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Abstract. In the mid-1990s, two groups of authors independently obtained classifications of
vertex-transitive graphs whose order is a product of two distinct primes. In the intervening years it
has become clear that there is additional information concerning these graphs that would be useful,
as well as making explicit the extensions of these results to digraphs. Additionally, there are several
small errors in some of the papers that were involved in this classification. The purpose of this
paper is to fill in the missing information as well as correct all known errors.

1. Introduction

The initial motivation for this paper came from some work [8] done by the authors that used a
well-known classification of vertex-transitive graphs of order pq, where p and q are distinct primes.

The original classification had been obtained by two different groups of authors, each with
their own perspective on what properties of these graphs were important. One group (consisting
of Marušič and Scapellato) [17] was primarily concerned with determining a minimal transitive
subgroup of the automorphism group, while the other (consisting of Praeger, Xu, and several
others) [23, 24] was primarily concerned with determining the full automorphism groups of these
graphs, and in particular in the cases when the automorphism group is primitive or the graph is
arc-transitive. Although the results in the classifications are stated for graphs, the proofs as written
apply equally to digraphs.

Over the years, it has become apparent that there are “gaps” in the information about vertex-
transitive digraphs of order pq that are not addressed by either approach but would be useful to fill.
Specifically, the classification of vertex-transitive digraphs of order pq that have imprimitive almost
simple automorphism groups was incomplete, and the full automorphism groups of the Marušič-
Scapellato (di)graphs were unknown. Additionally, there are several errors in this classification,
and these have propagated themselves in the literature. The most significant of these errors, at
least from the point of view of the difficulty in correcting the error, is with Praeger, Wang, and
Xu’s classification of arc-transitive Marušič-Scapellato graphs [23].

It is the purpose of this paper to fill the “gaps” described in the preceding paragraph, and to
correct the known errors. Finally, widespread reliance on results that contained errors has left a
body of results that may or may not be correct; at best, the proofs need to be revised. We have
not attempted to address all of these, but we provide a list of those that we are aware of.

2. Preliminaries

Throughout, p and q are distinct primes with q < p. We begin with basic definitions. In
particular, we define the classes of graphs and digraphs that will appear in what follows (with
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the exception of the Marušič-Scapellato digraphs, whose definition is best presented in a group-
theoretic context and is therefore postponed to Definition 4.2). We denote the arc-set of a digraph
Γ by A(Γ). The most commonly studied class of vertex-transitive digraphs are Cayley digraphs.

Definition 2.1. Let G be a group and S ⊆ G. Define the Cayley digraph of G with connec-
tion set S, denoted by Cay(G,S), to be the digraph with V (Cay(G,S)) = G and A(Cay(G,S)) =
{(g, gs) : g ∈ G, s ∈ S}.

Note that we use the term digraphs to include graphs. If Γ is a digraph satisfying (x, y) ∈ A(Γ) if
and only if (y, x) ∈ A(Γ), then we will say that Γ is a graph, and replace each pair (x, y) and (y, x)
of symmetric ordered pairs in A(Γ) by the unordered pair {x, y} in the edge set E(Γ), which takes
the place of the arc set. The next-most-commonly-encountered class of vertex-transitive digraphs
are metacirculant digraphs, first defined by Alspach and Parsons [1] (although they only defined
metacirculant graphs).

Definition 2.2. Let α ∈ Z∗
n, where Z∗

n is the multiplicative group of units in Zn, and S0, . . . , Sm−1 ⊆
Zn such that αmSi = Si, i ∈ Zm. Define an (m,n, α, S0, . . . , Sm−1)-metacirculant digraph
Γ = Γ(m,n, α, S0, . . . , Sm−1) by V (Γ) = Zm ×Zn and A(Γ) = {(ℓ, j), (ℓ+ i, k)) : k− j ∈ αℓSi}. We
also define an (m,n)-metacirculant digraph to be a digraph that is an (m,n, α, S0, . . . , Sm−1)-
metacirculant digraph for some α and some S0, . . . , Sm−1 as above.

This is not the definition of metacirculant graphs used by Marušič and Scapellato in [17]. They
define an (m,n)-metacirculant graph as one whose automorphism group contains a semiregular
element of order n whose orbits are cyclically permuted as an n-cycle by some other element.
Unfortunately, their definition is not equivalent to the one here (which is basically Alspach and
Parsons’ original definition [1]). There are at least two infinite families of graphs which satisfy
the definition from [17] but that are not isomorphic to metacirculant graphs - see [27, Section 2]
and [7, Theorem 4.12]. However, the definition in [17] is equivalent to the one here for metacirculant
digraphs of order qp, with q and p distinct primes. See [11, Theorem 9.2.2] for a characterization of
metacirculant digraphs of order qp. Finally, there is a mistake in the statement of [17, Proposition
1.1], namely, the condition that rq ≡ 1 (mod p) (the Petersen graph has r = 2 which has order 4

modulo 5 - see [1, Example 1]) should be that rq
k ≡ 1 (mod p) for some integer k - see [11, Lemma

1.5.12].
Many Cayley digraphs and metacirculant digraphs have the important property of imprimitivity

that assists in any effort to understand their automorphisms.

