiction.

Lemma 20. Let k = (qd − 1)/(q − 1), with d ≥ 3, write q = pr with p prime,
let k′ = k/ gcd(r, k), and let V be a d-dimensional vector space over Fq. Let ρ′

be an element of order k′ in PGL(V ) that acts semi-regularly on P(V ), and let
H(V ) be the set of all (d− 1)-dimensional subspaces of V . There is a bijection
f : P(V ) → H(V ) and an automorphism α of PΓL(V ), such that α(ρ′) = (ρ′)−1

and, for all v ∈ P(V ) and all g ∈ PΓL(V ), we have f(gv) = α(g)f(v).

Proof. Let ρ̂′ be a representative of ρ′ in GL(V ). From the beginning of the
proof of the preceding lemma, we see that we may assume V = Fqd and that
ρ̂′ ∈ F×qd .

Define tr: Fqd → Fq by tr(t) = t + tq + · · · + tq
d−1

(so tr is the “trace map”
from Fqd to Fq), and define an Fq-bilinear form on Fqd by 〈s | t〉 = tr(st).
Because Fqd is a separable extension of Fq, this bilinear form is non-degenerate
(i.e., for every nonzero s ∈ Fqd , there is some t ∈ Fqd with 〈s | t〉 6= 0). For
each one-dimensional Fq-subspace W of Fqd , define

f(W ) = { v ∈ Fqd | 〈v | W 〉 = 0 }.

Because the bilinear form is non-degenerate, f is a bijection from the set of
one-dimensional subspaces of Fqd onto the set of (d−1)-dimensional subspaces.

For each g ∈ PΓL(V ), let gT be the transpose of g with respect to the bilinear
form (that is, 〈v | gw〉 = 〈gT v | w〉), and let ρ(g) = (gT )−1.

Because 〈ρ(g)v, gW 〉 = 〈(gT )−1v, gW 〉 = 〈gT (gT )−1v, W 〉 = 〈v, W 〉, it is clear
that f(gW ) = ρ(g)f(W ).

Furthermore, for every v, w ∈ Fqn , we have 〈x̂−1v, x̂w〉 = tr((x̂−1v)(x̂w)) =

tr(vw), so it is clear that f(ρ̂′W ) = ρ̂′
−1

f(W ), so α(ρ̂′) = ρ̂′
−1

.

Proposition 21. Let k = (qd − 1)/(q − 1), with d ≥ 3. Suppose PSLd(q) ≤
G ≤ PΓLd(q) with d ≥ 3, and let H be a group that contains G as a normal
subgroup. Suppose H acts imprimitively on a set Ω, with a complete block
system {B1, B2} consisting of 2 blocks of cardinality k. Assume G = {h ∈ H |
h(B1) = B1, h(B2) = B2 }. Assume G acts doubly transitively on Bi for each
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i = 1, 2, and that the action of G on B1 is not equivalent to the action of G
on B2. Then H does not contain a transitive, cyclic subgroup.

Proof. Suppose H does contain a transitive, cyclic subgroup 〈ρ〉. Then G
contains a cyclic subgroup 〈ρ′〉 that is transitive on each of B1 and B2 (and
we may assume that rho′ ∈ 〈ρ〉). Write q = pr with p prime, and let k′ =
k/ gcd(r, k), so (ρ′)r is an element of order k′ in PGLd(q) that acts semi-
regularly.

Because the action of G on B1 is not equivalent to the action of G on B2,
one of the actions (say, the action on B1), must be isomorphic to the action
of G on P((Fq)

d); and the other action must be isomorphic to the action of G
on H((Fq)

d).

Let G′ = 〈ρ′r〉PSLd(q) ⊂ G. By combining the conclusion of the preceding
paragraph with Lemma 20, we see that there is a bijection f : B1 → B2 and an
automorphism α of PΓLd(q), such that α((ρ′)r) = (ρ′)−r and, for all v ∈ B1

and all g ∈ G′, we have f(gv) = α(g)f(v).

Note that α(G′) = G′, because α((ρ′)r) = (ρ′)−r and because every automor-
phism of PΓLd(q) normalizes PSLd(q). Also note that ρ normalizes G′, because
ρ centralizes ρ′ (recall that ρ′ ∈ 〈ρ〉) and because PSLd(q) is normal in H (since
PSLd(q) is characteristic in G, and G has index two in H). Therefore, we may
define an automorphism α′ of G′ by α′(g) = ρα(g)ρ−1.

Because 〈ρ〉 is transitive, we know that ρ(B2) = B1, so we may define a
permutation f ′ of B1 by f ′(v) = ρf(v). Then, for all v ∈ B1 and all g ∈ G′,
we have

f ′(gv) = ρf(gv) = (ρα(g)ρ−1)ρf(v) = α′(g)f ′(v). (1)

Thus, the permutation f ′ normalizes G′|B1 , so f ′ normalizes PSLd(q), from
which we conclude that f ′ ∈ PΓLd(q).

Because ρ′ ∈ 〈ρ〉, we know that ρ centralizes (ρ′)r, so

α′((ρ′)r) = ρα((ρ′)r)ρ−1 = ρ(ρ′)−rρ−1 = (ρ′)−r.

Therefore, from (1), we conclude that f ′ conjugates (ρ′)r|B1 to (ρ′)−r|B1 . This
contradicts the conclusion of Lemma 19.

Corollary 22. Let G ≤ S2k admit a complete block system B of 2 blocks of
size k. Assume that StabG(B) acts faithfully on B ∈ B and soc(StabG(B)) ∼=
PSLd(q), where d is an integer, q is a prime power, and k = (qd − 1)/(q − 1).
Let B = {B1, B2}. If StabG(B)|B1 is not equivalent to StabG(B)|B2, then G
does not contain a 2k-cycle.

10



Proof. Most of this result is trivial from Proposition 21. When d = 2, we
have PSL2(q), and this group has only one transitive representation acting on
(qd − 1)/(q − 1) = q + 1 points. This is because the stabilizer of a point in
such a representation is the normalizer of a Sylow p-subgroup (where p is the
prime dividing q), and so by one of the Sylow theorems they are all conjugate.
Thus, when d = 2, the hypotheses of this lemma cannot arise.

