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Abstract. A necessary condition for a Cayley digraph Cay(R,S) to be a regular representation is that there
are no non-trivial group automorphisms of R that fix S setwise. A group is DRR-detecting or GRR-detecting

if this condition is also sufficient for all Cayley digraphs or graphs on the group, respectively. In this paper, we

determine precisely which groups of squarefree order are DRR-detecting, and which are GRR-detecting.

1. Introduction and background

All groups and digraphs in this paper are finite. Given a group R and a subset S ⊆ R, the Cayley digraph
Cay(R,S) is the digraph with vertex-set R, with an arc from r to sr if and only if s ∈ S. If S = S−1 then we

also say that Cay(R,S) is a Cayley graph. It is straightforward to show that the right-regular representation R̂
of R is a subgroup of the automorphism group of Cay(R,S). It is also not hard to show that, conversely, if the
automorphism group of a digraph admits a regular subgroup isomorphic to R, then the digraph is isomorphic
to Cay(R,S) for some S ⊆ R. Digraphs such that their (full) automorphism group is regular are of special
interest.

Definition 1.1. A Cayley digraph Cay(R,S) is a Digraphical Regular Representation (DRR for short) if

Aut(Cay(R,S)) = R̂. If it is also a Cayley graph, then it is a Graphical Regular Representation or GRR.

It is usually not easy to determine whether a Cayley digraph is a DRR, mostly because it is not easy to
calculate the automorphism group. On the other hand, there is a particular subgroup of the automorphism
group that is easier to understand. We first introduce some notation. Given a permutation group G acting on
a set Ω and S ⊆ Ω, we denote by GS the subgroup of G that fixes S setwise. Given two subgroups X and Y of
a common overgroup, we denote by NY (X) (CY (X)) the normaliser (centraliser) of X in Y .

Theorem 1.2. [4, Lemma 2.1] Let R be a group, let S ⊆ R and let A = Aut(Cay(R,S)). Then NA(R̂) =

R̂oAut(R)S.

Generally speaking, given a Cayley digraph Cay(R,S), calculating R̂oAut(R)S is relatively easy, especially

compared to determining Aut(Cay(R,S)). We are interested in groups for which knowing R̂ o Aut(R)S is
enough to decide whether Cay(R,S) is a DRR.

Definition 1.3. A group R is DRR-detecting if, for every subset S of R, Aut(R)S = 1 implies that Cay(R,S)
is a DRR. It is GRR-detecting if, for every inverse-closed subset S of R, Aut(R)S = 1 implies that Cay(R,S)
is a GRR.

Clearly, every DRR-detecting group is GRR-detecting. If Aut(R)S = 1 but Cay(R,S) is not a DRR
(respectively, not a GRR), then we say that Cay(R,S) witnesses that R is not DRR-detecting (respectively,

not GRR-detecting). Equivalently by Theorem 1.2, Cay(R,S) witnesses that R is not DRR-detecting if R̂ is
self-normalising in Aut(Cay(R,S)) but Cay(R,S) is not a DRR.

We would like to determine which groups are DRR-detecting or GRR-detecting. Previous work on this topic
includes a result by Godsil [4] that if p is prime, then every p-group that admits no homomorphism onto the
wreath product Cp o Cp is DRR-detecting. In particular, every abelian p-group is DRR-detecting. In [8], with
D. Morris we showed that this result is sharp in the sense that Cp oCp is not GRR-detecting (or DRR-detecting)
when p is odd. We also proved that if a DRR-detecting group is nilpotent, then it is a p-group. In this paper
we determine which groups of squarefree order are GRR-detecting, and which are DRR-detecting:
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Theorem 1.4. Let R be a group of squarefree order.

(1) If |R| is prime, then R is DRR-detecting (and therefore is GRR-detecting).
(2) If |R| has two prime factors, then:

(a) R is not GRR-detecting (and therefore not DRR-detecting) if R ∼= Cq o Cr and either:
(i) (q, r) = (31, 5); or
(ii) (q, r) is a safe/Sophie Germain prime pair with q ≡ 3 (mod 4) and q ≥ 11.

(b) R is GRR-detecting but not DRR-detecting if:
(i) R is abelian; or
(ii) R ∼= C7 o C3.

(c) R is DRR-detecting (and therefore GRR-detecting) if R does not fall into any of the above cases.
(3) If |R| has at least three prime factors, then R is not DRR-detecting, but is GRR-detecting if one of the

following holds:
(a) R is abelian;
(b) R ∼= D30; or
(c) R ∼= Cq ×D2r with r ∈ {3, 5}.

(Throughout the paper, Cn denotes a cyclic group of order n and D2n a dihedral group of order 2n.)
In Section 2, we define generalised wreath products in the context of Cayley digraphs and show that they are

never DRRs, which makes them very useful as potential witnesses that a group is not DRR-detecting (or GRR-
detecting). We also give a sufficient condition to recognise a Cayley digraph as a generalised wreath product.
Starting in Section 3, we restrict our attention to groups of squarefree order. We first show that “most” of these
groups are not GRR-detecting and then deal with the remaining “exceptional” groups in Section 4.

2. Generalised wreath products

Our main approach to construct witnesses is to use generalised wreath products. It is therefore important
for us to understand what a generalised wreath product is in the context of Cayley digraphs.

Definition 2.1. Let R be a group and let S ⊆ R. If there exist K and H with 1 < K E H < R such that

(??) K(S \H) = S \H = (S \H)K

then Cay(R,S) is a nontrivial generalised wreath product (with respect to K and H). If H = K, then Cay(R,S)
is a nontrivial wreath product (with respect to K).

It is not hard to see that, if K E R or S = S−1, then (??) is equivalent to K(S \H) = S \H. We will often
use this fact throughout the paper.

Lemma 2.2. A Cayley digraph that is a nontrivial generalised wreath product is not a DRR.