Definition 2.3. Let G ≤ SX be transitive. A subset B ⊆ X is a block of G if whenever g ∈ G,
then g(B) ∩ B = ∅ or B. For a block B of G, the set B = {g(B) | g ∈ G} is called a G-invariant
partition. If B = {x} for some x ∈ X or B = X, then B is a trivial block. Any other block is
nontrivial. If G has a nontrivial block, then G is imprimitive. If G is not imprimitive, we say G
is primitive.

If Γ is a digraph, then we say that Γ admits an imprimitive action if there is some transitive
group G ≤ Aut(Γ) that is imprimitive. We say that Γ admits no imprimitive action if every
transitive group G ≤ Aut(Γ) is primitive. We say that Γ is primitive if Aut(Γ) is primitive, and
Γ is imprimitive if Aut(Γ) is imprimitive. We refer to any block of Aut(Γ) as a block of Γ also.

It is important for us to make these definitions about Γ. One of the sources of confusion in the
literature is that Marušič and Scapellato referred to a digraph as m-imprimitive whenever it admits
an imprimitive action with blocks of size m, even if the full automorphism group is primitive.

We observe that a digraph Γ of order pq must lie in one of three families: Γ is primitive; Γ is
imprimitive with blocks of size p; or Γ is imprimitive with blocks of size q. Note that the second
and third families are not mutually exclusive.

Marušič provided some of the early analysis of vertex-transitive graphs of order pq.
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Proposition 2.4 (Proposition 3.3, [18]). The graphs of order pq that admit an imprimitive action
with blocks of size p are precisely the (q, p)-metacirculant graphs.

Theorem 2.5 (Theorem 3.4, [18]). Let Γ be a graph of order pq that admits an imprimitive action
of the group G with a G-invariant partition B with blocks of size q. Suppose that Γ is not a
metacirculant graph. Then the kernel of the action of G on B is trivial, and G is nonsolvable.

The proofs of both of these results as written apply equally to digraphs.
In later work with Scapellato, these results were extended to show the following.

Theorem 2.6 (Theorem, [19]). Let Γ be a vertex-transitive graph of order pq that admits an
imprimitive action but is not metacirculant. Then every (transitive) imprimitive subgroup of Aut(Γ)
admits blocks of size q; p = 22

s
+1 is a Fermat prime, q divides p−2, and Γ is a Marušič-Scapellato

graph (see Definition 4.2).

The classification of groups of automorphisms as “primitive” or “imprimitive” is a natural one.
Observe that a primitive group G cannot contain an intransitive normal subgroup, because the
orbits of such a group would give rise to a G-inviariant partition [31, Proposition 7.1]. However,
G-invariant partitions can also arise even if G has no intransitive normal subgroup.

Definition 2.7. A transitive group is called quasiprimitive if every nontrivial normal subgroup
is transitive.

As we have just observed, every primitive group is quasiprimitive, and quasiprimitive groups are
a generalization of primitive groups.

Vertex-transitive digraphs with quasimprimitive automorphism groups are usually studied via
their orbital digraphs, which we now define.

Definition 2.8. Let G act on X×X in the canonical way, that is g(x, y) = (g(x), g(y)). The orbits
of this action are called orbitals. One orbital is the diagonal, or {(x, x) : x ∈ X}, and is called
the trivial orbital. We assume here that O1, . . .Or are the nontrivial orbitals. Define digraphs
Γ1, . . . ,Γr by V (Γi) = X and A(Γi) = Oi. The set {Γi : 1 ≤ i ≤ r} is the set of orbital digraphs
of G. A generalized orbital digraph of G is an arc-disjoint union of some orbital digraphs of
G (that is, identify vertices in the natural way amongst a set of orbital digraphs, and take the new
arc set to be the union of the arcs that are in any of the orbital digraphs). We say an orbital is
self-paired if the corresponding orbital digraph is a graph.

Orbital digraphs of a group G are often given in terms of their suborbits.

Definition 2.9. Let G ≤ Sn be transitive and x a point. The orbits of StabG(x) are the suborbits
of G with respect to x.

Notice that in an orbital digraph of G, the outneighbors of x and inneighbors of x are both
suborbits of G with respect to x. We finish this section with group- and graph-theoretic terms that
relate to graph quotients.

Definition 2.10. SupposeG ≤ Sn is a transitive group that has aG-invariant partition B consisting
of m blocks of size k. Then G has an induced action on B, denoted G/B. Namely, for g ∈ G,
define g/B : B → B by g/B(B) = B′ if and only if g(B) = B′, and set G/B = {g/B : g ∈ G}. We
also define the fixer of B in G, denoted fixG(B), to be {g ∈ G : g/B = 1}. That is, fixG(B) is
the subgroup of G which fixes each block of B set-wise.

Observe that fixG(B) is the kernel of the induced homomorphism G → SB that arose previously
in the statement of Theorem 2.5, and as such is normal in G.

3



Definition 2.11. Let Γ be a vertex-transitive digraph that admits an imprimitive action of the
group G with a G-invariant partition B. Define the block quotient digraph of Γ with respect
to B, denoted Γ/B, to be the digraph with vertex set B and arc set

{(B,B′) : B ̸= B′ ∈ B and (u, v) ∈ A(Γ) for some u ∈ B and v ∈ B′}.

Note that Aut(Γ)/B ≤ Aut(Γ/B).