3 The structure of minimal blocks

We now wish to prove a lemma which will be a crucial tool. If a block system
with particular characteristics exists and consists of more than one block, this
lemma will establish that there is a complete block system of G, minimal with
respect to our partial order, upon which we know something about the action
of G or its 2-closure. As the proof of this lemma is quite long, the proof will
be broken down into a sequence of lemmas. We now develop the notation and
hypotheses which will be used throughout this section.

Hypothesis 23. Let k and m be integers such that km is square-free. Let
G ≤ Skm be a transitive permutation group that contains a regular cyclic
subgroup 〈ρ〉 and admits a complete block system B with m blocks of size k.
We assume that

• fixG(B) is of order k,
• fixG(B) ≤ C(G) (the center of the group G), and
• there exists no complete block system F � B such that fixG(F) is semireg-

ular.

These assumptions will hold throughout this section, and we will assume that
all results in this section satisfy the above hypothesis. Additionally, the follow-
ing conditions will sometimes be assumed and will be referred to as Conditions
(1) and (2), respectively:

(1) there exists a complete block system D of G such that fixG(D) is not of
order |D|, D ∈ D, and there exists no nontrivial complete block system
E of G such that E ≺ D, or

(2) there exists a prime p|k such that G(2) admits a complete block system
D′ of mk/p blocks of size p and p2 divides |fixG(2)(D′)|.

The next few lemmas involve consideration of a complete block system C
with C � B, and C consists of m

t
blocks of size kt for some t|m. Therefore,

until further notice, it will be convenient to view Zmk as Zm
t
× Zt × Zk with

ρ(x, y, z) = (x + 1, y + 1, z + 1) (we can assume this, since mk is square-free),
where the complete block systems B and C are given by B = {{(x, y, z) : x ∈

11



Zm
t
, y ∈ Zt} : z ∈ Zk}, and C = {{(x, y, z) : x ∈ Zm

t
} : y ∈ Zt, z ∈ Zk}.

Lemma 24. Under Hypothesis 23, suppose that m > 1 and Condition (1) does
not hold. Let C be any complete block system of G with C � B that is minimal
in the sense that there is no complete block system C ′ of G with B ≺ C′ ≺ C.
Then (fixG(C)|C)/B is doubly transitive and nonsolvable.

Proof. Towards a contradiction, suppose that (fixG(C)|C)/B is not doubly
transitive, or is solvable. If t were composite, then since (fixG(C)|C)/B contains
a regular cyclic subgroup of order t and all cyclic groups of composite order
are Burnside groups [25, Theorem 25.3], we would have (fixG(C)|C)/B being
doubly transitive. (The minimality of C means that (fixG(C)|C)/B cannot be
imprimitive.) By [16, Exercise 1, p. 169,], we must have t = 4, a contradiction.

So t is prime, and by Theorem 10, (fixG(C)|C)/B ≤ AGL(1, t). Let T be a
Sylow t-subgroup of fixG(C) that contains 〈ρmk/t〉. Now, (fixG(C)|C)/B contains
a unique Sylow t-subgroup, which must be (T |C)/B. Since fixG(C)/B ≤ 1Sm/t

o
AGL(1, t), this also contains a unique Sylow t-subgroup, which must be T/B.
So T/B is characteristic in fixG(C)/B, and is therefore normal in G/B. Now,
since (k, t) = 1, fixG(B) is centralized by T (since fixG(B) is central in G),
and T/B is normal in G/B, we must have T / G. So the orbits of T form a
complete block system D′ of G.

We may also assume |fixG(D′)| = t, since if this were not the case, Condition
(1) would follow, a contradiction (the blocks of D′ have no nontrivial sub-
blocks since t is prime). So fixG(D′) = 〈ρmk/t〉. As D′ is formed by the orbits
of T , we thus have that T = fixG(D′) = 〈ρmk/t〉. We also can now conclude
that 〈ρm/t〉 / G.

Since fixG(C) is not cyclic (by Hypothesis 23), there must be some γ ∈ fixG(C)
for which γ/B 6∈ T/B. Then we have γ(x, y, z) = (x, αx(y) + ax, βx(z) + bx),
αx ∈ Z∗

t , ax ∈ Zt, βx ∈ Z∗
k, and bx ∈ Zk as γ normalizes 〈ρm/t〉. As 〈ρm〉

is in the center of G, we must have that βx = 1 for every x ∈ Zm/t. Since
fixG(D′) = 〈ρmk/t〉 / G, conjugating ρmk/t by γ shows that αx = α′x = α for
any x, x′ ∈ Zm

t
.

Choose i so that ρitk(x, y, z) = (x + 1, y, z) for every (x, y, z) ∈ Zm
t
× Zt ×

Zk. Straightforward calculations show that γ−1ρ−itkγρitk(x, y, z) = (x, y +
α−1(ax+1 − ax), z + bx+1 − bx). Therefore, γ−1ρ−itkγρitk/B ∈ T/B (the unique
Sylow t-subgroup of fixG(C)/B). Since T = fixG(D′) has order t, T/B has order
t, and as ρmk/t/B ∈ T/B, we must have that ax+1 − ax = c is constant for
every x ∈ Zm

t
. Then a1 = c + a0, ax+1 = c + ax so that ax+1 = (x + 1)c + a0.

Hence a0 = m
t
· c + a0. Since gcd(m

t
, t) = 1, c = 0, and so ax+1 = ax = a is

constant. Without loss of generality, since ρ ∈ G, we may assume that a is 0.
Now since γ−1ρitkγρitk ∈ fixG(B), bx+1−bx must be constant. Since (m

t
, k) = 1,

12



this constant must be 0, so bx+1 = bx = b is constant. Still without loss of
generality because of the presence of ρ in G, we may assume that b is 0. But
now γ(x, y, z) = (x, αy, z), so γ ∈ fixG(D′) = 〈ρmk/t〉, a contradiction.

Lemma 25. Under Hypothesis 23, suppose that m > 1 and Condition (1)

does not hold, and let C be as in Lemma 24. Let L = {g−1ρ
mk
t g : g ∈ G} and

H = 〈L〉. Then

(1) H / G,
(2) the orbits of H have order k′t for some k′|k, k′ 6= 1,
(3) 〈ρm〉 ∩H = 1, and
(4) If h ∈ H has the form h(x, y, z) = (x, σx(y), z + bx,y) then

∑t−1
y=0 bx,y ≡

0 (mod k) for every x.