Proof. Let Γ = Cay(R,S) be a nontrivial generalised wreath product with respect to K and H. By definition,
we have 1 < K E H < R and K(S \H) = S \H = (S \H)K.

Let k ∈ K and let αk ∈ Sym(R) be the map which right multiplies elements of H by k while fixing all
other elements of R. We claim that αk ∈ Aut(Γ). Let (y, x) be an arc of Γ, so that xy−1 ∈ S. We check that
αk(x)αk(y)−1 ∈ S. If x, y /∈ H, this is trivial. Similarly, if x, y ∈ H, then αk(x)αk(y)−1 = xk(yk)−1 = xy−1 ∈ S.
Now, suppose that x ∈ H and y /∈ H. In particular, xy−1 /∈ H. We have

αk(x)αk(y)−1 = xky−1 = kx
−1

xy−1 ∈ Kxy−1 ⊆ K(S \H) = S \H,
as required (we used the fact that K E H and x ∈ H). Finally, if x /∈ H and y ∈ H, then again xy−1 /∈ H and

αk(x)αk(y)−1 = x(yk)−1 = xk−1y−1 = xy−1(k−1)y
−1

∈ xy−1K ⊆ (S \H)K = S \H.

Since 1 < K, there is some k such that αk 6= 1 and, since H < R, it follows that αk /∈ R̂ and Γ is not a
DRR. �

We have the following immediate corollary.

Corollary 2.3. Let R be a group, let S ⊆ R and let K and H be such that

(1) 1 < K EH < R,
(2) K(S \H) = S \H = (S \H)K, and
(3) Aut(R)S = 1.
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Then Cay(R,S) witnesses that R is not DRR-detecting (and not GRR-detecting if S = S−1).

To apply Corollary 2.3, one must show that Aut(R)S = 1. To do this, it will often be easiest to show first
that Aut(R)S normalises H, so that Aut(R)S = Aut(R)S∩H ∩Aut(R)S\H . The most obvious situation in which
Aut(R)S normalises H is if Aut(R) itself normalises H; that is, when H is characteristic in R. Here is another
approach that can also be used.

Proposition 2.4. Let R be a group, let S ⊆ R and let 1 < K < H < R. If

(1) K characteristic in R,
(2) K is maximal in H,
(3) K(S \H) = S \H, and
(4) it is not the case that K(S \K) = S \K,

then Aut(R)S normalises H.

Proof. Let H ′ = 〈s ∈ S : Ks 6⊆ S〉. Since K is characteristic in R, Aut(R) normalises K, and therefore so does
Aut(R)S . It follows that Aut(R)S normalises H ′. By (3) we have H ′ ≤ H, and by (4), H ′ � K. It follows that
K < KH ′ ≤ H. Since K is maximal in H, H = KH ′ hence Aut(R)S normalises H, as required. �

We end this section with a sufficient condition to recognise a Cayley digraph as a nontrivial generalised wreath
product. (For G ≤ Aut(Cay(R,S)), we denote by G1 the stabiliser of the vertex of Cay(R,S) corresponding to
the identity of R.)

Lemma 2.5. Let R be a group, let S ⊆ R, let G ≤ Aut(Cay(R,S)) and let K and H be such that 1 < K E
H < R and H ≤ NR(G1). If, for every r ∈ R\H, we have G1K,G1K

r ⊆ G1G
r
1, then Cay(R,S) is a nontrivial

generalised wreath product with respect to K and H. Moreover, if S = S−1, then G1K ⊆ G1G
r
1 is sufficient to

reach the same conclusion.

Proof. Since H ≤ NR(G1), we have G1H
G1 = G1HG1 = G1H. Note that G ≤ Aut(Cay(R,S)) implies that

SG1 = S hence G1(S \H)G1 = G1(S \H). If, for every r ∈ R \H, we have G1K ⊆ G1G
r
1, then we have

G1Kr
−1 ⊆ G1G

r
1r
−1 = G1r

−1G1 = G1(r−1)G1

and it follows that G1K(S \H) ⊆ G1(S \H)G1 = G1(S \H), which implies K(S \H) = S \H. Likewise, if for
every r ∈ R \H, we have G1K

r ⊆ G1G
r
1, then

G1r
−1K ⊆ G1r

−1G1 = G1(r−1)G1

and it follows that G1(S \H)K ⊆ G1(S \H)G1 = G1(S \H), which implies (S \H)K = S \H.
Hence, if G1K,G1K

r ⊆ G1G
r
1 for every r ∈ R \H, then K(S \H) = S \H = (S \H)K hence Cay(R,S)

is a nontrivial generalised wreath product. Moreover, if S = S−1, then as previously noted, K(S \H) = S \H
suffices to reach the same conclusion. �

3. Groups of squarefree order, generic case

The structure of groups of squarefree order has been well understood since the work of Hölder [5]. An
obvious observation is that every subgroup of such a group is a Hall subgroup hence every normal subgroup
is characteristic. Hölder proved that these groups are metacyclic. In particular, if R is a group of squarefree
order, we have R ∼= Ct × (Cn o Cm), where Z(Cn o Cm) = 1 (and t, n and m are pairwise coprime). (We use
the usual notation Z(G) for the centre of the group G.) An easy consequence of this is the fact that, for every
set of primes π dividing |R|, R has a Hall π-subgroup. Finally, we will make frequent use of the fact that if p
and q are primes with q > p and X is a nonabelian subgroup of order pq, then q ≡ 1 (mod p). We will also
make use of the following result.

Lemma 3.1. Let R ∼= Cn oCm be a group of squarefree order with trivial center. Suppose that, for every pair
of primes p and q with p | m and q | n, every subgroup of R of order pq is nonabelian. Let H be a characteristic
subgroup of prime index in R. If m is not prime, then CAut(R)(H) = 1.