3. Automorphism groups of vertex-transitive digraphs of order pq

Our original interest in this problem arose when we were studying a particular Cayley digraph
of the nonabelian group of order 21 whose automorphism group is a nonabelian simple group but is
imprimitive. This digraph is included in the Marušič-Scapellato characterization as a metacirculant
digraph as its automorphism group contains the nonabelian group of order 21. It does not appear
elsewhere in that characterization as Marušič and Scapellato were interested in finding a minimal
transitive subgroup (indeed, they define a primitive graph to be one in which every transitive
subgroup of the automorphism group is primitive), and so they were not concerned with its full
automorphism group. This digraph does not occur in the Praeger-Xu characterization, as they
were interested in graphs (and occasionally digraphs) whose full automorphism group is primitive
(indeed, they define a primitive graph to be one in which the full automorphism group is primitive).
So in neither characterization of vertex-transitive graphs of order pq were such digraphs looked for.
Finally, this digraph does not arise in [6, Theorem 3.2(1)] since that result only holds for graphs,
not digraphs. Thus there is a small gap in the literature here.

The aim of this section of our paper is to fill in this gap. Fortunately, the work by Marušič and
Scapellato [19] can be easily modified to help in this goal. Indeed, Marušič and Scapellato’s work is
actually stronger than advertised through the statement of their results, and an additional goal of
this section is to make this stronger work more apparent, as from our work on this paper we believe
that such stronger statements may be useful. We note that when writing a wreath product, we
use the convention that the first group written is acting on the partition, and the second is acting
within each block. Some authors, including Praeger et al, use the opposite order.

Theorem 3.1. Let Γ be a vertex-transitive digraph of order pq, where q < p are distinct primes
such that G ≤ Aut(Γ) is quasiprimitive and has a G-invariant partition B with blocks of size q.
Additionally, suppose that B is also an Aut(Γ)-invariant partition. Then G is an almost simple
group and exactly one of the following is true:

(1) there are vertex-transitive digraphs Γq of order q and Γp = Kp or its complement, such that
Γ ∼= Γp ≀ Γq, and Aut(Γ) contains G/B ≀ (StabG(B)|B), B ∈ B. This latter group contains a
regular cyclic subgroup R, or

(2) Γ has order 55, and is isomorphic to a generalized orbital digraph of PSL(2, 11) that is
not a generalized orbital digraph of PGL(2, 11). Moreover, Γ is a Cayley digraph of the
nonabelian group of order 55, and its full automorphism group is PSL(2, 11), or

(3) Γ has order 21, and is isomorphic to a generalized orbital digraph of PSL(3, 2) ∼= PSL(2, 7)
that is not a generalized orbital digraph of PGL(2, 7). Moreover, Γ is a Cayley digraph of
the nonabelian group of order 21, and its full automorphism group is PSL(3, 2), or

(4) Γ is a Marušič-Scapellato digraph that is not isomorphic to a metacirculant digraph; p =
22

s
+ 1 is a Fermat prime, and q divides p− 2. Further, every minimal transitive subgroup

G of Aut(Γ) that admits only a G-invariant system of p blocks of size q is isomorphic to
SL(2, 2s), and Aut(Γ) is isomorphic to a subgroup of Aut(SL(2, 2s)).

Proof. We first observe that the digraphs given in the parts of the result are distinct. This follows
for the following reasons. First, all digraphs in the first three parts are isomorphic to metacirculant
digraphs and the digraphs in (4) are not. The digraphs in the first three cases are all distinct as
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none of the graphs in (2) or (3) are isomorphic to circulants, while the digraphs in (1) are. Of
course, the digraphs in (2) and (3) are distinct as their orders are different.

Almost all of the rest of the proof is contained in [19]. We analyze the digraph structures
essentially as they do in the proof of their main theorem.

Since G is quasiprimitive, it has no nontrivial intransitive normal subgroups. So fixG(B) = 1 and
G/B ∼= G is of prime degree p. As G does not have a normal Sylow p-subgroup, neither does G/B,
and so by Burnside’s Theorem [5, Corollary 3.5B] G/B is doubly-transitive, and by another theorem
of Burnside [5, Theorem 4.1B], G/B has nonabelian simple socle. Consequently, G is nonsolvable
and G/B ∼= G is almost simple.

The possibilities for G/B are given in [19, Proposition 2.5]. The various cases, with the one
exception of PSL(2, 2k), k > 1, are then analyzed in [19]. They are almost all either rejected as
impossible using group theoretic arguments or [19, Proposition 2.1] (which is purely about the
permutation group structure and also applies to our situation), or determined to be metacirculants
using [19, Proposition 2.2], which is almost sufficient for our purposes. Marušič and Scapellato in
fact showed that whenever G is a group satisfying the hypothesis of [19, Proposition 2.2], and Γ
is a digraph (they only considered graphs but their proof works for digraphs) with G ≤ Aut(Γ),
then either Γ or its complement is disconnected. This implies that Aut(Γ) is a wreath product
(and so Γ is a wreath product Γ1 ≀ Γ2 with Γ1 and Γ2 vertex-transitive digraphs of order p and q,
respectively) and Aut(Γ) contains G/B ≀ (StabG(B)|B) which contains a regular cyclic subgroup R,
where B ∈ B, which is what we need here. We see that Γ1 = Kp or its complement as G/B is
2-transitive. That Aut(Γ) contains R follows as the automorphism group of every vertex-transitive
digraph of prime order contains a regular cyclic subgroup of prime degree, and G ≀ H contains
G×H [11, Lemma 4.2.13]. There are two possible group structures for G that do not succumb to
this general approach, and [19] uses direct arguments to show that the corresponding (di)graphs
are metacirculant. We need to address these exceptional possibilities separately.