Proof. By Lemma 24, we have that (fixG(C)|C)/B is a doubly-transitive non-
solvable group. Note that every element of L has order t.

1. Any ϑ ∈ H must be of the form ϑ = γa1
1 γa2

2 · · · γa`
` , where ai ∈ Zt and γi ∈ L

for i = 1, . . . , `. For any g ∈ G we then have

g−1ϑg = g−1γa1
1 γa2

2 · · · γa`
` g

= (g−1γ1g)a1(g−1γ2g)a2 · · · (g−1γ`g)a` .

As γi ∈ L, we have γi = g−1
i ρ

kr
t gi for some gi ∈ G. Hence

g−1γig = (gig)−1ρ
kr
t (gig) ∈ L

and g−1ϑg ∈ H. Therefore H / G.

3 and 4. Since ρ
mk
t ∈ fixG(C) and fixG(C) / G, we have that H ≤ fixG(C). As

H ≤ fixG(C), any γ ∈ L acts as γ(x, y, z) = (x, δx(y), z + dx,y) where δx ∈ St

is of order t and dx,y ∈ Zk for every x ∈ Zm
t

and y ∈ Zt. Since |γ| = t
and gcd(m, k) = 1, we have that

∑
y∈Zt

dx,y ≡ 0 (mod k) for every x ∈ Zm
t
.

Therefore every ϑ ∈ H, since it is of the form γa1
1 γa2

2 · · · γa`
` for γ1, γ1, . . . , γ` ∈

L, acts as ϑ(x, y, z) = (x, εx(y), z + ex,y), where
∑

y∈Zt
ex,y ≡ 0 (mod k) for

every x ∈ Zm
t
. It is now clear that 〈ρm〉 ∩H = 1 as ρm(x, y, z) = (x, y, z + m)

and
∑t

i=1 m 6≡ 0 (mod k) as gcd(m, k) = 1.

2. The orbits of H have length k′t for some k′|k. Suppose that k′ = 1. If |H| = t
then H = 〈ρmk/t〉/G, so (〈ρmk/t〉|C)/B/(fixG(C)|C)/B, forcing (fixG(C)|C)/B ≤
AGL(1, t), which is solvable, a contradiction. So |H| > t. Now, the orbits of
H form a nontrivial block system D of G (since H / G), and since Condition
(1) does not hold, there must be a nontrivial block system D′ of G with

13



D′ ≺ D. But this is not possible since (fixG(C)|C)/B is doubly transitive. This
contradiction shows that we must have k′ 6= 1.

Lemma 26. Under Hypothesis 23, suppose that m > 1 and Condition (1)
does not hold, and let C be as in Lemma 24, and H as in Lemma 25. For each
prime p|k′, there exists h = hp ∈ H such that h(x, y, z) = (x, σx(y), z + bx,y)
and for some x∗ ∈ Zm

t
and some y∗ ∈ Zt, σx∗(y

∗) = y∗ and bx∗,y∗ ≡ 1 (mod p).
Furthermore, h satisfies the following additional properties:

(1) |h| is a power of p,
(2)

∑
y∈O bx,y ≡ 0 (mod p) for every non-singleton orbit O of σx,

(3) h|Cx∗/B has at least two fixed points,
(4) there is at least one bx∗,`∗ 6≡ 1 (mod p) and σx∗(`

∗) = `∗, and
(5) h fixes some block of B contained in any block of C.

Proof. Since the orbits of H have length k′t and H admits B as a complete
block system, for any chosen block B ∈ B, StabH(B), the set-wise stabilizer

of the block B, is transitive on each orbit of 〈ρ
mk
k′ 〉|B. Let p|k′ be prime. As

|B| = k, for each block B ∈ B there exists h ∈ H such that h|B is of order
p, and so is cyclic and semiregular (semiregularity follows from the fact that
ρm is in the center of G). That is, for every x∗ ∈ Zm

t
and every y∗ ∈ Zt

there exists h ∈ H such that h(x, y, z) = (x, σx(y), z + bx,y) with σx∗(y
∗) = y∗

and bx∗,y∗ ≡ 1 (mod p). This then implies that p divides |h|. By raising h
to an appropriate power relatively prime to p, we may assume without loss
of generality that h has order a power of p (so that (1) holds). Note then
that h/B 6= 1, as otherwise 1 6= h ∈ fixG(B) = 〈ρm〉, but by Lemma 25,
〈ρm〉∩H = 1. We may also assume that h is of minimal order while preserving
the property that σx∗(y

∗) = y∗ and bx∗,y∗ ≡ 1 (mod p) for some y∗ ∈ Zm
t

and
y∗ ∈ Zt. Fix these x∗, y∗, and h.

2) Choose any x ∈ Zm
t

and let O be a non-singleton orbit of σx. Let p` be
the maximum length of the orbits of σx for all x ∈ Zm

t
. If O is an orbit

of σx of length p`, then hp` ∈ fixH(B) = {1}. We conclude that for such
orbits

∑
y∈O bx,y ≡ 0 (mod p). If O is an orbit of σx of length pr < p`, then

hpr
/B 6= 1. Now hpr

acts as hpr
(x, y, z) = (x, σpr

x (y), z+cx,y) for some cx,y ∈ Zk.
If

∑
y∈O bx,y 6≡ 0 (mod p), then for y ∈ O, σpr

x (y) = y and cx,y 6≡ 0 (mod p).
Hence some power of hpr

relatively prime to p has all the properties required
of h but with smaller order, contradicting our choice of h. Thus

∑
y∈O bx,y ≡

0 (mod p) for every non-singleton orbit of σx.

3 - 5) As the order of h, and hence of each σx, is a power of p, bx∗,y∗ ≡ 1 (mod p),
and

∑t−1
y=0 bx∗,y ≡ 0 (mod p), (by Lemma 25), h|Cx∗/B must have at least

two fixed points. Furthermore, there is at least one bx∗,`∗ 6≡ 1 (mod p) and
σx∗(`

∗) = `∗, since p 6 |t. Finally, observe that h must fix some block of B
contained in any block of C, again since p 6 |t and the length of any orbit of h
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is a power of p.