Proof. Let x and y be elements of order m and n in R, respectively and let Y = 〈y〉. Note that Y is a
characteristic subgroup of R and there exists an integer j such that, for every y′ ∈ Y , we have (y′)x = (y′)j .
Now, if α ∈ Aut(R), then xα must also have this property, that is, (y′)x

α

= (y′)j for every y′ ∈ Y . An easy
calculation shows that this implies that xα ∈ Y x, say xα = yix. Let p = |R : H|. Note that, since H is normal
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in R, we have Y ≤ H and p divides m. Let α ∈ CAut(R)(H). Since m is not prime, we have xp ∈ H \ Y so

(xp)α = xp. Since xp commutes with x, (xp)α = xp commutes with xα = yix. It follows that xp commutes with
yi. If yi 6= 1, then by hypothesis, CR(yi) = Y but xp /∈ Y hence we must have yi = 1. This implies that xα = x
and α = 1, as required. �

In our first main result, Theorem 3.3, we construct Cayley graphs Cay(R,S) that are nontrivial generalised
wreath products with respect to some subgroups K and H of R, and that witness that R is not GRR-detecting.
One component of our construction involves taking a GRR on H when possible. In order to understand when
this is possible, we need to know which groups of squarefree order admit GRRs. Although many researchers
including Watkins, Imrich, Nowitz, and Hetzel made significant contributions along the way, the ultimate result
about which groups admit GRRs is due to Godsil. We provide a statement of his result that makes it easy to
see which of these groups have squarefree order.

Theorem 3.2. [3] Every group admits a GRR except:

• abelian groups of exponent greater than 2;
• generalised dicyclic groups (which have orders divisible by 4);
• the dihedral groups D6 and D10; and
• eleven other small groups, none of whose orders is squarefree.

It follows that the only nonabelian groups of squarefree order that do not admit a GRR are D6 and D10.
We are now ready to show that “most” groups of squarefree order are not GRR-detecting (and thus not DRR-
detecting). (We do set aside a number of special cases for further consideration in Section 4.)

Theorem 3.3. Let R be a group of squarefree order. If R is not abelian and R /∈ {D6,D10,D30,D6×Cq,D10×
Cq,Cq o Cp : p, q primes}, then R is not GRR-detecting.

Proof. We can assume that |R| has at least three prime divisors, since we have excluded the other possibilities.
Let R ∼= Ct × (Cn o Cm), where Z(Cn o Cm) = 1. Since R is nonabelian, we have n,m ≥ 2. We now split the
proof into two cases.

Case 1: For every pair of primes p and q with p | m and q | nt, every subgroup of R of order pq is
nonabelian.

In this case, we have t = 1. Let p be the smallest prime dividing m. If m 6= p, then take H to be the
characteristic subgroup of index p in R, so H ∼= Cn o Cm/p, with m/p ≥ 3. In particular, H admits a GRR.
Let S be the connection set for a GRR on H. Since H is characteristic in R, it is fixed by Aut(R)S and thus
so is S ∩ H = S. Since Cay(H,S ∩ H) is a GRR, it follows that Aut(R)S ≤ CAut(R)(H). By Lemma 3.1,
CAut(R)(H) = 1 hence Aut(R)S = 1 and by Corollary 2.3 (applied with K = H), R is not GRR-detecting.

We may thus assume that m = p. Since |R| has at least three prime divisors and t = 1, n is not prime. Let
q be the largest prime dividing n and write n = qn′. Recall that every prime divisor of n must be 1 modulo p.
If p ≥ 3, then it immediately follows that q ≥ 7. If p = 2, the only other possibility is (q, n) = (5, 15), but this
is excluded by our hypothesis, hence q ≥ 7 in either case. Let K be the characteristic subgroup of order q in R,
and H a subgroup of order pq. Note that H is nonabelian and, since q ≥ 7, H admits a GRR.

Let k ∈ K have order q, let h ∈ H have order p, and let x ∈ R \H have order n′. Let S′ be the connection
set for a GRR on H, and let S = S′ ∪Khx ∪K(hx)−1. Suppose that K(S \K) = S \K. This implies that
K(S′ \K) = S′ \K and then Lemma 2.2 implies that Cay(H,S′) is not a DRR, a contradiction. It follows that
K(S \K) 6= S \K. Let α ∈ Aut(R)S . By Proposition 2.4, α normalises H, so since Cay(H,S ∩H) is a GRR, α

fixes H pointwise. The neighbourhood of h ∈ H outside H is Khxh ∪Kx−1 = Kxh
−1

h2 ∪Kx−1, which must
therefore be fixed setwise by α. Note that Kx−1 has a unique element of order n′, namely x−1, and all its other

elements have order n. If p = 2, then Khxh = Kx−1, whereas if p ≥ 3, then every element of Kxh
−1

h2 has
order p. Either way, α must fix x−1 and thus fix R pointwise so α = 1. We conclude that Aut(R)S = 1 and, by
Corollary 2.3, R is not GRR-detecting.

Case 2: There exists primes p and q with p | m and q | nt such that R has a cyclic subgroup of
order pq.

Choose p and q satisfying the above with p as large as possible. Since R is nonabelian, nt is not prime. Let
H be the characteristic subgroup of index p in R. Since nt is not prime, H is not isomorphic to D6 or D10,
hence either H admits a GRR or H ∼= Cnt.
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Let r = nt/q. Note that every element of order p in R must act nontrivially on some subgroup of the cyclic
subgroup of order r in R. We show that r > 5. Suppose, by contradiction, that r ≤ 5. This implies p = 2 and
r ∈ {3, 5}. If m = p = 2, then R ∼= D2r × Cq, a case we have excluded by hypothesis. So m > p and there is a
prime p′ dividing m with p′ > 2. Since r ∈ {3, 5}, R has a cyclic subgroup of order p′r but this contradicts our
choice of p. It follows that r > 5.

Let k, g and x be elements of order q, r and p in R, respectively. Let K = 〈k〉 and B = 〈kg〉. Note
that B ∼= Cnt and that K and B are both characteristic in R and contained in H. If H is nonabelian,
then take S′ to be the connection set for a GRR on H; if H ∼= Cnt then take S′ = {kg, (kg)−1}. Let
S = S′ ∪Kx±1 ∪K(gx)±1 ∪K(g3x)±1. Note that these really are three distinct cosets of K since |g| = r > 5.
Note also that S ∩H = S′ and that S \ S′ ⊆ Bx±1.