The first exception occurs in the proof of [19, Proposition 2.7] when handling the case G =
PSL(2, 11) of degree 55. In this case it is argued that PSL(2, 11) contains a regular metacyclic
subgroup that has blocks of size 11. This is a contradiction to the hypothesis of [19, Proposition
2.7], so finishes the argument for them; for us, it shows that these digraphs are Cayley digraphs (as
claimed), and (q, p)-metacirculants. It can be verified in magma [3] that the only regular subgroup
of PSL(2, 11) in its action on 55 points is the nonabelian group of order 55. Since PGL(2, 11) is
primitive, the digraphs that arise in this case are precisely those whose full automorphism group is
PSL(2, 11).

The second exception occurs at the beginning of [19, Proposition 3.5], namely when G =
PSL(3, 2) and Γ is of order 21. Here, Marušič and Scapellato noted that PSL(3, 2) in its action on
21 points has a (transitive) nonabelian subgroup of order 21, and so Γ is a metacirculant (which
is enough for their purposes, and for us again shows that Γ is a Cayley graph on the nonabelian
group of order 21). By the Atlas of Finite Simple Groups the group PSL(3, 2) ∼= PSL(2, 7) in its
representation on 21 points has suborbits of length 1, 22, 42, and 8, with the suborbits of lengths 4
being non self-paired. The action of PGL(2, 7) is primitive, so again orbital digraphs of that group
do not meet our hypotheses and we are interested only in those digraphs whose full automorphism
group is PSL(3, 2).

Finally, the case where G has socle PSL(2, 2k) = SL(2, 2k) is mainly analyzed in [20], where, for
example, the orbital digraphs of the groups are determined. In the proof of [19, Theorem], they show
that if an imprimitive representation of SL(2, 2k) has order qp and is contained in the automorphism
group of a metacirculant digraph Γ of order qp, then it either contains the complete p-partite graph
where each partition has size q (and are the blocks of B), or is contained in the complement of
this graph. These digraphs are easily seen to be circulant as either Γ or its complement is again
disconnected. Then G is metacyclic, a contradiction. By [19, Theorem], Γ is a Fermat digraph, and
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k = 2s, s ≥ 1. Also, that G = PSL(2, 22
s
) = SL(2, 22

s
) follows from [19, Proposition 2.7], as does

that a minimal transitive subgroup of G that has only blocks of size q is isomorphic to SL(2, 22
s
).

The arithmetic conditions are also given in [19, Theorem]. Finally, that Aut(Γ) ≤ Aut(SL(2, 22
s
))

follows as Aut(Γ), having simple socle, is an almost simple group. □

From a closer analysis of the suborbits of PSL(2, 11) and of PSL(3, 2), we can derive additional
information about the digraphs that arise in this analysis. The orbital digraphs of PSL(2, 11) are
examined in [16, Example 2.1]. The suborbits are of length 1, 4, 4, 4, 6, 12, 12, and 12. Two suborbits
of length 12 are the only ones that are not self-paired, and the corresponding orbital digraphs
have automorphism group PSL(2, 11) which is imprimitive (as PSL(2, 11) has disconnected orbital
digraphs). Thus, a generalized orbital digraph that is not a graph must use exactly one of these.
Two suborbits of length 4 have disconnected orbital graphs and their union is an orbital graph of
PGL(2, 11), while all of the other suborbits are also suborbits of PGL(2, 11). Thus, in order to
avoid PGL(2, 11) in the automorphism group of an orbital graph, we must include exactly one of
these. For PSL(3, 2), we use magma for much of this analysis. We summarize this extra information
about PSL(2, 11) and what we found with magma for PSL(3, 2) in the following remark.

Remark 3.2. If Γ arises in Theorem 3.1(2) and is a graph, then it has a subgraph of valency
4 that is a disconnected orbital graph of PSL(2, 11), and the other disconnected orbital graph of
PSL(2, 11) (which is the image of this one under the action of PGL(2, 11)) is not a subgraph of Γ
(but Γ itself is connected).

If Γ arises in Theorem 3.1(2) and is not a graph, then it has a subdigraph of valency 12 that is
a non-self-paired orbital digraph of PSL(2, 11), and whose paired orbital digraph of PSL(2, 11) is
not a subdigraph of Γ.

If Γ arises in Theorem 3.1(3) then magma [3] has been used to verify that Γ cannot be a graph.
By [25], PSL(3, 2) has suborbits of length 1, 2, 2, 4, 4, 8. The two suborbits of PSL(3, 2) of length
2 are self-paired (as one of them consists of 3-cycles in blocks of PSL(3, 2)). The two suborbits of
length 4 are non-self-paired. Thus Γ has a subdigraph of valency 4 that is a non-self-paired orbital
digraph of PSL(3, 2), and whose paired orbital digraph of PSL(3, 2) is not a subdigraph of Γ.

In our next remark, we list those vertex-transitive graphs with simply primitive automorphism
group, necessarily contained in the statement of Theorem 3.1, whose automorphism group contains
a subgroup which is imprimitive and quasiprimitive.