Lemma 27. Under Hypothesis 23, suppose that m > 1 and Conditions (1)
and (2) do not hold, and let C be as in Lemma 24. Then there is a complete
block system F � B of G, consisting of t blocks of size mk

t
, where each block

is an orbit of 〈ρmk/t〉.

Proof. By Lemma 24, we have that (fixG(C)|C)/B is doubly transitive and
nonsolvable for each C ∈ C. Define H as in Lemma 25. By Lemma 25, H / G,
the orbits of H have order k′t for some k′|k, k′ 6= 1, and 〈ρm〉 ∩ H = 1.
By Lemma 26, for each p|k′ there exists h = hp ∈ H such that h(x, y, z) =
(x, σx(y), z + bx,y) and for some x∗ ∈ Zm

t
and some y∗ ∈ Zt, σx∗(y

∗) = y∗ and
bx∗,y∗ ≡ 1 (mod p). Furthermore, h satisfies the following additional properties:

(1) |h| is a power of p,
(2)

∑
y∈O bx,y ≡ 0 (mod p) for every non-singleton orbit O of σx,

(3) h|Cx∗/B has at least two fixed points,
(4) there is at least one bx∗,`∗ 6≡ 1 (mod p) and σx∗(`

∗) = `∗, and
(5) h fixes some block of B contained in any block of C.

For each x ∈ Zm
t

define a homomorphism πx : fixG(C) → St by πx(g) =
(g|Cx)/B. Define an equivalence relation ≡ on C by Cx1 ≡ Cx2 if and only if
Ker(πx1)/B = Ker(πx2)/B. As in the proof of Lemma 13, it is not difficult
to see that the unions of the equivalence classes of ≡ form a complete block
system E of G. Let D′ be the complete block system of G formed by the orbits
of 〈ρmk/p〉 (these orbits are blocks of G because of Lemma 15 and the fact that
fixG(B) = 〈ρm〉).

Let X be a circulant digraph with G ≤ Aut(X), and let G′ ≤ Aut(X) be
largest subgroup of Aut(X) that admits B, D′, and E as complete block sys-
tems. Note then that G′ is 2-closed, as any block systems of a group are also
block systems of its 2-closure. With the help of the automorphism h, we’ll
show that either the desired block system F exists, or ρmk/p|E ∈ G′. The lat-
ter would imply that ρmk/p|E ∈ G(2), contradicting the fact that Condition (2)
does not hold.

First assume that there is more than one equivalence class of ≡. Suppose there
is an edge e between E and Er, where E, Er ∈ E . Then there exists C, Cr ∈ C
such that e is an edge between C and Cr. Then there exists D′, D′

r ∈ D′ such
that e is an edge between D′ and D′

r. We will show that every vertex of D′ is
adjacent to every vertex of D′

r. This will then imply that ρmk/p|E ∈ G′ for every
E ∈ E as required. Since 〈ρ〉/E is regular, we may without loss of generality,
by replacing e with ρa(e) for an appropriate a, assume that D′ ⊆ Cx∗ (so that
C = Cx∗).
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Recall that σr has a fixed point, so that h fixes some block Br,n ∈ B. As bx∗,y∗ 6≡
bx∗,`∗ (mod p), h has a fixed block Bx∗,n∗ such that bx∗,n∗ 6≡ br,n (mod p). By
replacing e with ρbm/t(e), for some appropriate b, we may also assume that
D′ ⊆ Bx∗,n∗ . Note that as ρbm/t ∈ fixG(C), we still have that C = Cx∗ . As
Cx∗ 6≡ Cr, we have that (Ker(πx∗)|Cr)/B 6= {1}. As Ker(πx∗) / fixG(C) and
(fixG(C)|Cr)/B is primitive, we have that (Ker(πx∗)|Cr)/B is transitive, since
otherwise the orbits of (Ker(πx∗)|Cr)/B/(fixG(C)|Cr)/B would form a complete
block system of (fixG(C)|Cr)/B. This implies that we may assume without loss
of generality that D′

r ⊆ Br,n. Now the action of h on this edge gives all possible
edges between D′ and D′

r as required.

It remains to consider the case when there is just one equivalence class of ≡.
Define an equivalence relation ≡′ on B by B ≡′ B′ if and only if

StabfixG(C)/B(B) = StabfixG(C)/B(B′),

and let F be the collection of the unions of the equivalence classes of ≡′. It is
not difficult to see that F is a complete block system of G. As (fixG(C)|C)/B is
doubly transitive, each equivalence class of ≡′ can contain at most one block of
B|C for each C ∈ C. Thus the number of blocks of B in each equivalence class
of ≡′ is a divisor of m

t
. As Ker(πx)/B = Ker(πx′)/B for all x, x′ ∈ Zm

t
, we have

that πx(fixG(C)) = (fixG(C)|Cx)/B is a faithful representation of fixG(C)/B for
all x ∈ Zm

t
. By Lemma 16, the representations πx(fixG(C)) and πx′(fixG(C))

are equivalent for all x, x′ ∈ Zm
t
. Thus each equivalence class of ≡′ contains m

t

blocks of B. Since F is a complete block system of G, and 〈ρ〉 ≤ G, the blocks
of F must be the orbits of 〈ρmk/t〉.

Lemma 28. Under Hypothesis 23, suppose that m > 1 and Conditions (1)
and (2) do not hold. Then for every prime p|m, there is a complete block
system C that satisfies the following properties:

(1) C � B;
(2) there is no complete block system B′ for which B ≺ B′ ≺ C; and
(3) C consists of m/t blocks of size kt, where p|t.

Proof. Let C ′ be a complete block system of G consisting of m
r

blocks of size
rk, that is minimal with respect to the property that p|r. That is, for any
complete block system B′ with B ≺ B′ ≺ C′, pk does not divide the size of the
blocks of B′. Such a C ′ certainly exists, since we could choose r = m.

If there is no complete block system B′ for which B ≺ B′ ≺ C ′, then we let
C = C ′ and we are done. So let B′ be a complete block system whose block
sizes are as small as possible while preserving the property that B ≺ B′ ≺ C ′,
and say that B′ consists of m

t′
blocks of size kt′, where t′ > 1. Notice that t′|r.

By our choice of C ′, we must have p 6 |t′. By Lemma 27, with B′ taking the
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role of C, there is a complete block system F of G consisting of t′ blocks of
size mk

t′
.