Let α ∈ Aut(R)S . Since H is characteristic in R, Hα = H hence (S′)α = S′. By our choice of S′, it follows
that (kg)α = (kg)±1 which implies gα = g±1. Write xα = bxε, with b ∈ B and ε = ±1. Note that

(gα)x = (gx)α = (gα)x
α

= (gα)bx
ε

= (gα)x
ε

.

This implies that ε = 1, so xα ∈ Bx and therefore α fixesKx∪Kgx∪Kg3x. SinceKα = K, αmust permute these
threeK-cosets. Write (Kx)α = Kgix with i ∈ {0, 1, 3}. It follows that (Kgx)α = (gKx)α = g±1Kgix = Kgi±1x
and i 6= 3. Moreover, if i = 1 then gα = g−1 and α interchanges Kg and Kgx, so must fix Kg3x, so
Kg3x = (Kg3x)α = Kg−3+1x and g5 = 1, contradicting |g| = r > 5. It follows that i = 0 and α fixes Kx, Kgx,
and Kg3x. Since x and k commute, x is the unique element of order p in Kx, so it is fixed by α. Similarly, gx
is the unique element of Kgx whose order is not a multiple of q, so it too is fixed by α hence so is g. It follows
that α centralises H and α = 1. This shows that Aut(R)S = 1 and it follows from Corollary 2.3 that R is not
GRR-detecting.

�

4. Groups of squarefree order, exceptional cases

In this section we proceed through the groups that were excluded in the hypothesis of Theorem 3.3. We
begin with the three sporadic groups. The following result can be checked by computer.

Proposition 4.1. D6 and D10 are DRR-detecting (and therefore GRR-detecting). D30 is GRR-detecting but
not DRR-detecting.

We next deal with abelian groups. We divide these into two classes, according to whether or not their order
is prime.

Proposition 4.2. Groups of prime order are DRR-detecting (and therefore GRR-detecting).

Proof. Let R be a group of prime order and let S ⊆ R. It is known that either R̂ is normal in Aut(Cay(R,S))
or Aut(Cay(R,S)) is doubly transitive (see for example [11, Theorem 11.7]). In the latter case, Cay(R,S) is a

complete graph and Aut(Cay(R,S)) = Sym(R). In either case, Aut(R)S = 1 implies that Aut(Cay(R,S)) = R̂,
and R is DRR-detecting. �

Proposition 4.3. Abelian groups of squarefree composite order are GRR-detecting.

Proof. Let R be an abelian group of squarefree composite order and let S ⊆ R with S = S−1. Inversion is a
non-identity automorphism of R that preserves S hence Aut(R)S 6= 1. This shows that R is GRR-detecting. �

We still need to show that abelian groups of squarefree composite order are not DRR-detecting. In order
to do so, we will use the following two results.

Theorem 4.4. [8, Theorem 1.9] If G1 and G2 are nontrivial groups that admit a DRR (a GRR, respectively)
and gcd(|G1|, |G2|) = 1, then G1 ×G2 is not DRR-detecting (not GRR-detecting, respectively).

To apply Theorem 4.4, we need to understand which groups of squarefree order admit DRRs. We use the
following result of Babai.

Theorem 4.5. [1, Theorem 2.1] Every group admits a DRR except Ci2 for 2 ≤ i ≤ 4, C2
3, and Q8. In particular,

every group of squarefree order admits a DRR.

Corollary 4.6. Let R be a group of squarefree order. If R is abelian of composite order or R ∼= D2r ×Cq with
r ∈ {3, 5} and q prime, then R is not DRR-detecting.
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Proof. Note that R is a nontrivial direct product of two groups of coprime squarefree order. The result then
follows from Theorems 4.4 and 4.5. �

To prove Theorem 1.4, it remains to show that Cq ×D6 and Cq ×D10 are GRR-detecting and to determine
the status of nonabelian groups whose order is a product of two primes. This is our goal in the remainder of
the paper.

4.1. The case when Cay(R,S) is a generalised wreath product. Since we are trying to show that some
groups are DRR or GRR-detecting, we have to show that they do not admit witnesses. One case that needs to
be handled is to show that even nontrivial generalised wreath products on these groups are not witnesses. This
is the goal of this subsection.

Lemma 4.7. If Cay(R,S) is a nontrivial generalised wreath product with respect to K and H and Z(H)∩K �
Z(R), then Aut(R)S > 1.

Proof. By definition, K(S \ H) = S \ H = (S \ H)K. Let k be an element of (Z(H) ∩ K) \ Z(R) and let
αk ∈ Aut(R) denote conjugation by k. Since k ∈ Z(H), we have that αk fixes H pointwise. Moreover, since
k ∈ K, for every s ∈ S \ H, we have sαk = k−1sk ∈ KsK ⊆ S. It follows that αk ∈ Aut(R)S . Finally, as
k /∈ Z(R), αk 6= 1, as required. �

From this we are able immediately to prove our desired result in the case where |R| is a product of two
primes.

Corollary 4.8. Let R be a nonabelian group whose order is a product of two distinct primes and let S ⊆ R. If
Cay(R,S) is a nontrivial generalised wreath product, then Aut(R)S > 1.

Proof. Say that Cay(R,S) is a nontrivial generalised wreath product with respect to K and H, so that 1 <
K E H < R. Given the order of R, we must have H = K of prime order, with Z(H) = H � Z(R) = 1, and the
result follows by Lemma 4.7. �

It remains to deal with groups of the form Cq × D2r where r ∈ {3, 5}. We first need the following result,
which is easy but we include a proof for completeness.

