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Abstract

We say that a finite group G is DRR-detecting if, for every subset S of G, either the
Cayley digraph Cay(G,S) is a digraphical regular representation (that is, its automorphism
group acts regularly on its vertex set) or there is a nontrivial group automorphism ϕ of G
such that ϕ(S) = S. We show that every nilpotent DRR-detecting group is a p-group, but
that the wreath product Zp oZp is not DRR-detecting, for every odd prime p. We also show
that if G1 and G2 are nontrivial groups that admit a digraphical regular representation and
either gcd

(
|G1|, |G2|

)
= 1, or G2 is not DRR-detecting, then the direct product G1 ×G2

is not DRR-detecting. Some of these results also have analogues for graphical regular
representations.
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1 Introduction
All groups and graphs in this paper are finite. Recall [1] that a digraph Γ is said to be a
digraphical regular representation (DRR) of a group G if the automorphism group of Γ
is isomorphic to G and acts regularly on the vertex set of Γ. If a DRR of G happens to
be a graph, then it is also called a graphical regular representation (GRR) of G. Other
terminology and notation can be found in Section 2.
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It is well known that if Γ is a GRR (or DRR) of G, then Γ must be a Cayley graph (or
Cayley digraph, respectively), so there is a subset S of G such that Γ ∼= Cay(G,S) (and S
is inverse-closed if Γ is a graph). It is traditional [5, p. 243] to let

Aut(G,S) = {ϕ ∈ Aut(G) | ϕ(S) = S }.

Since Aut(G,S) ⊆ Aut
(
Cay(G,S)

)
, it is obvious (and well known) that if Aut(G,S)

is nontrivial, then Cay(G,S) is not a GRR (or DRR). In this paper, we discuss groups for
which the converse holds:

Definition 1.1. We say that a group G is GRR-detecting if, for every inverse-closed subset
S of G, Aut(G,S) = {1} implies that Cay(G,S) is a GRR. Similarly, a group G is
DRR-detecting if for every subset S of G, Aut(G,S) = {1} implies that Cay(G,S) is a
DRR.

Remark 1.2. Every Cayley graph is a Cayley digraph, so every DRR-detecting group is
GRR-detecting.

Definition 1.3. We say that a Cayley (di)graph Γ = Cay(G,S) on a group G witnesses
that G is not GRR-detecting (respectively, not DRR-detecting) if Aut(G,S) = {1} but Γ
is not a GRR (respectively, not a DRR) for G.

An important class of DRR-detecting groups was found by Godsil. His result actually
deals with vertex-transitive digraphs, rather than only the more restrictive class of Cayley
graphs, but here is a special case of his result in our terminology:

Theorem 1.4 (Godsil, cf. [5, Corollary 3.9]). Let G be a p-group and let Zp be the cyclic
group of order p. If G admits no homomorphism onto the wreath product Zp oZp then G is
DRR-detecting (and therefore also GRR-detecting).

Since Zp o Zp is nonabelian, the following statement is an immediate consequence:

Corollary 1.5. Every abelian p-group is DRR-detecting (and therefore also GRR-detecting).

Remark 1.6. It is obvious (without reference to Theorem 1.4) that most abelian p-groups
are GRR-detecting. Indeed, it is well known that every abelian group is GRR-detecting
(unless it is an elementary abelian 2-group), because the nontrivial group automorphism
x 7→ x−1 is an automorphism of Cay(G,S).

The following result shows that the bound in Godsil’s theorem is sharp, in the sense
that Zp o Zp cannot be replaced with a larger p-group (when p is odd):

Theorem 1.7. If p is an odd prime, then the wreath product Zp o Zp is not GRR-detecting
(and is therefore also not DRR-detecting).

Remark 1.8. The conclusion of Theorem 1.7 is not true for p = 2, because Z2 o Z2 is
GRR-detecting. This is a special case of the fact that if a group has no GRR, then it is
GRR-detecting [4, Theorem 1.4].