Let C ′′ be the complete block system of G whose blocks are all of the nonempty
intersections of blocks of F with blocks of C ′. Since the nonempty intersections
of any block of F with any block of B′ consist of single blocks of B, and since
any block is an orbit of 〈ρi〉 for some i, the nonempty intersections of any
block of F with any block of C ′ must each consist of precisely r

t′
blocks of B.

Hence C ′′ consists of t′ · m
r

blocks of size k · r
t′
. But t′ > 1 and p|r but p 6 |t′, so

p| r
t′
, contradicting our choice of C ′.

Lemma 29. Let k and m be integers such that mk is square-free. Let G ≤ Smk

be a transitive permutation group that contains a regular cyclic subgroup 〈ρ〉
and admits a complete block system B with m blocks of size k. If fixG(B) is
of order k, fixG(B) ≤ C(G), and there exists no complete block system F � B
such that fixG(F) is semiregular, then one of the following is true:

(1) m = 1,
(2) there exists a complete block system D of G such that fixG(D) is not of

order |D|, D ∈ D, and there exists no nontrivial complete block system E
of G such that E ≺ D, or

(3) there exists a prime p|k such that G(2) admits a complete block system D′

of n/p blocks of size p and p2 divides |fixG(2)(D)|.

Proof. By Lemma 28, we may assume that if 2|m, then we can choose C with
m
t

blocks of size kt as in Lemma 24, with 2|t. Let F be a complete block system
consisting of t blocks of size mk

t
, as found in Lemma 27. Since (fixG(C)|C)/B is

doubly transitive (by Lemma 24) and F is a complete block system, we must
have StabfixG(C)/B(B) = StabfixG(C)/B(B′) if and only if there is some F ∈ F
for which B, B′ ⊆ F .

Obtain h from Lemma 26. Since h|Cx∗ has at least two fixed blocks, so must
h|C for every C ∈ C. Recall that h(x, y, z) = (x, σx(y), z + bx,y). Since F
is a complete block system, we must have σx = σx′ for every x, x′ ∈ Zm/t;
henceforth we will denote this by σ.

As in the proof of Lemma 27, let D′ be the complete block system of G formed
by the orbits of 〈ρmk/p〉, let X be a circulant digraph with G ≤ Aut(X), and
let G′ ≤ Aut(X) be the largest subgroup of Aut(X) that admits B and D′ as
complete block systems. Note again that G′ is 2-closed.

Let Fx∗ ∈ F be the block of F that contains Bx∗,y∗ . We now show that either
ρmk/p|Fx∗ ∈ Aut(X), which will then imply Condition (2) as before, or m

t
is

even, a contradiction since 2|t and 4 6 |mk.
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Suppose that there is an edge e between a vertex of Fx∗ and a vertex of Fr,
where Fr ∈ F and Fr 6= Fx∗ . Arguing as in Lemma 27, we have that there
exists D′, D′

r ∈ D′, Cr ∈ C and Br,z ∈ B such that D′ ⊆ Bx∗,y∗ ⊆ Fx∗ ,
D′

r ⊆ Br,z ⊆ Fr, Br,z ⊆ Cr, and there is an edge e between some vertex of D′

and some vertex of D′
r.

We show that every vertex of D′ is adjacent to every vertex of D′
r, or that m

t

is even. Suppose there exists u, v ∈ Zm/t such that u 6= v, σ(u) = u, σ(v) = v,
and bx∗,u 6≡ br,v (mod p). As (fixG(C))|C/B is doubly transitive for C ∈ C, we
may assume without loss of generality that D′ ⊆ Bx∗,u and D′

r ⊆ Br,v. Now
the action of h on the edge e gives all possible edges between D′ and D′

r as
required. Thus ρmk/p|F ∈ G′ as required. We now assume that no such u and
v exist.

Assume for the moment that h|C fixes at least three blocks of B set-wise.
Recall that σ(y∗) = y∗ and σ(`∗) = `∗. As h|C fixes at least three blocks
of B set-wise, there exists n ∈ Zm/t such that σ(n) = n, y∗ 6= n 6= `∗. As
bx∗,y∗ 6≡ bx∗,`∗ (mod p), br,n cannot be congruent modulo p to both. Thus
appropriate u and v as above exist. We now assume that σ fixes exactly two
blocks set-wise and that no appropriate u and v as above exist.

As
∑t−1

y=0 bx,y ≡ 0 (mod p), for every x ∈ Zm/t, σ(y∗) = y∗, σ(`∗) = `∗ and
for every non-singleton orbit O of σ we have that

∑
y∈O bx,y ≡ 0 (mod p), we

must have that bx,y∗ + bx,`∗ ≡ 0 (mod p) for every x ∈ Zm/t. Thus bx∗,`∗ ≡
−1 (mod p), br,y∗ ≡ −1 (mod p), and br,`∗ ≡ 1 (mod p), as otherwise appro-
priate u and v as above exist. Let q = r − y∗. Similarly, br+q,y∗ ≡ 1 (mod p)
and br+q,`∗ ≡ −1 (mod p) or we may conjugate h by an appropriate power of ρ
to map r to x∗ and r + q to r, and again obtain appropriate u and v as above.
Continuing inductively, we have that either appropriate u and v as above exist
or m

t
is even, which as previously mentioned is a contradiction.

4 Main Result

With the results of sections 2 and 3 established, we are approaching the main
result of this paper. Two more major lemmas and several short technical
results are required to complete the proof.

Lemma 30. Let G ≤ Smk be 2-closed and contain a regular cyclic subgroup,
〈ρ〉. If G admits a nontrivial complete block system B consisting of m blocks
of size k such that fixG(B)|B is primitive and fixG(B) does not act faithfully
on B ∈ B, then G = G1 ∩G2, where G1 = Sr oH1 and G2 = H2 o Sk, H1 is a
2-closed group of degree mk/r, H2 is a 2-closed group of order m, and r|m.
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Proof. Define an equivalence relation ≡ on B by B ≡ B′ if and only if the
subgroups of fixG(B) that fix B and B′, point-wise respectively, are equal.
Denote the equivalence classes of ≡ by C0, . . . , Cr−1 and let Ei = ∪B∈Ci

B. By
Lemma 13, fixG(B)|Ei

≤ G for every 0 ≤ i ≤ r−1 and E = {Ei : 0 ≤ i ≤ r−1}
is a complete block system of G. As E is a complete block system of G and
〈ρ〉 ≤ G, E consists of all cosets of some subgroup 〈rhoa〉. Since fixG(B) is not
faithful, we have r > 1. We first show that every orbital digraph of G can be
written as a nontrivial wreath product.