Lemma 4.9. Let r ∈ {3, 5}, let D = D2r and let S ⊆ D with S = S−1. Then there exists some nontrivial
β ∈ Aut(D)S that inverts every element of the subgroup of order r of D.

Proof. Let C be the (cyclic) subgroup of order r of D and let x ∈ D \C. We show that there exists an element
z ∈ xC such that conjugation by z fixes S setwise. The result then follows.

Clearly, conjugation by an element of xC inverts every element of C (and hence preserves S∩C), so it suffices
to show that S ∩ (D \C) is preserved by conjugation by an element of xC. This is equivalent to preserving the
complement (D \ C) \ S. Since |D \ C| ≤ 5, we assume without loss of generality that |S ∩ (D \ C)| ≤ 2.

If |S ∩ (D \ C)| = 0, there is nothing to prove. If |S ∩ (D \ C)| = 1, then just take z ∈ S ∩ (D \ C).
Finally, assume that |S ∩ (D \ C)| = 2, say S ∩ (D \ C) = {xyi, xyj} where C = 〈y〉. Let z = xy(i+j)/2 (where
(i+ j)/2 is computed in Zr.) One can check that conjugation by z interchanges xyi and xyj hence preserves S,
as required. �

Proposition 4.10. Let r ∈ {3, 5}, let q be an odd prime distinct from r, let R = Cq ×D2r and let S ⊆ R with
S = S−1. If Cay(R,S) is a nontrivial generalised wreath product with respect to K and H, and K has prime
order, then Aut(R)S > 1.

Proof. Write R = 〈z〉 × (〈y〉o 〈x〉), with |z| = q, |y| = r and |x| = 2. Note that Z(R) = 〈z〉. Up to conjugacy,
we can assume that K is generated by one of x, y or z. As for H, we can assume that it is maximal in R with
respect to being proper in R and normalising K. Indeed, if Cay(R,S) is a nontrivial generalised wreath product
with respect to K and H ′, with H ′ ≤ H, then S \H ′ = K(S \H ′) = (S \H ′)K so S \H = K(S \H) = (S \H)K
and Cay(R,S) is also a nontrivial generalised wreath product with respect to K and H. We thus only have to
consider the following cases.

(1) H = 〈x, y〉 ∼= D2r and K = 〈y〉 ∼= Cr. By Lemma 4.9, there exists some nontrivial β ∈ Aut(H)S∩H
that acts by inversion on K. In particular Kβ = K. Let α be the unique automorphism of R that
fixes z and agrees with β on H. Note that α preserves both K and H so α preserves the two K-cosets
in H. If s ∈ S ∩ H then sα = sβ ∈ S ∩ H. If s ∈ S \ H, say s ∈ zihK, for some h ∈ H, then
sα ∈ zi(hK)α = zihK ⊆ S \H, so α ∈ Aut(R)S , as required.
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(2) H = 〈y, z〉 ∼= Cqr and K = 〈y〉 ∼= Cr. In this case, Z(H) ∩K = K � Z(R) and the result follows by
Lemma 4.7.

(3) H = 〈y, z〉 ∼= Cqr and K = 〈z〉 ∼= Cq. Let π : R → R/K be the canonical projection mapping. Note
that π(R) ∼= D2r and π(S) = π(S)−1 so, by Lemma 4.9, there exists some nontrivial β ∈ Aut(π(R))π(S)
that inverts every element of π(〈y〉). Let α be the unique automorphism of R that inverts z and such
that πβ = απ. (In other words, sαK = (sK)β for every s ∈ R.) Since H is characteristic in R, we
have Hα = H. As β inverts π(〈y〉), we have yαK = (yK)β = y−1K. Moreover, 〈y〉 is characteristic in
R hence yα ∈ 〈y〉 ∩ y−1K and yα = y−1. It follows that α acts by inversion on H. Since S = S−1, α
preserves S ∩H. Now, if s ∈ S \H, then we have sK ∈ π(S) and since β preserves π(S), it follows that
sαK = (sK)β ∈ π(S). As K(S \H) = S \H, we have that sαK ∈ S \H. This shows that α ∈ Aut(R)S .

(4) H = 〈x, z〉 ∼= C2q and K = 〈z〉 ∼= Cq. Let α : R → R be defined by (xiyjzk)α = xiyjz−k. Note that
α ∈ Aut(R). Moreover, α acts by inversion on H. Since S = S−1, S ∩H is fixed by α. If s ∈ S \H,
say s = xiyjzk, then sα = xiyjz−k ∈ sK ⊆ S \H hence S \H is also fixed by α and α ∈ Aut(R)S , as
required.

(5) H = 〈x, z〉 ∼= C2q and K = 〈x〉 ∼= C2. In this case, Z(H) ∩K = K � Z(R) and the result follows by
Lemma 4.7.

�

4.2. Main results. We are at last ready to show that groups of the form Cq ×D2r are GRR-detecting and to
characterise DRR-detection and GRR-detection for nonabelian groups whose order is a product of two primes.
We first prove the following well known result:

Lemma 4.11. If G is a primitive group of affine type with socle an elementary abelian p-group, then a point-
stabiliser has no non-trivial normal p-subgroup.

Proof. Let V be the socle of G and, to arrive at a contradiction let T be a non-trivial normal p-subgroup of
Gx. Since T is normal in Gx, CG(T ) is normalised by Gx. It follows that Z = CV (T ) is also normalised by
Gx. Now, V and T are both p-groups, so 1 < Z but since V is a regular subgroup of the permutation group G,
CGx(V ) = 1 6= T hence Z < V . It follows that the orbits of Z form a non-trivial system of imprimitivity for G,
contradicting its primitivity. �

The rest of the proof is split into two: Theorem 4.12 which essentially reduces the problem to the almost
simple case, and Corollary 4.13 which handles that case.

Theorem 4.12. Let q, r be distinct primes and either

• r ∈ {3, 5}, q is odd and let R ∼= Cq ×D2r, or
• R is a nonabelian group isomorphic to Cq o Cr.