Remark 3.3. There are several instances, other than the complete graph and its complement,
where a quasiprimitive group G with nontrivial G-invariant partition B, is contained in the full
automorphism group of a digraph Γ of order qp, but the automorphism group Aut(Γ) is simply
primitive. We list the exceptions or not in the same order as in Theorem 3.1:

(1) There are no such cases if Theorem 3.1 (1) holds as Zqp is a Burnside group [5, Corollary
3.5A]. This implies Aut(Γ) is doubly-transitive and so Aut(Γ) = Sqp.

(2) If Theorem 3.1 (2) holds then there are graphs whose automorphism group is primitive
and equal to PGL(2, 11) on 55 points that contain the quasiprimitive and imprimitive
representation of PSL(2, 11) on 55 points. These graphs are explicitly described in [24,
Lemma 4.3].

(3) If Theorem 3.1 (3) holds, then there are graphs whose automorphism group is PΓL(3, 2) in
its primitive representation on 21 points that contains the quasiprimitive and imprimitive
representation of PSL(3, 2) on 21 points. These graphs are explicitly described in [29,
Example 2.3].

(4) If Theorem 3.1 (4) holds, then there are graphs whose automorphism group is primitive
but contains the quasiprimitive and imprimitive representation of SL(2, 22

s
) on qp points.
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These graphs are explicitly described in the proof of [17, Theorem 2.1], starting in the last
paragraph on page 192.

4. Automorphism groups of Marušič-Scapellato digraphs

We turn now to the next “gap” in information about vertex-transitive digraphs of order pq,
where there is also an error. The gap is that the automorphism groups of every vertex-transitive
digraph of order pq are not known.

The automorphism groups of circulant digraphs of order pq are found in [12]. One of the authors
of this paper determined the automorphism groups of metacirculant graphs of order pq that are
not circulant [6] and that argument works for digraphs as well provided that the full automorphism
group is not an almost simple group. We dealt with some part of the case where the automorphism
group is almost simple (where the automorphism group is imprimitive and almost simple but not
a Marušič-Scapellato digraph) in the previous section. Praeger and Xu [24] determined the full
automorphism group of graphs of order pq in every case where that group is acting primitively. We
will give the full automorphism groups of digraphs that are not graphs with primitive automorphism
group in Theorem 5.4. In light of Theorem 2.6, this means that the remaining gap in the problem
of determining the full automorphism group of vertex-transitive digraphs of order a product of two
distinct primes reduces to determining the automorphism groups of imprimitive Marušič-Scapellato
digraphs of order pq that are not metacirculant graphs, where p is a Fermat prime, and q divides
p− 2. In the process of filling this gap we will fix an error in [24]. Unfortunately, there is also an
error of omission in [24] that we will need to correct, but we leave this for Section 5.

For the first part of this section, we will work in full generality (i.e. with SL(2, 2k), k > 1), and
when appropriate with will set k = 2s, p = 22

s
+ 1 a Fermat prime, and q a divisor of p − 2 (so

s ≥ 1). For now though, p = 2k + 1 and q divides 2k − 1 (and p and q need not be prime).
The Marušič-Scapellato digraphs are vertex-transitive digraphs that are generalized orbital di-

graphs of SL(2, 2k). They were first studied by Marušič and Scapellato in [19,20]. Praeger, Wang,
and Xu [23] determined the automorphism groups of Marušič-Scapellato graphs of order pq that are
also arc-transitive, partially filling the gap we are addressing here. One of the authors of this paper
studied the full automorphism groups of Marušič-Scapellato graphs in [10] and was able to say a
great deal about them, but left their complete determination as an open problem [10, Problem 1].

We now discuss the construction of Marušič-Scapellato graphs, using a combination of the ap-
proaches followed in [10] and [20].

Let I2 be the 2× 2 identity matrix, and set Z = {aI2 : a ∈ F∗
2k
}, the set of all scalar matrices.

The name Z is chosen as Z = Z(GL(2, 2k)), the center of GL(2, 2k). Let F2
2k

denote the set of all

2-dimensional vectors whose entries lie in F2k . Clearly SL(2, 2k) is transitive on F2
2k

−{(0, 0)}. It is
also clear that SL(2, 2k) permutes the projective points PG(1, 2k), where a projective point is the
set of all vectors other than (0, 0) that lie on a line. Notice that there are 2k + 1 projective points,
and PG(1, 2k) is an invariant partition of SL(2, 2k) in its action on F2

2k
−{(0, 0)} with 2k+1 blocks

of size 2k − 1. This action is faithful. That is, SL(2, 2k)/PG(1, 2k) ∼= SL(2, 2k), or equivalently,
fixSL(2,2k)(PG(1, 2k)) = 1.

It is traditional to identify the projective points with elements of F2k ∪{∞} in the following way:
The nonzero vectors in the one-dimensional subspace generated by (1, 0), will be identified with
∞. Any other one-dimensional subspace is generated by a vector of the form (c, 1), where c ∈ F2k .
The nonzero vectors in the one-dimensional subspace generated by (c, 1) will be identified with c.