Let {Γ` : ` ∈ L} be the set of all orbital digraphs of G. Let e = (i, j) and Γ`

the orbital digraph of G that contains the edge e. If i, j ∈ E ∈ E , then, as E
is a complete block system of G, we have that Γ` is disconnected. Then Γ` is
trivially a wreath product and it is easy to see that Aut(Γ`) ≤ Sr`

o Smk/r`
,

where r|r`. If i ∈ E and j ∈ E ′, E, E ′ ∈ E and E 6= E ′, then let B, B′ ∈ B such
that i ∈ B and j ∈ B′. As fixG(B)|E′ ∈ Aut(Γ`), we have that (i, j′) ∈ E(Γ`)
for every j′ ∈ B′. As 〈ρ〉 ≤ G, we also have that (i′, j′) ∈ E(Γ`) for every
i′ ∈ B and j′ ∈ B′. Then Γ` = Γ′` o K̄k for some Γ′` a circulant digraph of order
m. Thus every orbital digraph of G can be written as a nontrivial wreath
product as claimed.

Now, as G is 2-closed, G = ∩`∈LAut(Γ`). Define a color digraph D whose
underlying simple graph is Kn by V (D) = Zn and each directed edge (i, j) is
given color `, where (i, j) ∈ E(Γ`). Note then that Aut(D) = G. Let J ⊆ L
such that if l ∈ J , then Γl is a disconnected orbital digraph of G such that
the vertex set of every component of Γl is contained in some E ∈ E . Let D1

be the spanning sub-digraph of D consisting of all edges of D colored with a
color contained in J . Then D1 has r components, so that Aut(D1) = Sr oH1,
where H1 is permutation isomorphic to Aut(D1[E]), for E ∈ E . Thus H1 is
2-closed of degree mk/r as H1 is the automorphism group of a color-digraph.
Let D2 be the spanning sub-digraph of D given by E(D2) = E(D) − E(D1).
As for each ` ∈ L − J , we have established that Γ` = Γ′l o K̄k, we have that
D2 = D′

2 o K̄k, where D′
2 = D2/B. Let K ≤ Aut(D2) be the maximal subgroup

of Aut(D2) that admits E as a complete block system. Then K = Aut(D′
2) oSk

and Aut(D2) ∩ Aut(D1) = K ∩ Aut(D1) as Aut(D1) admits E as a complete
block system. We let H2 = Aut(D′

2). Let g ∈ G. As G admits B and E
as complete block systems, g ∈ Aut(D1) and g ∈ Aut(D2). Conversely, if
g ∈ Aut(D1) ∩ Aut(D2), then g(e) ∈ E(D) for every e ∈ E(D1) and g(e) ∈
E(D2) for every e ∈ E(D2). As E(D1) ∪ E(D2) = E(D), g ∈ Aut(D). Thus
G = Aut(D) = (Sr oH1) ∩ (H2 o Sk). Finally, as B � E , we have that r|m.

Lemma 31. Let G ≤ Smk be 2-closed and contain a regular cyclic subgroup
〈ρ〉. Let B be a nontrivial complete block system of G with m blocks of size k
with the property that there exists no nontrivial complete block system C of G
such that C ≺ B. If |fixG(B)| > k, then one of the following is true:
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(1) G = G1∩G2, where G1 = Sr oH1 and G2 = H2 oSk, where H1 is a 2-closed
group of degree mk/r, H2 is a 2-closed group of order m, and r|m; or

(2) there exists a complete block system B of G consisting of k blocks of
size m, and there exists H / G such that H is transitive, 2-closed, and
〈ρ〉 ≤ H = H1 × H2 (with the canonical action), where H1 ≤ Sm is
2-closed and H2 ≤ Sk is 2-closed and primitive.

Proof. As there exists no nontrivial complete block system C of G such that
C ≺ B, it follows by Lemma 15 that fixG(B)|B is primitive. If fixG(B) does not
act faithfully on B ∈ B, then by Lemma 30 1) holds. We thus assume that
fixG(B) acts faithfully on each B ∈ B. Define an equivalence relation ≡′ on
Zmk by i ≡′ j if and only if StabfixG(B)(i) = StabfixG(B)(j).

We demonstrate that fixG(B)|B is equivalent to fixG(B)|B′ for every B, B′ ∈ B.
First, if fixG(B)|B is doubly transitive and nonsolvable for every B ∈ B, Lemma
16 tells us that fixG(B)|B is equivalent to fixG(B)|B′ for every B, B′ ∈ B. If
k were composite, then by the same argument used in the first paragraph of
the proof of Lemma 24, since fixG(B)|B is primitive, fixG(B)|B must be doubly
transitive, and since k 6= 4 fixG(B)|B must be nonsolvable, and therefore the
actions are equivalent by the argument of the previous sentence. The remaining
possibility is that fixG(B)|B is not doubly transitive or is solvable, and k = p is
prime. By Burnside’s Theorem (Theorem 10), fixG(B)|B is doubly transitive if
fixG(B)|B is nonsolvable. We conclude that fixG(B)|B is solvable for every B ∈
B, so that fixG(B)|B ≤ AGL(1, p). Let |fixG(B)|B| = pr, r|(p−1). Conjugating
StabfixG(B)(i) by any element of fixG(B) gives StabfixG(B)(i

′) for some i′ for
which i, i′ ∈ B ∈ B, so if we can show that StabfixG(B)(i) and StabfixG(B)(j)
are conjugate in fixG(B) whenever i and j are in different blocks of B, we will
have shown that the actions are equivalent, as desired. Since AGL(1, p) and
hence fixG(B) is solvable, StabfixG(B)(i) is in some Hall subgroup of fixG(B)
that is conjugate in fixG(B) to the Hall subgroup that contains StabfixG(B)(j).
Since AGL(1, p)/P is cyclic, where P is the Sylow p-subgroup of AGL(1, p), it
contains a unique subgroup of order r. This shows that, in fact, StabfixG(B)(i)
and StabfixG(B)(j) are conjugate in fixG(B). We conclude that the actions of
fixG(B)|B and fixG(B)|B′ are equivalent for every B, B′ ∈ B.

