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Abstract

Let k be odd, and n an odd multiple of 3. We prove thatCkoC8 and (Cn×C3)oC8 do
not have the Directed Cayley Isomorphism (DCI) property. When k is also prime, CkoC8

had previously been proved to have the Cayley Isomorphism (CI) property. To the best of
our knowledge, the groups Cp o C8 (where p is an odd prime) are only the second known
infinite family of groups that have the CI property but do not have the DCI property. This
also shows that no group with an element of order 8 has the DCI property.
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1 Introduction
Let Γ1 = Cay(G,S) be a Cayley digraph on G. We say that the digraph Γ1 has the
Directed Cayley Isomorphism (DCI) property if whenever Γ2 = Cay(G,T ) ∼= Γ1, there is
some α ∈ Aut(G) such that Sα = T . Analogously, we say that the graph Γ has the Cayley
Isomorphism (CI) property if whenever Γ2 = Cay(G,T ) ∼= Γ1, there is some α ∈ Aut(G)
such that Sα = T . For graphs, we must have S = S−1 and T = T−1.

We say that the groupG has the DCI property if every Cayley digraph onG has the DCI
property, and that G has the CI property if every Cayley graph on G has the CI property.
Observe that for a group, having the DCI property is stronger than having the CI property.

In the 1970s, Babai [1] proved a criterion involving only permutation groups that allows
us to determine whether or not a group G has the DCI property: this happens if every 2-
closed group has at most one conjugacy class of regular subgroups isomorphic to G.

Throughout this paper,Awill denote a group that is isomorphic to eitherCk orCk×C3,
where k is odd. Our main result is the following:

Theorem 1.1. Let A be a group that is isomorphic to either Ck or Ck × C3, where k is
odd. Let R = Ao 〈r〉, where |r| = 8 and r−1ar = a−1 for every a ∈ A.

Then R does not have the DCI property.

This result is not new, but has never been published explicitly. The fact that the groups
A o C8 do not have the DCI property can be deduced from an old result of Babai and
Frankl [2] in which they show that a quotient of a CI group by a characteristic subgroup
is CI. Although the Babai-Frankl proof is written for graphs rather than digraphs, their
techniques apply to either situation. Since C8 is not a DCI group and A is the unique
maximal subgroup of odd order and therefore characteristic in A o C8, this means that
A o C8 is not DCI. However, C8 is a CI group, and when k is square-free and not prime,
the CI-status of Ao C8 remains open.

When k is prime (and A is cyclic), the groups AoC8 have been proved to have the CI
property by Li, Lu, and Pálfy [8]. As far as we are aware, this makesCpoC8 (where p is an
odd prime) only the second known infinite family of groups that have the CI property but
do not have the DCI property. The other family is CpoC3, where p is prime and 3 | p− 1.
These groups were shown by the first author to be CI [3, Theorem 21].1 That they are not
DCI groups follows from work by Li showing that they are not k-DCI for most values of
k [5, Theorem 1.3].

It has been unfortunately common for work on the CI problem and the DCI problem to
be imprecise in terminology, so that some papers report that a group has the CI property
when the proof actually shows the DCI property, or more importantly that a group is not CI
when in fact the proof only shows that it is not a DCI group. Some of the confusion that
has arisen through this lack of consistency in the terminology has been partially addressed
in some recent papers [6, 7]. However, those papers do not touch at all on Ao C8.

There is a description that first appeared in the work of Li, Lu, and Pálfy [8] and has
since been updated via [4], of groups that may have the CI property. For many of these, their
status remains open. No equivalent description has been published for the DCI property.
Groups not matching the description cannot be DCI since they are not CI, but groups that
match the description need not be DCI even if they are CI. In the Li-Lu-Pálfy description
(as updated), A o C8 is the only family of groups that have elements of order 8, whose

1A subsequent, self-contained proof of this also appears in [8].
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CI status is unknown. Since the groups A o C8 are not in fact DCI groups, there are 2-
closed groups that contain more than one conjugacy class of regular subgroups isomorphic
to A o C8. This has a significant impact on the proof techniques that may be required to
prove that the groups A o C8 are CI (if, in fact, they are). So it seemed to us important to
write this note clarifying what we currently know about these groups.

We were able to produce a short and direct proof of Theorem 1.1. Our proof includes
a new lemma that may be useful in other contexts, showing that a permutation group that
has a regular subgroup of index 2 is always 2-closed.

2 The proof
We will define two regular permutation groups R1 and R2 that are isomorphic to Ao C8,
and show that R1 and R2 are not conjugate in G(2) (the 2-closure of G), where G =
〈R1, R2〉. Using Babai’s criterion [1], this implies that Ck o C8 does not have the DCI
property.

Let the underlying set Ω of cardinality 8|A| be written as Z8 × Zk × Zr, where r = 1
if A ∼= Ck, and r = 3 if A ∼= C3 × Ck. When adding or subtracting in a coordinate, the
operation is performed in Zk or Zr (as appropriate).

• Define τ1 = ((0 1 2 3 4 5 6 7), (1), (1));

• Define τ2 = ((0 1 6 7 4 5 2 3), (1), (1));

• Define ρ1 by

(i, j, `)ρ1 =

{
(i, j + 1, `) i even
(i, j − 1, `) i odd.

• Define ρ2 by

(i, j, `)ρ1 =

{
(i, j, `+ 1) i even
(i, j, `− 1) i odd.