For a ∈ F∗
2k
, let

√
a be the unique element of F∗

2k
whose square is a, and

ka =

[ √
a 0

0
√
a
−1

]
.
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Set K = {ka : a ∈ F∗
2k
}. It is clear that ka stabilizes the projective point ∞ and that for any

generator ω of F∗
2k
, ⟨kω⟩ = K is cyclic (of order 2k − 1), since

√
ω also generates F∗

2k
. Additionally,

it is clear that every element of the set-wise stabilizer of ∞ in SL(2, 2k) has the same action on
∞ as some element of K|∞ (the entry in the top-right position is irrelevant to the action on ∞).
Let J ≤ K be the unique subgroup of order ℓ, where ℓ is a fixed divisor of 2k − 1 (with our
notation ℓ = (2k − 1)/q). By [5, Exercise 1.5.10], every orbit of J |∞ is a block of SL(2, 2k), and so
SL(2, 2k) has an invariant partition Dℓ with blocks of size ℓ (the blocks whose points lie “within”
the projective point ∞ of PG(1, 2k) – that is, those blocks consisting of points whose second entry
is 0 – are the orbits of J |∞, and the other blocks are the images of these orbits under SL(2, 2k)).
These blocks of Dℓ will be the vertices of the generalized orbital digraphs of SL(2, 2k), and it is
the action of SL(2, 2k) on these blocks that produces the Marušič-Scapellato digraphs. With our
notation, there are pq blocks in Dℓ.

As mentioned above, the blocks of Dℓ are the images of the orbits of J |∞ under the action of
SL(2, 2k), so each lies within a point of PG(1, 2k); that is, Dℓ ⪯ PG(1, 2k). Now SL(2, 2k)/Dℓ

is a faithful representation of SL(2, 2k) (as fixSL(2,2k)(PG(1, 2k)) = 1 and Dℓ ⪯ PG(1, 2k)). Ad-

ditionally, the SL(2, 2k)-invariant partition PG(1, 2k) induces the SL(2, 2k)/Dℓ-invariant partition
B = PG(1, 2k)/Dℓ, and B consists of 2k + 1 blocks whose size in general is m = (2k − 1)/ℓ (under
our assumptions, m = q). We will use the notation B = PG(1, 2k)/Dℓ throughout this section. The
elements of B will be the blocks of our digraphs of order pq, and will have size q (and there are p of
them), so for our purposes and henceforth in this section, we have q = m = (2k − 1)/ℓ. It is shown
in [20] that B is the unique SL(2, 2k)/Dℓ-invariant partition with blocks of size q. The following
result is [20, Lemma 2.3].

Lemma 4.1. SL(2, 2k)/Dℓ has q suborbits of length 1 and q suborbits of length 2k. Additionally,
for a suborbit S of length 2k, |S ∩ (c/Dℓ)| = 1 for every projective point c ∈ PG(1, 2k).

Note that this implies that the valency of an orbital digraph of SL(2, 2k) is either 1 or 2k.
Additionally, as SL(2, 2k)/PG(1, 2k) = PSL(2, 2k) is doubly-transitive, the previous result also
implies that the orbital digraphs of SL(2, 2k)/Dℓ having valency 2k are graphs. We now define
Marušič-Scapellato digraphs, and the fact that some orbital digraphs are graphs and some are not
will cause us to naturally define these digraphs in terms of the edges which are not arcs as well as
arcs that need not be edges.

Definition 4.2. Let k > 1 an integer, and q a divisor of 2k − 1, S ⊂ Z∗
q , ∅ ⊆ T ⊆ Zq, and ω a

primitive element of F2k . The digraphX(2k, q, S, T ) has vertex set PG(1, 2k)×Zq. The outneighbors
of (∞, r) are {(∞, r + a) : a ∈ S} while the inneighbors of (∞, r) are {(y, r + b) : y ∈ F2k , b ∈ T}.
The outneighbors of (x, r), x ∈ F2k , are given by {(x, r+ a) : a ∈ S} while the inneighbors of (x, r)
are

{(∞, r − b) : b ∈ T} ∪ {(x+ ωi,−r + b+ 2i) : i ∈ Z2k−1, b ∈ T}.
The digraph X(2k, q, S, T ) is a Marušič-Scapellato digraph.

In [20] Marušič and Scapellato only defined graphs, but their definition, with the obvious mod-
ifications, also define digraphs as above - see [21]. Additionally, they required that ∅ ⊂ T ⊂ Zq

as they wished their family to be disjoint from other already known families of graphs. If ∅ = T
or T = Zq then the resulting digraphs are either disconnected or complements of disconnected di-
graphs, and so have automorphism group either a nontrivial wreath product or a symmetric group.
They also showed that with their definition, Marušič-Scapellato digraphs are isomorphic to some,
but not all, generalized orbital digraphs of SL(2, 2k)/Dℓ. We prefer the more general definition
that includes all generalized orbital digraphs of SL(2, 2k)/Dℓ. However, the distinction Marušič
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and Scapellato made is also important, so if T = ∅ or Zq, we will call such a Marušič-Scapellato
digraph a degenerate Marušič-Scapellato digraph.

We have said that the vertices of the Marušič-Scapellato digraphs are the blocks of Dℓ. The
blocks of Dℓ are two-dimensional vectors that are subsets of projective points; in fact, it may be
useful to the reader if we describe the blocks of Dℓ more precisely here. We assume that a primitive
element ω of F2k has been chosen and is fixed. Then each block D ∈ Dℓ has one of the following
forms:

{(
√
ω
qj+r

, 0) : 0 ≤ j ≤ ℓ− 1} (in the projective point ∞)

{(
√
ω
qj+c+r

,
√
ω
qj+r

: 0 ≤ j ≤ ℓ− 1} (in the projective point
√
ω
c
)

{(0,
√
ω
qj+r

) : 0 ≤ j ≤ ℓ− 1} (in the projective point 0),

for some fixed 0 ≤ r ≤ q−1 and 1 ≤ c ≤ 2k−1. The action of any element of SL(2, 2k) on any one of
these sets is easy to calculate. Clearly, the definition that we have given for the Marušič-Scapellato
graphs does not have these sets as vertices; its vertices are the elements of PG(1, 2k)× Zq.