It now follows that each equivalence class of ≡′ contains at least m elements.
Furthermore, since the intersections of equivalence classes of ≡′ with blocks
of B are blocks of G, and there is no nontrivial complete block system C of G
with C ≺ B, these intersections must be trivial blocks. That is, each block of
B contains exactly one element of each equivalence class of ≡′. As conjugation
by an element of G permutes the stabilizers of points in Zmk, we have that the
equivalence classes of ≡′ form a complete block system B′ of k blocks of size
m. As 〈ρ〉 ≤ G, B′ must be formed by the orbits of 〈ρk〉. Then fixG(B) / G,
fixG(B′) / G, and fixG(B)∩ fixG(B′) = 1. Let H be the internal direct product
of H1 = fixG(B′) and H2 = fixG(B) (so that H ∼= fixG(B′) × fixG(B)). Then
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H/G. Since (m, k) = 1, ρm ∈ fixG(B) and ρk ∈ fixG(B′), we also have 〈ρ〉 ≤ H.

Now, consider H(2). By Lemma 14, H(2) = fixG(B′)(2)×fixG(B)(2). As H ≤ G,
H(2) ≤ G. Hence fixH(2)(B) ≤ fixG(B) and fixH(2)(B′) ≤ fixG(B′). As H(2) =
fixG(B′)(2) × fixG(B)(2), fixH(2)(B′) = fixG(B′)(2) and fixH(2)(B) = fixG(B)(2).
Thus fixG(B) = fixH(2)(B) ≤ fixG(B)(2) so that fixG(B) is 2-closed. Similarly,
fixG(B′) is 2-closed. Hence

H(2) = fixG(B′)(2) × fixG(B)(2) = fixG(B)× fixG(B′) = H.

Then 2) follows with the observation that as fixG(B)|B is primitive for every
B ∈ B, we have that H2 is primitive in its action on B ∈ B.

We now only need technical lemmas before the proof of the main theorem.

Lemma 32. Let H / G such that H contains a regular cyclic subgroup. If B
is a complete block system of H, then B is a complete block system of G.

Proof. Clearly fixH(B)/H. Furthermore, if g ∈ G, then g−1fixH(B)g/H. As H
contains a regular cyclic subgroup, the complete block system B is the unique
complete block system of H with blocks of size |B|, B ∈ B. As g−1fixH(B)g/H
and has orbits of the same size as B ∈ B, the orbits of g−1fixH(B)g are the
same as those of fixH(B). Hence g−1fixH(B)g = fixH(B), so that fixH(B) / G.
Thus the orbits of fixH(B) form the complete block system B of G.

Definition 33. For a positive integer n, we define N(n) = {x → ax + b : a ∈
Z∗

n, b ∈ Zn}. Note that N(n) is the normalizer of the left regular representation
of Zn, and if n is prime, then N(n) = AGL(1, n). We let 〈ρ〉 be the cyclic
subgroup of N(n) defined by ρ(x) = x + 1.

Lemma 34. Let H ≤ N(mk), mk square-free and suppose that H is transi-
tive. If B is a complete block system of H consisting of m blocks of size k, then
〈ρm〉 is the unique minimal subgroup of fixH(B) whose action on any block of
B ∈ B is transitive.

Proof. Let k = p1 · · · pr, where each pi is prime. Note that 〈ρ〉 contains a
unique Sylow pi-subgroup of order pi, 1 ≤ i ≤ r. Hence for each i, N(mk)
(and thus H) admits a complete block system Ci � B consisting of mk/pi

blocks of size pi formed by the orbits of 〈ρmk/pi〉. We may thus view N(mk)
(and so H) as acting on Zm × Πr

i=1Zpi
in the canonical fashion by viewing

N(mk) as N(m) × Πr
i=1AGL(1, p). Let K ≤ fixH(B) be such that K|B is

transitive on some B ∈ B and K has no proper subgroup K ′ such that K ′|B
is transitive on some block of B ∈ B. Then for any b ∈ B, K|B is transitive on
B. Define πi : K → AGL(1, pi) to be projection onto the (i + 1)st-coordinate
(viewing K ≤ N(m) × Πr

i=1AGL(1, pi)). Then πi(K) is transitive for every

21



1 ≤ i ≤ r. Furthermore, as AGL(1, pi) contains a unique transitive subgroup
(namely, its unique Sylow pi-subgroup), πi(K) must contain the unique Sylow
pi-subgroup of AGL(1, pi). Now, observe that πi(〈ρm〉) is also the unique Sylow
pi-subgroup of AGL(1, pi) so that πi(〈ρm〉) ≤ πi(K). Suppose that K 6= 〈ρm〉.
Then there exists δ ∈ K such that δ 6∈ 〈ρm〉, and hence for some 1 ≤ i ≤ r,
πi(δ) 6∈ πi(〈ρm〉). Let Pi be the unique Sylow pi-subgroup of AGL(1, pi). Then
π−1

i (Pi)|B is transitive, but δ 6∈ π−1
i (Pi), a contradiction.

Lemma 35. Let mk be a square-free integer, and let G ≤ Smk contain a
regular cyclic subgroup 〈ρ〉 ≤ G and admit a complete block system B of m
blocks of size k such that fixG(B) ≤ N(mk). Then there exists H /G such that

(1) 〈ρ〉 ≤ H,
(2) fixH(B) is semiregular, and
(3) fixH(B) ≤ C(H).