The following two results provide additional examples, by showing that direct products
often yield groups that are not DRR-detecting:

Theorem 1.9. If G1 and G2 are nontrivial groups that admit a DRR (a GRR, respectively)
and gcd

(
|G1|, |G2|

)
= 1, then G1×G2 is not DRR-detecting (not GRR-detecting, respec-

tively).
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Theorem 1.10. If G1 admits a DRR (a GRR, respectively) and G2 is not DRR-detecting
(not GRR-detecting, respectively), thenG1×G2 is not DRR-detecting (not GRR-detecting,
respectively).

These two results are the main ingredients in the proof of the following theorem:

Theorem 1.11. Every nilpotent DRR-detecting group is a p-group.

Remark 1.12. The phrase “DRR-detecting” in Theorem 1.11 cannot be replaced with
“GRR-detecting.” For example, every abelian group is GRR-detecting (unless it is an ele-
mentary abelian 2-group), as was pointed out in Remark 1.6.

Here is an outline of the paper. A few definitions and basic results are recalled in Sec-
tion 2. Theorem 1.7 is proved in Section 3. A generalization of Theorem 1.9 is proved
in Section 4, by using wreath products of digraphs. In Section 5, we recall some funda-
mental facts about cartesian products of digraphs and use them to prove Theorem 1.10.
Theorem 1.11 is proved in Section 6.

2 Preliminaries
Definition 2.1. Recall that if S is a subset of a groupG, then the Cayley digraph ofG (with
respect to the connection set S) is the digraph Cay(G,S) whose vertex set is G, such that
there is a directed edge from g1 to g2 if and only if g2 = sg1 for some s ∈ S. If S is closed
under inverses, then Cay(G,S) is a graph, and is called a Cayley graph.

See Remark 4.2 for a general definition of the wreath product of two groups. The
following special case is less complicated:

Definition 2.2. Let Zp oZp = Zp n (Zp)p, where Zp acts on (Zp)p by cyclically permuting
the coordinates: for (v1, v2, . . . , vp) ∈ (Zp)p and g ∈ Zp, we have

(v1, v2, . . . , vp)g = (vg+1, vg+2, . . . , vp, v1, v2, . . . , vg).

We will use the following well-known results.

Theorem 2.3 (Babai [1, Theorem 2.1]). If a finite group does not admit a DRR, then it is
isomorphic to

Q8, (Z2)2, (Z2)3, (Z2)4, or (Z3)2,

where Q8 is the quaternion group of order 8, which means

Q8 = 〈 i, j, k | i2 = j2 = k2 = −1, ij = k 〉.

Lemma 2.4. Let Ĝ be the right regular representation of G. Then:

1. Ĝ is contained in Aut
(
Cay(G,S)

)
for every subset S of G.

2. The normalizer of Ĝ in Aut
(
Cay(G,S)

)
is Aut(G,S) n Ĝ.

The latter has the following simple consequence:

Lemma 2.5. If Γ is a Cayley digraph on G (a Cayley graph on G, respectively), then Γ
witnesses that G is not DRR-detecting (not GRR-detecting, respectively) if and only if the
regular representation of G is a proper self-normalizing subgroup of Aut(Γ).
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3 Zp o Zp is not GRR-detecting
Let p be an odd prime. In this section, we show that Zp o Zp is not GRR-detecting. (This
proves Theorem 1.7.) To do this, we will construct a Cayley graph Γ on Zp o Zp such that
Γ is not a GRR, but the regular representation of Zp o Zp is self-normalizing in Aut(Γ).
In order to construct this graph, we first construct a certain group G that properly contains
Zp o Zp. We will then define Γ in such a way that G is contained in Aut(Γ).

Let A ∼= Zp be a cyclic group of order p, and choose an irreducible representation
of A on a vector space Q ∼= (Z2)n over the finite field with 2 elements, such that n ≥ 2.
Now construct the corresponding semidirect product A n Q, which is a nonabelian group
of order 2np.

Choose a nontrivial 1-dimensional representation χ : Q→ {±1} ⊆ Z×p (where Z×p de-
notes the multiplicative group of nonzero elements of Zp), and induce it to a representation
ofAnQ on a vector space V over Zp [10, §3.3, pp. 28–30]. SinceQ has index p inAnQ,
the vector space V has dimension p, so V ∼= (Zp)p. Let

G = (AnQ) n V.