Let S ⊆ R, suppose that S = S−1 when R ∼= Cq × D2r and let G satisfy R̂ < G ≤ Aut(Cay(R,S)). If R̂ is
maximal in G, then one of the following occurs:

(1) Aut(R)S > 1,

(2) R̂ is core-free in G and G is almost simple, or

(3) R ∼= Cq ×D2r, Cq is the core of R̂ in G, and G/Cq is almost simple.

Proof. For X ≤ Aut(Cay(R,S)), let X1 denote the stabiliser in X of the vertex of Cay(R,S) corresponding

to the identity of R. For simplicity, we will identify R̂ with R from now on. Note that G1 is non-trivial and
core-free in G and G = RG1 with R ∩ G1 = 1. Let N be the core of R in G. If R is normal in G, then
1 < G1 ≤ Aut(R)S , hence we assume that R is not normal in G and N < R. Let G = G/N , R = R/N and
G1 = G1N/N ∼= G1. Note that R is a maximal core-free subgroup of G, so we can view G as a primitive group
with point-stabiliser R and a regular subgroup G1. Since the point-stabiliser R is soluble, the primitive type
of G is either affine, almost simple, or product action. Moreover, because the order of the point-stabiliser R is
squarefree, the product action case can’t occur. (See for example [6, Theorem 1.1] for both of these claims.)

Suppose first that G is almost simple. In this case, the point-stabiliser R cannot be abelian (see for example
[2, Lemma 2.1]), so either N = 1 (and G ∼= G, R ∼= R, and conclusion (2) holds, completing the proof) or
N ∼= Cq and R ∈ {D6,D10}. In the latter case, conclusion (3) holds, again completing the proof.

From now on, we assume that G is of primitive affine type. In this case, there exists a normal subgroup E
of G such that N ≤ E, G = E oR and E ∼= Cxp for some prime p. It follows that |G1| = |G1| = px. Note that

R acts faithfully and irreducibly on E. We now prove the following claim.
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Claim: If p divides |N | and R has a normal Sylow p-subgroup, then Aut(R)S > 1.

Let H = NR(G1), let K be a Sylow p-subgroup of R and let X be a Sylow p-subgroup of E. Since p divides
|N |, it does not divide |R|, hence E is a normal Sylow p-subgroup of G. Note that K is characteristic in N thus
normal in G. It follows that K ≤ X, X/K = E and X is normal in G. Moreover, |X : G1| = p, hence G1 is
normal and maximal in X hence K ≤ H. Let r ∈ R\H. By definition, we have Gr1 6= G1 but G1 is contained in
X which is normal in G, so Gr1 ≤ X. Since G1 is a normal maximum subgroup of X, G1G

r
1 = X. It follows that

G1K,G1K
r ⊆ X = G1G

r
1, and we can apply Lemma 2.5 to conclude that Cay(R,S) is a nontrivial generalised

wreath product with respect to K and H. If R ∼= Cq o Cr then the claim follows by Corollary 4.8, whereas if
R ∼= Cq ×D2r, it follows by Proposition 4.10. �

We split the remainder of the proof into two cases, according to whether N is cyclic or dihedral.

N is cyclic: Suppose that p divides |N |. Since N is cyclic, its Sylow p-subgroup is characteristic, therefore
normal in R. We can thus apply our claim to conclude that Aut(R)S > 1, completing the proof. From now on,
we assume that p does not divide |N |. Let C be the centraliser of N in G. Since N is cyclic, we have N ≤ C. If
N = C, then G/N embeds in Aut(N) which is abelian, a contradiction since G/N is nonabelian. We conclude
that N < C. Since E is the unique minimal normal subgroup of G, we have E ≤ C.

If p is coprime to |R|, then E is the unique Sylow p-subgroup of G so G1 = E and G1 ≤ E ≤ C which
implies E = NG1 = N × G1. Since p does not divide |N |, G1 is characteristic in E, and thus normal in G, a
contradiction. This shows that p divides |R|. Recall that R has no non-trivial normal p-subgroup (Lemma 4.11),
so we get the following cases:

(1) R ∼= Cq o Cr, N = 1, R ∼= Cq o Cr and p = r.

(2) R ∼= Cq ×D2r, N = 1, R ∼= Cq ×D2r and p = 2.

(3) R ∼= Cq ×D2r, N ∼= Cq, R ∼= D2r and p = 2.

In case (1), we have G = E oR ∼= Cxr o (Cq o Cr). Since Cq o Cr is nonabelian and acts faithfully on Cxr ,
we have x ≥ 2 and E1 6= 1. Since G1 is not normal in G, we have G1 6= E, hence |EG1 : G1| = |EG1 : E| = r.
It follows that both E1 and G1 are normal in EG1. Note that EG1 is a maximal subgroup of G and neither E1

nor G1 is normal in G (since G1 is core-free in G), so NG(E1) = NG(G1) = EG1. Note that REG1 = G, hence

(?) |G| = |R||EG1|
|R ∩ EG1|

=
|R||E||G1|

|R ∩ EG1||E ∩G1|
and |R ∩ EG1| = |G1 : E ∩G1| = r. Let K = R ∩ EG1 = NR(E1) = NR(G1) ∼= Cr. By definition, EK ≤ EG1

hence EK = EG1 by order considerations.
We show that, for every s ∈ R \K, we have G1K,G1K

s ⊆ G1G
s
1. Since K = NR(E1), we have Es1 6= E1.

Since E1 is maximal in E which is normal in G, it follows that E = E1E
s
1 ⊆ G1G

s
1, so G1G

s
1 = EG1G

s
1.

Now, G1K ⊆ EG1 ⊆ EG1G
s
1 = G1G

s
1. On the other hand, since EK = EG1, we have EGs1 = EKs and

thus G1K
s ⊆ EG1K

s = EKKs = EKEKs = EG1EG
s
1 = G1G

s
1, as required. It follows by Lemma 2.5 that

Cay(R,S) is a nontrivial wreath product with respect to K and the claim follows by Corollary 4.8.
In case (2), we have G = E o R ∼= Cx2 o (Cq × D2r). We consider faithful irreducible representations of

Cq × D2r over F2. Since Cq × D2r is a direct product, its representations arise as tensor products of the ones
for Cq and D2r. Note that the faithful irreducible representations of the factors have dimension at least 2.