Proof. For convenience, we will view G as acting on Zm×Zk so that ρ(i, j) =
(i + 1, j + 1), and the blocks of B are the sets {i} × Zk, where i ∈ Zm. Then
〈ρm〉 ≤ fixG(B), and by Lemma 34, 〈ρm〉 is the unique minimal subgroup of
fixG(B) whose action on some block of B is transitive. We then have that if
g ∈ G, then g−1〈ρm〉g = 〈ρm〉 as g−1〈ρm〉g is transitive on some block of B ∈ B.
Whence if g ∈ G, then g(i, j) = (δ(i), βi(j)), where δ ∈ Sn and βi ∈ N(k).
Thus βi(j) = αij + bi, where αi ∈ Z∗

k, bi ∈ Zk. As 〈ρm〉 / G, αi = αi′ for
every i, i′ ∈ Zm. Thus g(i, j) = (δ(i), αj + bi). Let H = 〈ρ〉G = {g−1ρ`g :
g ∈ G, ` ∈ Zmk}, the normal closure of 〈ρ〉 in G. As every g ∈ G has the
form g(i, j) = (δ(i), αj + bi), a straightforward computation will show that if
h ∈ H, then h(i, j) = (γ(i), j + ci), γ ∈ Sm, ci ∈ Zk. Clearly ρ ∈ H so that
1) follows. Furthermore, elements of 〈ρm〉 are the only elements of fixG(B) of
the form (i, j) → (γ(i), j + bi), so that fixH(B) = 〈ρm〉 and 2) follows. As
ρm(i, j) = (i, j + c), for some c ∈ Zk, it is now easy to see that ρm commutes
with every element of H so that 〈ρm〉 ≤ C(H) and 3) follows.

Lemma 36. Let G ≤ Smk, mk square-free with H / G such that 〈ρ〉 ≤ H is a
regular cyclic subgroup. Assume that H admits a complete block system B of
m blocks of size k. If fixH(B) ≤ N(mk), then fixG(B) ≤ N(mk).

Proof. By Lemma 32, B is also a complete block system of G. Let g ∈ fixG(B).
Then g−1ρgρ−1/B = 1 so that g−1ρgρ−1 ∈ fixG(B). Furthermore, ρ ∈ H so
that g−1ρg ∈ H. Whence g−1ρgρ−1 ∈ fixH(B) ≤ N(mk). As ρ−1 ∈ N(mk), we
have that g−1ρg ∈ N(mk) and 〈g−1ρg〉 is transitive. By Lemma 34, we have
that g−1ρg ∈ 〈ρ〉 so that g ∈ N(mk) as required.

Theorem 37. Let mk be a square-free integer and G ≤ Smk be 2-closed and
contain a regular cyclic subgroup, 〈ρ〉. Then one of the following is true:
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(1) G = G1∩G2, where G1 = Sr oH1 and G2 = H2 oSk, where H1 is a 2-closed
group of degree mk/r, H2 is a 2-closed group of order m, and r|m; or

(2) there exists a complete block system B of G consisting of m blocks of
size k, and there exists H / G such that H is transitive, 2-closed, and
〈ρ〉 ≤ H = H1 × H2 (with the canonical action), where H1 ≤ Sm is
2-closed and H2 ≤ Sk is 2-closed and primitive.

Proof. Choose k as large as possible so that there exists H / G such that
〈ρ〉 ≤ H, fixH(B) is semiregular of order k, where B is a complete block
system consisting of m blocks of size k, and 〈ρm〉 ≤ C(H). Suppose that
there exists a complete block system C with B ≺ C and H ′ / H such that
〈ρ〉 ≤ H ′ and fixH′(C) is semiregular of order, say k′, where k|k′. Note then that
fixH′(C) = 〈ρmk/k′〉 ≤ N(mk). By Lemma 36, fixH(C) ≤ N(mk), and again
by Lemma 36, fixG(C) ≤ N(mk). But then by Lemma 35 there exists H ′′ / G
such that 〈ρ〉 ≤ H ′′, fixH′′(C) is semiregular, and fixH′′(C) = 〈ρmk/k′〉 ≤ C(H ′′),
contradicting our original choice of k. Hence if C � B and H ′/H with 〈ρ〉 ≤ H ′,
then fixH′(C) is not semiregular.

We have now established the conditions of Lemma 29 for the group H, which
allows us to conclude one of the following:

(1) m = 1;
(2) there exists a complete block system D of H such that fixH(D) is not of

order |D|, D ∈ D, and there exists no nontrivial block system E of H
such that E ≺ D; or

(3) there exists a prime q|k such that H(2) admits a complete block system
D′ of mk/q blocks of size q and q2 divides |fixH(2)(D′)|.

In the first case, we have just one trivial block, so fixG(B) = G = 〈ρ〉 and
conclusion 2) of this theorem is true (possibly vacuously if mk = k is prime).

In the second case, by Lemma 32, D is a complete block system of G. Since
H has no nontrivial complete block system E such that E ≺ D and every
complete block system of G is also a complete block system of H, G has no
nontrivial complete block system E such that E ≺ D. Thus |fixG(D)| > |D|,
D ∈ D. Now by Lemma 31, one of the conclusions of this theorem holds.

In the third case, since G is 2-closed and H ≤ G, we have H(2) ≤ G, so q2

divides |fixG(D′)|. Since fixH(D′) ≤ fixH(B) = 〈ρm〉 ≤ N(mk), Lemma 36
gives fixG(D′) ≤ N(mk), a contradiction.

This is the main result that was described in the abstract. As mentioned in our
introductory remarks, we can determine more precisely which groups satisfy
(2) of Theorem 37.
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For a positive integer n, let M(n) = {x → ax : a ∈ Z∗
n}.

Corollary 38. Let G be a 2-closed group of square-free degree mk that con-
tains a regular cyclic subgroup 〈ρ〉, such that there exists H /G such that H is
transitive, 2-closed, and there exists a complete block system B of G consisting
of m blocks of size k, such that H = H1 × H2 (with the canonical action),
where H1 ≤ Sm is 2-closed and H2 ≤ Sk is 2-closed and primitive. Then there
exists A ≤ M(mk) such that G = A ·H.

Proof. We must show that g = rh, where h ∈ H and r ∈ M . As Zmk is a CI-
group with respect to binary relational structures [21] and 〈ρ〉 = (Zmk)L ≤ H,
there exists h1 ∈ H such that h−1

1 g−1〈ρ〉gh1 = 〈ρ〉. Thus gh1 = ω ∈ N(mk).
Let ω(i) = ai+b, a ∈ Z∗

mk, b ∈ Zmk. Define h2 : Zmk → Zmk by h2(i) = i−a−1b.
Then gh1h2(i) = ai, where a ∈ Z∗

mk. Let r ∈ M(n) such that r(i) = ai. Then
gh1h2 = r so that g = rh−1

2 h−1
1 , and the result follows.
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