Since the representation of A n Q on V is induced from a one-dimensional repre-
sentation of the normal subgroup Q, the restriction to Q decomposes as a direct sum of
one-dimensional representations: V = V1 ⊕ · · · ⊕ Vp, where each Vi is a subgroup of
order p that is normalized by Q (cf. [10, Proposition 22, p. 58]). (More precisely, for
each i ∈ {1, . . . , p}, there is some a ∈ A, such that the representation of Q on Vi is given
by χa, where χa(g) = χ(ga−1

) for g ∈ Q, and gh = h−1gh for g, h ∈ G.) Note that, since
A normalizes Q, it must (cyclically) permute the Q-irreducible summands V1, . . . , Vp, so
the Sylow p-subgroup An V of G is isomorphic to Zp o Zp.

Fix a nonidentity element a of A. Since A normalizes Q, we know that the coset Qa
is fixed by the action of Q on the space Q\G of right cosets of Q. Also fix some nonzero
v1 ∈ V1. Then, for each i ∈ {1, . . . , p}, let vi = vai−1

1 , so vi is a nonzero element of Vi,
and define z = v1 + v2 + · · ·+ vp, so z is a generator of the center Z(An V ).

Now let
S =

(
〈v1, v2〉r 〈v1〉

)
∪ (a zQ)±1 ⊆ An V ⊆ G,

and let
Γ = Cay(An V, S).

SinceQ normalizes 〈v1〉 and 〈v2〉, and fixes the cosetQa inQ\G, it is clear that SQ = QS.
Therefore, after identifying the vertex set An V of Γ with Q\QAV = Q\G in the natural
way, we have G ⊆ Aut(Γ), via the natural action of G on Q\G. (Note that the action
ofG onQ\G is faithful, becauseQ does not contain any nontrivial, normal subgroup ofG.
Otherwise, since the action of A on Q is irreducible, the entire subgroup Q would have to
be normal, which would mean that Q acts trivially on Q\G. But this is false, because the
representation of Q on V is nontrivial.) So Γ is not a GRR.

Therefore, in order to show that Zp o Zp
∼= An V is not GRR-detecting, it will suffice

to show that Aut(An V, S) is trivial. To this end, let ϕ be an automorphism of An V that
fixes S. We will show that ϕ is trivial.

Since V is characteristic in A n V (for example, it is the only abelian subgroup of
order pp), we know that

ϕ(V ∩ S) = V ∩ S = 〈v1, v2〉r 〈v1〉 ⊆ 〈v1, v2〉.
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So

ϕ
(
〈v1, v2〉

)
= ϕ

(
〈v1v2, v2〉

)
= 〈ϕ(v1v2), ϕ(v2)〉 ⊆ 〈ϕ(V ∩ S)〉 ⊆ 〈v1, v2〉.

Since ϕ is injective, we conclude that ϕ fixes 〈v1, v2〉 (setwise). Then ϕ also fixes 〈v1, v2〉r
S = 〈v1〉.

We have ϕ(a) /∈ V (because a /∈ V and ϕ fixes V ), which means ϕ(a) = akv′ for
some k ∈ Z×p and v′ ∈ V . Then (since v′ centralizes V , because V is abelian) we have

〈v1, v2〉 = ϕ
(
〈v1, v2〉

)
3 ϕ(v2) = ϕ(va

1 ) = ϕ(v1)ϕ(a) ∈ 〈v1〉a
k

= 〈vk+1〉,

so k ∈ {0, 1} ∩ Z×p = {1}, which means

ϕ(a) = av′.

Note that (since ϕ(V ) = V ) this implies

ϕ(aV ) = aV.

Since ϕ fixes 〈v1〉, we have ϕ(v1) = `v1 for some ` ∈ Z×p . For every i ∈ {1, . . . , p},
this implies

ϕ(vi) = ϕ(vai−1

1 ) = ϕ(v1)ϕ(ai−1) = (`v1)ai−1
= `vi.

Since {v1, . . . , vp} generates V , we conclude that

ϕ(v) = `v for all v ∈ V .