In [20, Theorem 3.1], Marušič and Scapellato show that the imprimitive orbital digraphs of
SL(2, 2k) whose invariant partitions come from the projective points, are precisely the Marušič-
Scapellato digraphs with the correct correspondence chosen between the blocks of Dℓ and the
elements of PG(1, 2k) × Zq. They describe explicitly how certain matrices act on elements of

PG(1, 2k)× Zq.
The action on the first coordinate is straightforward; the set of blocks of Dℓ that lie in a particular

projective point will correspond to the set of vertices of the digraph whose label has that first
coordinate. Thus, any matrix will map a vertex whose first coordinate is some projective point, to
a vertex whose first coordinate is the image of that projective point under that matrix. However,
the action on the second coordinate is less clear, and this is what they explain in more detail.

In Equations (10) and (12) of [20], they explain that the labeling of the vertices is chosen so
that kω(∞, r) = (∞, r + 1) (where r ∈ Zq), and kω(c, r) = (cω, r + 1) for any projective point c
other than ∞. Thus kω always adds one in the second coordinate, but in the first it multiplies by
ω except when the first coordinate is ∞. They also introduce a family of matrices

hb =

[
1 b
0 1

]
,

where b ∈ F2k . Observe thatH = {hb : b ∈ F2k} is a group, and in fact since F2k has characteristic 2,
H is an elementary abelian 2-group. They note in the paper that the stabilizer of ∞ in SL(2, 2k) is
the set of upper triangular matrices, and this is generated by kω together with H. In Equation (14)
of [20], they observe that under their labeling, hb(∞, r) = (∞, r), and hb(c, r) = (c + b, r) when c
is any projective point other than ∞.

From this point on, we assume that k = 2s, s ≥ 1, p = 22
s
+ 1 is a Fermat prime, and q divides

p − 2. For brevity, we write t = 2s in proofs and discussions, but for accuracy write 22
s
in the

statements of results. With the information we now have in hand, we are ready to understand how
diagonal matrices act on the vertex labels from PG(1, 2t)× Zq; this will be valuable to us.

Lemma 4.3. Let ω be a primitive root of F22s , so that
√
ω is also a primitive root of F22s . Then

the permutation
√
ωI2 acts on vertices labeled with elements of PG(1, 22

s
)× Zq by

√
ωI2(∞, r) = (∞, r + 1) and

√
ωI2(c, r) = (c, r − 1), when c ̸= ∞.

Proof. Observe that a point of F2
2t that lies in the projective point ∞ has 0 as its second entry, so

the action of kω on such a point must be identical to the action of
√
ωI2. Thus, any set D ∈ Dℓ

of points lying in the projective point ∞ must have the same image under
√
ωI2 as under kω. If
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D corresponds to the vertex labelled (∞, r), then since Marušič and Scapellato have told us that
kω(∞, r) = (∞, r + 1), it must also be the case that

√
ωI2(∞, r) = (∞, r + 1).

Similarly, a point of F2
2t that lies in the projective point 0 has 0 as its first entry, so the action

of kω−1 = (kω)
−1 on such a point must be identical to the action of

√
ωI2. Again, Marušič and

Scapellato have told us that kω(0, r − 1) = (0, r), it must be the case that
√
ωI2(0, r) = (0, r − 1).

Finally, consider any point of F2
2t that lies in the projective point c where c ̸= 0,∞, so c =

√
ω
x

for some x. Then the point of F2
2t has the form (

√
ω
qi+x+m

,
√
ω
qi+m

) for some 0 ≤ i ≤ ℓ − 1 and
0 ≤ m ≤ q − 1. Straightforward calculations using the field’s characteristic of 2 show that the

action of the matrix
√
ω
−1

I2 has the same effect on such a point as the action of the matrix

hckωhc =

[√
ω

√
ω
x
(
√
ω +

√
ω
−1

)

0
√
ω
−1

]
.

Using the information from Marušič and Scapellato, we know that hc(c, r) = (c + c, r) = (0, r),

kω(0, r) = (0, r+1), and hc(0, r+1) = (c, r+1). Thus, we must also have
√
ω
−1

I2(c, r) = (c, r+1),
and hence

√
ωI2(c, r) = (c, r − 1). □

Let F : F2t → F2t be the Frobenius automorphism, and so be given by F (x) = x2. The Frobenius
automorphism induces an automorphism f of GL(2, 2t) in the natural way - by applying F to
the entries of the standard matrix of an element of GL(2, 2t). Observe that since the Frobenius
automorphism is an automorphism, we have Z ∩ SL(2, 2t) = {I2}. Furthermore, every element
of F2t is a square, and so every element of F2t arises as the determinant of some matrix in Z.
Therefore ⟨SL(2, 2t), Z⟩ = GL(2, 2t). Since we know that SL(2, 2t), Z ◁GL(2, 2t), this implies that
GL(2, 2t) = SL(2, 2t)× Z.