Since G1 is not normal in G, we have E 6= G1 hence |EG1 : E| = |EG1 : G1| = 2 and, in particular,
EG1 ≤ NG(E1). Now, suppose EG1 < NG(E1), so an element of R of order q or r normalises E1

∼= Cx−12 . By
Maschke’s Theorem, it must also normalise some C2 ≤ E, but this contradicts the dimensions of the faithful
irreducible representations in the previous paragraph. We conclude that NG(E1) = EG1. A calculation similar
to (?) yields that |R ∩ EG1| = |G1 : E ∩ G1| = 2. Let K = R ∩ EG1 = NR(E1) ≤ NR(G1). Let r ∈ R \K,
so Er1 6= E1. Since E1 is normal and maximal in E, which itself is normal in G, it follows that E1E

r
1 = E. It

follows that G1K ⊆ EG1 ⊆ G1G
r
1 and, by Lemma 2.5, Cay(R,S) is a nontrivial wreath product with respect

to K. Note that K ∼= C2, so Proposition 4.10 completes the proof.
In case (3), R ≤ C, so G = ER ≤ C and N is central in G hence G ∼= Cq × (Cx2 oD2r). Let X ∼= Cx2 be the

Sylow 2-subgroup of E. Note that X is normal in G. Since D2r is nonabelian and acts faithfully on X, we have
x ≥ 2 and X1 6= 1. Since G1 is not normal in G, we have G1 6= X, hence |XG1 : G1| = |XG1 : X| = 2. It follows
that X1 and G1 are both normal in XG1. Clearly, Cq also normalises X1 and G1, so NG(X1) and NG(G1) both
contain Cq × (X oC2) which is a maximal subgroup of G. Since neither X1 nor G1 is normal in G (since G1 is
core-free in G), we have NG(X1) = NG(G1) = Cq× (XoC2). Let K = R∩XG1 and H = NR(X1) = NR(G1).
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We have K ≤ H and a calculation similar to (?) gives |K| = 2 and |H| = 2q hence K ∼= C2 and H ∼= Cq × C2.
Let r ∈ R \H, so Xr

1 6= X1. Since X1 is normal and maximal in X, which itself is normal in G, it follows that
X1X

r
1 = X. This implies that G1K ⊆ XG1 ⊆ G1G

r
1 and, by Lemma 2.5, Cay(R,S) is a nontrivial generalised

wreath product with respect to K and H, so Proposition 4.10 completes the proof.

N is isomorphic to D2r: In this case, R ∼= Cq and G ∼= Cxp o Cq. Let C be the centraliser of N in G. Note
that C ∩N = 1, so CN = C ×N . Suppose first that G > CN . Conjugation induces a natural map from G to
Aut(N). There is also a natural map from Aut(N) to Out(N). The kernel of the composition of these two maps
is CN , so by the first isomorphism theorem, G/CN embeds in Out(N) and Out(N) > 1. The only possibility
is r = 5 and |G : CN | = 2, but this implies that G must have a subgroup of index 2 (namely CN/N), which
implies q = 2, a contradiction. We can thus assume that G = C ×N hence G ∼= C and G ∼= (Cxp o Cq)× D2r,
with p 6= q. Since |G1| = px and G1 is not normal in G, we must have p ∈ {2, r}. By the claim proved earlier, we
can assume p = 2 and G ∼= (Cx2 oCq)×D2r. Let X ∼= Cx2 be the Sylow 2-subgroup of C. Note that X is normal
in G. Moreover, since Cq acts faithfully on X and q ≥ 3, we have x ≥ 2. Since G1 is not normal, G1 6= X
hence |XG1 : X| = |XG1 : G1| = 2 and X1 6= 1. The same calculation as in (?) gives |R ∩XG1| = 2. Write
〈k〉 = R ∩XG1. Note that XG1 is elementary abelian and XG1 = G1 × 〈k〉 = X × 〈k〉. Write X = X1 × 〈y〉.
Since XG1/X1 is a Klein group, there are three subgroups strictly between X1 and XG1, namely X, G1 and
X1 × 〈k〉. As X1 × 〈yk〉 is one of these three subgroups, by elimination, we must have X1 × 〈yk〉 = G1. Let
h and m be elements of order r and q in R, respectively. Note that m is central in R while hk = h−1 hence
kh = kh2. Note also that k and h commute with X. We have

(G1)h
−i

= (X1〈yk〉)h
−i

= X1〈yk〉h
−i

= X1〈ykh−2i〉.

Let α : R → R be given by (mjhikε)α = m−jhikε. Note that α ∈ Aut(R). Moreover, α 6= 1 since
q ≥ 3. We show that Sα = S. Note that α fixes 〈h, k〉 pointwise. Let s ∈ S \ 〈h, k〉, say s = mjhikε, with
mj 6= 1. If ε = 1, then sα = m−jhik = s−1 ∈ S−1 = S. We now assume that ε = 0 so s = mjhi. Since

〈m〉 ∼= Cq acts irreducibly on X and X1 6= 1, we have (X1)m
j 6= X1, which implies that X1(X1)m

j

= X and

thus G1(X1)m
j

= G1X1(X1)m
j

= G1X. Since mj 6= 1, we have

G1sG1 = G1m
jhiG1

= G1(G1)h
−im−j

mjhi

= G1(X1〈ykh−2i〉)m
−j
mjhi

= G1(X1)m
−j
〈ykh−2i〉m

−j
mjhi

= G1X〈ykh−2i〉m
−j
mjhi

= G1{mjhi, kmjhi, kh−2imjhi, kkh−2imjhi}
= G1{mjhi,mjh−ik,mjhik,mjh−i}

Since S is preserved under G1, we have mjh−i ∈ S and sα = m−jhi = (mjh−i)−1 ∈ S−1 = S. This
completes the proof that Sα = S hence α ∈ Aut(R)S > 1. �

We can now completely determine the DRR and GRR-detecting status of these final two families of groups
we have been studying.