To complete the proof, we will show that v′ is trivial and ` = 1. (This means that ϕ
fixes a, and also fixes every element of V . So ϕ is the trivial automorphism, as desired.)
For all z0 ∈ zQ, we have

a · (v′ + `z0) = a v′ · (`z0) = ϕ(a)ϕ(z0) = ϕ(a z0)

∈ ϕ(S ∩ aV ) = ϕ(S) ∩ ϕ(aV ) = S ∩ aV = a zQ.

Therefore, if we write v′ =
∑p

i=1 sivi (with si ∈ Zp) and z0 =
∑p

i=1 tivi (with
ti ∈ {±1}), then we have

si + `ti ∈ {±1} (mod p) for every i.

For any given i, the representation of Q on Vi is nontrivial, so we may choose z0 so that
ti = −1. Therefore, we have si − ` ≡ ±1 (mod p). On the other hand, by letting z0 = z
(and noting that si− ` 6≡ si + ` (mod p)) we see that we also have si + ` ≡ ∓1 (mod p).
Adding these two equations and dividing by 2 yields si = 0 (for all i). So v′ is trivial
(which means ϕ(a) = a).

All that remains is to show that ` = 1 (which means that ϕ acts trivially on V ). Suppose
this is not true. (That is, suppose ` 6= 1.) We have

±` = 0 + `(±1) = si + `ti ∈ {±1} (mod p),

so this implies ` = −1.
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For convenience, let Z = 〈z〉 = Z(An V ). Note that, since ϕ(a) = a, we have

a · (−z) = a · (`z) = ϕ(az) ∈ ϕ(S ∩ aV ) = S ∩ aV = a zQ,

so there is some g ∈ Q, such that zg = −z. Since Z = 〈z〉, this implies that g is an element
of the normaliser NQ(Z) of Z in Q. Also note that g is nontrivial, because zg = −z 6= z.
Then, since NQ(Z) is normalized by A (because A normalizes Q and Z), the irreducibility
of the representation of A on Q implies that NQ(Z) = Q.

Hence,Q acts onZ by conjugation, soQ/CQ(Z) embeds in the cyclic group Aut(Z) ∼=
Z×p . SinceQ is an elementary abelian 2-group, this implies that |Q/CQ(Z)| ≤ 2. It is clear
that |Q| ≥ 4 (because Q ∼= (Z2)n and n ≥ 2), so we conclude that CQ(Z) is nontrivial.
Using once again the fact that the representation of A on Q is irreducible, we conclude that
CQ(Z) = Q, which means that Q centralizes Z. However, since

Z = 〈z〉 = 〈v1 + v2 + · · ·+ vp〉,

and each 〈vi〉 = Vi is a Q-invariant subspace, this implies that Q centralizes each vi, and
is therefore trivial on V . On the other hand, we have zg = −z 6= z, and g ∈ Q. This is a
contradiction.

4 Using wreath products to construct witnesses
In this section, we prove Corollary 4.9, which is a generalization of Theorem 1.9.

Notation 4.1. In this section, N always denotes a normal subgroup of a group G. We let
G = G/N , and use : G→ G to denote the natural homomorphism.

Notation 4.2. For each c ∈ G and each function f : G→ N , we letϕc,f be the permutation
on G that is defined by

ϕc,f (x) = xc f(x) for x ∈ G.

Let W (G,N) be the set of all such permutations of G.

Remark 4.1. Informally speaking, an element of W (G,N) is defined by choosing an ele-
ment of G (or, more accurately, by choosing a coset representative) to permute the cosets
of N , and then choosing an element of N to act on each coset. (The elements of N can be
chosen independently on each coset.)

We have ϕc,f = ϕc′,f ′ if and only if there is some n ∈ N , such that c′ = cn and
f ′(x) = n−1f(x) for all x. From this, it follows that |W (G,N)| = |G| · |N ||G|.
Remark 4.2. The usual definition of the wreath product of two groups K and H is essen-
tially:

K oH = W (K ×H, {1} ×H).

Definition 4.3. Recall that the wreath product X o Y of two (di)graphs X and Y is the
(di)graph whose vertex set is the cartesian product V (X) × V (Y ), and with a (directed)
edge from (x1, y1) to (x2, y2) if and only if either there is a (directed) edge from x1 to x2

or x1 = x2 and there is a (directed) edge from y1 to y2. This is also known as the lexico-
graphic product of X and Y .