• Take R1 = 〈τ1, ρ1, ρ2〉 and R2 = 〈τ2, ρ1, ρ2〉.

It is straightforward to calculate that the group H = 〈τ1, τ2〉 has order 16 and any of its
elements can be written as τ `2h

ε, where ` ∈ Z8, h = ((1 5)(3 7), (1), (1)), and ε ∈ {0, 1}.
It is also straightforward to see that R1 = 〈τ1, ρ1, ρ2〉 ∼= Ao C8

∼= R2 = 〈τ2, ρ1, ρ2〉. We
need to show two things:

1. there is no g ∈ G such that Rg2 = R1; and

2. G is 2-closed.

We show these in the subsequent results.

Lemma 2.1. For R1, R2 as defined above and G = 〈R1, R2〉, there is no g ∈ G such that
Rg2 = R1.

Proof. Since τ1 and τ2 normalise 〈ρ1, ρ2〉, any element of G can be written as g = τρi1ρ
j
2

for some τ ∈ H = 〈τ1, τ2〉 and some i ∈ Zk, j ∈ Zr. Additionally, as discussed above,
we may write τ = τ `2h

ε, where h = ((1 5)(3 7), (1), (1)), ` ∈ Z8, and ε ∈ Z2. So
g = τ `2h

ερi1ρ
j
2.
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Now if Rg2 = R1 we must have τg2 ∈ R1. Since τg2 has order 8, this implies τg2 ∈ 〈τ1〉
(the Sylow 2-subgroup of R1).

We have
τg2 = τ

τ`2h
ερi1ρ

j
2

2 = τ
hερi1ρ

j
2

2 .

Now we calculate τh2 = τ52 ∈ R2; since ρ1, ρ2 ∈ R2 we must have τg2 being an element of
order 8 in the Sylow 2-subgroup of R2. But none of these elements is in R1. Therefore for
every g ∈ G, Rg2 6= R1.

We prove a more general lemma that implies the final piece we need.

Lemma 2.2. Let G be a group with a regular subgroup R of index 2. Then G is 2-closed.

Proof. Since R is acting regularly, we can label the points of the underlying set with the
elements of R. Let z ∈ G(2), with z 6= 1. We will show that z ∈ G. Since R is regular, we
may multiply z by an element of R if necessary to assume without loss of generality that
1z = 1.

Since R has index 2 in G, there is some nonidentity element g ∈ G of order 2 that acts
as an automorphism of R (so fixes 1), such that G = R〈g〉.

Suppose that a ∈ R with az 6= a. By the definition of 2-closure, there is some h ∈ G
such that (1h, ah) = (1, a)h = (1, a)z = (1, az). Since g is the only nontrivial element of
G that fixes 1, we must have h = g. Thus az = ag .

Now suppose that b ∈ R with bz = b. Note that there is a unique element of G that
fixes b and is not the identity, namely b−1gb. By the definition of 2-closure, there is some
h ∈ G such that (b, a)h = (b, a)z = (b, ag) 6= (b, a), so h fixes b but does not fix a. The
only nontrivial element of G that fixes b is b−1gb, so h = b−1gb.

Now
(b, ag) = (b, a)z = (b, a)b

−1gb = (b, ab
−1gb) = (b, (ab−1)gb).

Since g is an automorphism of R, this is (b, ag(bg)−1b). Therefore (bg)−1b = 1, implying
bg = b. So bz = b = bg .

We have now shown that for any c ∈ R, whether or not cz = c we can conclude that
cz = cg . Thus z = g ∈ G. Since z was an arbitrary element of G(2), G is 2-closed.

Putting these together produces our main result.

Proof of Theorem 1.1. Let τ1, τ2, ρ1, ρ2, R1, R2, and G be as defined above. Then G
contains two regular subgroups (R1 and R2) isomorphic to R. By Lemma 2.2, G is 2-
closed. By Lemma 2.1, R1 and R2 are not conjugate in G = G(2). Therefore by Babai’s
criterion [1], R does not have the DCI property.

References
[1] L. Babai: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad.

Sci. Hungar. 29 (1977), no. 3-4, 329–336.

[2] L. Babai and P. Frankl, Isomorphisms of Cayley graphs I, in A. Hajnal and V. T. Sós, eds.: Com-
binatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 35–52. North-Holland,
New York, 1978.

[3] E. Dobson, Isomorphism problem for metacirculant graphs of order a product of distinct
primes. Can. J. Math. 50 (1998), 1176–1188.



Art Discrete Appl. Math. x (xxxx) #Pn 5

[4] E. Dobson, M. Muzychuk, and P. Spiga, Generalised dihedral CI-groups. Ars Math. Contemp.
22 (2022), Paper No. 7, 18 pages.

[5] C. H. Li, On finite groups with the Cayley Isomorphism property, II. J. Combin. Theory–A 88
(1999), 19–35.

[6] D. W. Morris and J. Morris, Non-Cayley-Isomorphic Cayley graphs from non-Cayley-
Isomorphic Cayley digraphs. https://arxiv.org/abs/2303.04085.

[7] J. Morris, Z8
3 is not a CI-group. Ars. Math. Contemp. (2024), doi:10.26493/1855-3974.3087.f36

[8] C. H. Li, Z. P. Lu, and P. P. Pálfy, Further restrictions on the structure of finite CI-groups. J. Al-
gebraic Combin. 26 (2007), no. 2, 161–181.

https://arxiv.org/abs/2303.04085

	Introduction
	The proof