Corollary 4.13. Let q and r be distinct primes.

(1) If R ∼= C7 o C3, then R is not DRR-detecting but it is GRR-detecting.
(2) If R ∼= Cq o Cr, with (q, r) = (31, 5) or (q, r) a safe/Sophie Germain prime pair, with q ≡ 3 (mod 4)

and q ≥ 11, then R is not GRR-detecting (so is not DRR-detecting).
(3) If R is nonabelian and isomorphic to Cq oCr but not in the above two cases, then R is DRR-detecting

(and is therefore also GRR-detecting).
(4) If q is odd, r ∈ {3, 5} and R ∼= Cq ×D2r, then R is GRR-detecting.

Proof. The statement in (1) can be checked by computer.
In [9, Lemma 3.3], it is shown that there are Cayley graphs on C31oC5 with automorphism group PΓL(5, 2).

Note that C31 o C5 is self-normalising (even maximal) in PΓL(5, 2).
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In [9, Lemma 4.4], it is shown that if q ≥ 11 is a prime (the hypothesis that q ≥ 11 is in the paragraph
before the statement of the lemma) with q ≡ 3 (mod 4), then there are Cayley graphs on Cq o C(q−1)/2
with automorphism group PSL(2, q). Note that Cq o C(q−1)/2 is self-normalising (even maximal) in PSL(2, q).
Together with the previous paragraph, this gives (2).

It remains to show (3) and (4). Let R be one of the groups appearing in (3) or (4). As in Theorem 4.12, let

S ⊆ R, suppose that S = S−1 when R ∼= Cq ×D2r and let G satisfy R̂ < G ≤ Aut(Cay(R,S)), with R̂ maximal
in G. By Theorem 4.12, we can assume the following:

• R̂ is core-free in G and G is almost simple, or
• R ∼= Cq ×D2r, Cq is the core of R̂ in G, and G/Cq is almost simple.

As in the proof of Theorem 4.12, we identify R̂ with R. Let N be the core of R in G, let G = G/N , R = R/N
and G1 = G1N/N . Note that G is an almost simple group with a maximal core-free subgroup R and another
subgroup G1 such that G = RG1 and R ∩G1 = 1. We can then view G as a primitive group of almost simple
type with point-stabiliser R having a regular subgroup G1. Such groups were classified by Liebeck, Praeger,
Saxl in [7, Theorem 1.1 and Tables 16.1-16.3].

When consulting these tables, it is important to remember that our point of view (for the moment) is in
some sense “dual” to theirs: R is our point-stabiliser so it corresponds to their Gα. The next thing to note is
that they do not list all the almost simple groups, but rather just their socles (which they denote L and we
will denote L), and do not give Gα, but rather Gα ∩ L. Now, R has the property that its order is squarefree,
a product of at most three primes. This property is clearly preserved under subgroups, hence if Gα has this
property, so does Gα ∩ L. So we can go through their tables and list all such instances. This is the result:

L R ∩ L Remark
Alt(p) Cp o C(p−1)/2 p ≡ 3 (mod 4), p 6= 7, 11, 23

PSL(2, p) Cp o C(p−1)/2 **
PSL(2, 11) C11 o C5

PSL(2, 23) C23 o C11

PSL(2, 59) C59 o C29

PSL(3, 3) C13 o C3

PSL(3, 4) C7 o C3 *,G ≥ L.Sym(3)
PSL(5, 2) C31 o C5

PSU(3, 8) C19 o C3 *,G ≥ L.32
M23 C23 o C11

M23 C23 o C11

** In the corresponding line of [7, Table 16.1], there is a remark that this case does not always occur.
Assume first that R ∼= Cq ×D2r, with r ∈ {3, 5}. By Theorem 4.12, R is one of Cq ×D2r or D2r. From the

table above, we see that R∩L is centreless, so either way we must have R∩L = D2r. Again from the table above,
the only case where this could occur is in the second line with p = 5, but then we must have G = L ∼= PSL(2, 5),
and one can check that there is no subgroup G1 of order 6 in PSL(2, 5) such that PSL(2, 5) = G1D10.

From now on, we assume that R = Cq oCr and R is core-free, so G = G, R = R and L = L. Since |R| has
two prime divisors and, in the table, R ∩ L has at least two prime divisors, we must have R = R ∩ L and it
follows (given the “dual” point of view of [7]) that G = L, so G is simple. This allows us to eliminate the cases
which have a remark indicating that G > L, noted * in the table. (That is, we can eliminate the cases where
L = PSL(3, 4) and L = PSU(3, 8).)

Finally, we note that all remaining cases correspond to (2) of our statement (that is, (q, r) = (31, 5) or (q, r)
is a safe/Sophie Germain prime pair, with q ≡ 3 (mod 4) and q ≥ 11), except the case L = PSL(3, 3), which
we deal with now. According to the table, we are considering PSL(3, 3) as a transitive permutation group on
13 · 3 points. There are two conjugacy classes of subgroups of index 13 · 3 in PSL(3, 3), but they are fused
in Aut(PSL(3, 3)). The corresponding transitive permutation group is not primitive: it admits blocks of size
3. This group has rank 3 and its only non-trivial orbital digraphs are 13K3 and its complement (the complete
multipartite graph with 13 parts of size 3). It follows that Cay(R,S) is a nontrivial wreath product with respect
to C3 and Aut(R)S > 1 by Corollary 4.8. This concludes the proof. �

Combining Theorems 3.3 and 4.12, Propositions 4.1, 4.2 and 4.3, and Corollaries 4.6 and 4.13 yields Theo-
rem 1.4.
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