The following two observations are well known (and fairly immediate from the defini-
tions). The first is a concrete version of the Universal Embedding Theorem, which states
that G is isomorphic to a subgroup of (G/N) oN .
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Lemma 4.4. W (G,N) is a subgroup of the symmetric group on G. It is isomorphic to the
wreath product G oN , and contains the regular representation of G.

Lemma 4.5. Suppose Cay(G,S1) is a loopless Cayley digraph on G, and Cay(N,S2) is
a Cayley digraph on N . Let S1 = { g ∈ G | g ∈ S1 }. Then

Cay(G,S1 ∪ S2) ∼= Cay(G,S1) o Cay(N,S2),

and W (G,N) is contained in the automorphism group of Cay(G,S1 ∪ S2).

The following result is a special case of the general principle that the automorphism
group of a wreath product of digraphs is usually the wreath product of the automorphism
groups. We have stated it only for DRRs, making use of some straightforward observations
about the automorphism group of a DRR on more than 2 vertices, but the much more
general statement in [3] applies to all vertex-transitive digraphs.

Lemma 4.6 (cf. Dobson-Morris [3, Theorem 5.7]). Assume that Cay(G,S1) and Cay(N,S2)
are loopless DRRs, and let S1 be as in Lemma 4.5. If either |G| 6= 2 or |N | 6= 2, then

Aut
(
Cay(G,S1 ∪ S2)

)
= W (G,N).

In light of Lemmas 2.5 and 4.6, it is of obvious interest to us to determine when the
regular representation of G is self-normalizing in W (G,N). Our next result is the answer
to this question. Recall that the abelianization of a group H is the largest abelian quotient
of H , or, in other words, the quotient group H/[H,H], where [H,H] is the commutator
subgroup of H .

Theorem 4.7. Let N be a normal subgroup of G. Then the regular representation of G is
self-normalizing in W (G,N) if and only if

1. Z(N) ≤ Z(G), and

2. the order of the abelianization of G/N is relatively prime to |Z(N)|.

Proof. (⇒) We prove the contrapositive. (1) If Z(N) 6≤ Z(G), then there exists n ∈ Z(N)
such that n /∈ Z(G). Conjugation by n is an element of W (G,N) that normalizes the
right regular representation of G, but is not in the right regular representation of G. (2) If
the order of the abelianization of G/N is not relatively prime to |Z(N)|, then there is a
nontrivial homomorphism f : G→ Z(N). We may assume that hypothesis (1) is satisfied,
and then it is straightforward to verify that the corresponding element ϕf,1 of W (G,N)
normalizes the right regular representation of G:

ϕf,1(xg) = xg f(xg) (definition of ϕf,1)

= x f(xg) g (f(xg) ∈ f(G) ⊆ Z(N) ⊆ Z(G))
= x f(x) f(g) g (f is a homomorphism)
= ϕf,1(x) · f(g) g (definition of ϕf,1).

(⇐) By Lemma 2.4, it suffices to show that Aut(G) ∩W (G,N) is trivial. To this end,
let ϕ ∈ Aut(G) ∩W (G,N). Since ϕ ∈ W (G,N), there exist c ∈ G and f : G → N ,
such that

ϕ(x) = xc f(x) for all x ∈ G.
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Since ϕ is a group automorphism we know ϕ(1) = 1 ∈ N , so we may assume c = 1,
after multiplying c on the right by an element of N . Then we must have f(1) = 1. Now,
for each n ∈ N , we have n = 1, so

ϕ(n) = n · f(n) = n · f(1) = n · 1 = n.

Therefore, for all g ∈ G and n ∈ N , we have

gn · f(g) = gn · f(gn) = ϕ(gn) = ϕ(g)ϕ(n) = g f(g) · n,

so n · f(g) = f(g) · n. Since this is true for all n ∈ N , we conclude that f(g) ∈ Z(N).
Since Z(N) ⊆ Z(G), this implies f(g) ∈ Z(G) for all g. Therefore, for all g, h ∈ G, we
have

gh · f(gh) = ϕ(gh) = ϕ(g)ϕ(h) = g f(g) · h f(h) = gh · f(g) f(h).

So f is a group homomorphism. Since f(G) is contained in Z(N), which is abelian, we
see from (2) that f must be trivial. Since c is also trivial, we conclude that ϕ(x) = x for
all x. Since ϕ is an arbitrary element of Aut(G)∩W (G,N), this completes the proof.

Remark 4.8. A slight modification of the proof of Theorem 4.7 shows that if Ĝ is the right
regular representation of G, then the normalizer of Ĝ in W (G,N) is{

ϕc,f | c ∈ G, f ∈ Z1
(
G,Z(N)

) }
,

where

Z1
(
G,Z(N)

)
= { f : G→ Z(N) | f(gh) = f(g)h f(h) for all g, h ∈ G }

is the set of all “1-cocycles” or “crossed homomorphisms” from G to Z(N) (in the termi-
nology of group cohomology [12]). This fact is presumably known.

It may also be of interest to note that hypotheses (1) and (2) in Theorem 4.7 are obvi-
ously satisfied when Z(N) is trivial.

Combining the results of this section, we obtain the following.

Corollary 4.9. LetN be a nontrivial, proper, normal subgroup ofG, such thatN andG/N
each admit a DRR (or, respectively, a GRR). If

1. Z(N) ≤ Z(G), and

2. the order of the abelianization of G/N is relatively prime to |Z(N)|,

then G is not DRR-detecting (respectively, not GRR-detecting).
More precisely, if we let Γ1 be a DRR (respectively, GRR) on G/N and Γ2 be a DRR

(respectively, GRR) onN , then Γ1 oΓ2 witnesses thatG is not DRR-detecting (respectively,
not GRR-detecting).

Proof. Clearly, either |G| 6= 2 or |N | 6= 2. It then follows by Lemma 4.5 and Lemma 4.6
that Aut

(
Γ1 o Γ2) = W (G,N). By Theorem 4.7, the regular representation of G is self-

normalizing in W (G,N), therefore Γ1 oΓ2 witnesses that G is not DRR-detecting (respec-
tively, not GRR-detecting).

Note that Theorem 1.9 can be obtained from Corollary 4.9 by lettingG = G1×G2 and
N = G2.
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5 Using cartesian products to construct witnesses
Definition 5.1. Recall that the cartesian product X � Y of two (di)graphs X and Y is the
(di)graph whose vertex set is the cartesian product X × Y , such that there is a (directed)
edge from (x1, y1) to (x2, y2) if and only if either x1 = x2 and there is a (directed) edge
from y1 to y2, or y1 = y2, and there is a (directed) edge from x1 to x2.

We say that a (di)graph is prime (with respect to cartesian product) if it has more than
one vertex, and is not isomorphic to the cartesian product of two (di)graphs, each with more
than one vertex. It is well known that every (di)graph can be written uniquely as a cartesian
product of prime factors (up to a permutation of the factors), but we do not need this fact.

To avoid the need to consider permutations of the factors, the following result includes
the hypothesis that the factors are pairwise non-isomorphic. (This is not assumed in [11],
which also considers isomorphisms between two different cartesian products, instead of
only automorphisms of a single digraph.) The upshot is that, in this situation, the automor-
phism group of the cartesian product is the direct product of the automorphism groups.

Theorem 5.2 (Walker, cf. [11, Theorem 10]). Let Γ1, . . . ,Γk be weakly connected prime
digraphs that are pairwise non-isomorphic. If ϕ is an automorphism of Γ1 � · · · � Γk, then
for each i, there is an automorphism ϕi of Γi such that, for every vertex (v1, . . . , vk) of
Γ1 � · · · � Γk, we have

ϕ(v1, . . . , vk) =
(
ϕ1(v1), . . . , ϕk(vk)

)
.

Prime graphs are quite abundant:

Theorem 5.3 (Imrich [7, Theorem 1]). If Γ is a graph (with more than one vertex), such
that neither Γ nor its complement Γ is prime, then Γ is one of the following:

1. the cycle of length 4 or its complement (two disjoint copies of K2);

2. the cube or its complement (the graph K2 ×K4);

3. K3 � K3 (which is self-complementary); or

4. K2 � ∆, where ∆ is the graph obtained by deleting an edge from K4 (which is
self-complementary).

The following is an analogous result for digraphs. (Recall that a digraph is proper if it
is not a graph.)

Theorem 5.4 (Grech-Imrich-Krystek-Wojakowski [6, Theorem 1.2] and Morgan-Morris-Verret
[8, Theorem 2.2]). If Γ is a proper digraph, then at least one of Γ or Γ is prime.

Corollary 5.5. If a nontrivial group G admits a DRR (respectively, GRR), then it admits a
DRR (respectively, GRR) that is prime (and weakly connected). Furthermore, if G is not
DRR-detecting (respectively, not GRR-detecting), then there is a witness that is prime (and
weakly connected).

Proof. First, note that Γ and Γ have the same automorphism group, so Γ is a DRR (GRR,
respectively) forG if and only if Γ is. Similarly, Γ is a witness thatG is not DRR-detecting
(GRR-detecting, respectively) if and only if Γ is.

Also note that if a prime digraph Γ is not weakly connected, and is either a DRR or a
witness that some group is not DRR-detecting, then Γ = K2 (so Γ is prime and weakly
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connected). This is because any vertex-transitive digraph is isomorphic to Γ0 �Kn, where
Γ0 is a weakly connected component of the digraph, and n is the number of components.

Suppose that Γ is a GRR for G. By Theorem 5.3, at least one of Γ or Γ is prime with
respect to cartesian product, unless Γ is one of the graphs listed in that theorem, but none
of those graphs is a GRR, because the automorphism group does not act regularly on the
set of vertices:

1. the automorphism group of a cycle of length 4 (or its complement) is the dihedral
group of order 8;

2. the automorphism group of the cube (or its complement) is Z2 × Sym(4), of order
48;

3. the automorphism group of K3 � K3 is Z2 o Sym(3), of order 72; and

4. the graph K2 � ∆ is not vertex-transitive (it is not even true that all vertices have the
same valency).

Now, suppose that Γ is a DRR for G. We may assume that Γ is a proper digraph.
(Otherwise, Γ is a GRR, so the preceding paragraph applies.) Then, by Theorem 5.4, either
Γ or Γ is prime with respect to cartesian product.

Finally, suppose Γ is a witness that G is not DRR-detecting (or not GRR-detecting,
respectively), such that neither Γ nor Γ is prime. This implies that Γ is one of the graphs
listed in Theorem 5.3. (So G is not GRR-detecting.)

However, it is easy to see that none of the graphs listed in Theorem 5.3 is a witness.
First, recall that a p-subgroup of a group cannot be self-normalizing unless it is a Sylow
subgroup. Therefore (by Lemma 2.5), if a graph Γ of prime-power order pk is a witness
that some group is not GRR-detecting, then pk must be the largest power of p that divides
Aut(Γ). This shows that the graphs in (1) and (2) are not witnesses. If Γ is as described
in (3), then the only regular subgroup of Aut(Γ) is the unique (Sylow) subgroup of order 9,
which is normal, and is therefore obviously not self-normalizing. Finally, as noted above,
the graphs in (4) are not vertex-transitive.

Proof of Theorem 1.10. For simplicity, we consider only DRRs (because the proof is the
same for GRRs). Let Γ1 = Cay(G1, S1) be a DRR for G1, and let Γ2 = Cay(G2, S2)
be a witness that G2 is not DRR-detecting. By Corollary 5.5, we may assume that Γ1

and Γ2 are prime with respect to cartesian product (and are weakly connected). Since Γ1

is a DRR, but Γ2 is not, we know that Γ1 6∼= Γ2. Therefore, we see from Theorem 5.2 that
Aut(Γ1 � Γ2) = Aut(Γ1)×Aut(Γ2).

Since Γ2 is not a DRR, Γ1 �Γ2 is not a DRR. Similarly, since the regular representation
ofG1 is all of Aut(Γ1) and the regular representation ofG2 is self-normalizing in Aut(Γ2),
the regular representation of G1 ×G2 is self-normalizing in Aut(Γ1 � Γ2). So Γ1 � Γ2 is
a witness that G1 ×G2 is not DRR-detecting.

6 Nilpotent DRR-detecting groups are p-groups
In this section, we prove Theorem 1.11, which states that if a nilpotent group is not a p-
group, then it is not DRR-detecting. In most cases, this follows easily from Theorems 1.9
and 1.10, but there is one special case that requires a different proof:

Lemma 6.1. If H is a nontrivial group of odd order and H 6∼= Z3 × Z3, then Q8 × H is
not DRR-detecting.
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Proof. From Theorem 2.3, we see that H admits a DRR (because it has odd order, but is
not Z3 × Z3), so we may let Cay(H,S1) be a DRR. Let S = S1 ∪ {i} ∪ jH ⊆ G. It
suffices to show that Aut(G,S) = {1} and that Cay(G,S) is not a DRR.

Let ϕ ∈ Aut(G,S). We can characterise S1 as the set of all elements of S that have
odd order. Thus, we must have ϕ(S1) = S1, so H = 〈S1〉 is fixed setwise by ϕ. Since the
identity vertex is also fixed and the induced subgraph on H is a DRR, every element of H
must be fixed by ϕ. We can use this fact to distinguish i from the elements of jH (all of
which differ from each other by elements of H), so i is fixed by ϕ. Finally, j is the unique
element of order 4 in jH , so it too is fixed by ϕ. We now know that ϕ is an automorphism
of G that fixes every element of a generating set for G. So ϕ must be trivial.

All that remains is to show that Cay(G,S) is not a DRR. Fix a nontrivial element
h ∈ H , and define a permutation τ of G by

τ(x) =

{
x if x ∈ 〈H, i〉;
xh if x ∈ j〈H, i〉.

Note that τ is a permutation of G, because right multiplication by h is a permutation of G
that fixes 〈H, i〉 setwise.

We claim that τ is an automorphism of Cay(G,S). First, note that a directed edge of
the form g → s1g or g → ig either has both of its endpoints in 〈H, i〉, or has both of its
endpoints in j〈H, i〉. Since right multiplication by h is an automorphism of Cay(G,S), it
is clear that τ preserves such directed edges. The remaining directed edges are of the form
g → gjh′ for some h′ ∈ H . Multiplying either g or gjh′ on the right by h results in another
such directed edge. This completes the proof that τ is an automorphism of Cay(G,S).

Proof of Theorem 1.11. Let G be a nilpotent group, and assume that G is not a p-group.
(Note that |G| is divisible by at least two distinct primes.) We will show that G is not
DRR-detecting.

Case 1. |G| is divisible by at least three distinct primes. Let p be the largest prime divisor
of |G| and let P be a Sylow p-subgroup of G. Since G is nilpotent, we may write G =
P ×H for some subgroupH with gcd

(
|P |, |H|

)
= 1. Since p is the largest of at least three

primes dividing |G|, neither P norH is a 2-group or a 3-group, so we see from Theorem 2.3
that P and H each admit a DRR. Therefore, Theorem 1.9 implies that G = P ×H is not
DRR-detecting.

Case 2. |G| is divisible by precisely two distinct primes p and q. Since G is nilpotent, we
have G = P ×Q, where P is a Sylow p-subgroup and Q is a Sylow q-subgroup of G. If P
andQ each admit a DRR, then Theorem 1.9 implies thatG = P ×Q is not DRR-detecting.

We may thus assume, without loss of generality, that P does not admit a DRR. Using
Theorem 2.3 and Lemma 6.1 and interchanging P and Q if necessary, we may assume that
P is isomorphic to one of (Z2)2, (Z2)3, (Z2)4, or (Z3)2. Thus, we may write P = (Zp)r,
with r ≥ 2.

Since (Zp)r−1 × Q is not a p-group, we may assume, by induction on |G|, that it
is not DRR-detecting. Also note that Zp admits a DRR. (Take the directed p-cycle

−→
Cp

if p ≥ 3; or take K2 if p = 2.) Therefore, by applying Theorem 1.10 with G1 = Zp

and G2 = (Zp)r−1 × Q, we see that the group G = Zp ×
(
(Zp)r−1 × Q

)
is not DRR-

detecting.
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