We need to introduce some additional notation that will be used throughout the remainder of
this section. We use ΓL(2, 2t) to denote the group GL(2, 2t)⋊ ⟨f⟩. We also use ΣL(2, 2t) to denote
SL(2, 2t)⋊ ⟨f⟩. We know that GL(2, 2t) = SL(2, 2t)×Z, so ΓL(2, 2t) = (SL(2, 2t)×Z)⋊ ⟨f⟩ where
the action of f leaves SL(2, 2t) and Z invariant.

Lemma 4.4. Let p = 22
s
+1 be a Fermat prime and q|(22s −1) a prime, with qℓ = (22

s −1). Let a
be the order of 2 modulo q, let b be a divisor of gcd(a, 2s) with b ̸= a, and let 1 ̸= L = ⟨f b⟩ (where
f is the automorphism of GL(2, 22

s
) induced by the Frobenius automorphism, as described above).

If 1 ̸= z/Dℓ ∈ Z/Dℓ , then z−1⟨SL(2, 22s), L⟩z/Dℓ ̸= ⟨SL(2, 22s), L⟩/Dℓ.

Proof. Let 1 ̸= L = ⟨f b⟩ ≤ ⟨f⟩ and let G = ⟨SL(2, 2t), L⟩. Towards a contradiction, suppose that
1 ̸= z/Dℓ ∈ Z/Dℓ, and z−1Gz/Dℓ = G/Dℓ. Let Y = ⟨z/Dℓ⟩. As Z◁ΓL(2, 2t) is cyclic and Y is the
unique subgroup of Z/Dℓ of order |Y |, Y ◁ΓL(2, 2t)/Dℓ. Since z−1Gz/Dℓ = G/Dℓ, it follows that
G/Dℓ◁⟨Y,G/Dℓ⟩. Moreover, since Y ∩G/Dℓ = 1 (this follows from GL(2, 2t) = SL(2, 2t)× Z), we
see ⟨Y,G/Dℓ⟩ ∼= Y ×G/Dℓ. In particular, z/Dℓ commutes with f b/Dℓ.

Choose i such that z =
√
ω
i
I2 ∈ Z, for some fixed generator ω of F∗

2t (
√
ω also generates F∗

2t). It

is straightforward to verify that z−1f bzf−b = z2
b−1 =

√
ω
i(2b−1)

I2. On the other hand, since z/Dℓ

commutes with f/Dℓ, it follows that (z
−1f bzf−b)/Dℓ = 1, implying

√
ω
i(2b−1)

I2/Dℓ = 1.

Observe that each block of Dℓ has the form {(x
√
ω
qj
, y
√
ω
qj
) : 0 ≤ j < ℓ}, for some x, y ∈ F2t .

This implies that fixZ(Dℓ) = ⟨
√
ω
q
I2⟩. Therefore

√
ω
i(2b−1)

I2/Dℓ = 1 if and only if
√
ω
i(2b−1) ∈

⟨
√
ω
q⟩. We conclude that i(2b − 1) ≡ uq (mod 2t − 1) for some integer u. Since q divides 2t − 1, it

follows that q divides i(2b−1). Recall that a is the order of 2 modulo q and b < a. This implies that
2b ̸≡ 1 (mod q) and therefore q does not divide 2b − 1. Since q is a prime, and q divides i(2b − 1),
this implies that q divides i. However, this means that z ∈ ⟨

√
ω
q
I2⟩ = fixZ(Dℓ) contradicting the

assumption that z/Dℓ ̸= 1. This contradiction establishes that z−1Gz/Dℓ ̸= G/Dℓ, as claimed. □
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The first error that we will correct concerns the classification of arc-transitive Marušič-Scapellato
graphs given in [23, Theorem, as it relates to (3.8)]. In that paper, Lemma 4.9(a) states that the q
connected orbital graphs X(2t, q, ∅, {x}) (where x ∈ Zq) of SL(2, 2

t) all have automorphism group
ΣL(2, 2t) (this group is written in [23] as ΓL(2, 2t), but it is clear from the proof of [23, Theorem
3.7] that they mean the group we are denoting by ΣL(2, 2t)). Using Lemma 4.3 to understand the
action of Z on these graphs, we see that for any z ∈ Z with z ̸= 1, there exists some x′ ∈ Z∗

q

such that X(2t, q, ∅, x})z = X(2t, q, ∅, {x− x′}) (more precisely, if z =
√
ω
i
I2, then x′ = 2i). Thus,

every such z acts as a cyclic permutation on this set of q graphs. Suppose that Γ and Γz are two of
these orbital digraphs with z/Dℓ ̸= 1 (so that the graphs are distinct), and Aut(Γ) = ΣL(2, 2t) as
claimed in [23]. Then Aut(z(Γ)) = z−1(Aut(Γ))z, and by taking b = 1 in Lemma 4.4 we see that
ΣL(2, 2t)/Dℓ ̸= z−1ΣL(2, 2t)z/Dℓ, contradicting their claim that Aut(z(Γ)) = Aut(Γ).

The mathematical error leading to the incorrect statement of [23, Lemma 4.9] actually arises
in [23, Lemma 4.8] where it is concluded that the automorphism group G of any Marušič-Scapellato
graph satisfies SL(2, 2t)/Dℓ ≤ G ≤ ΣL(2, 2t)/Dℓ (using our notation). The proof of [23, Lemma
4.8] only gives that G/B = ΣL(2, 2t)/PG(1, 2t) = PΣL(2, 2t). If we consider any of the groups
that are conjugate to ΣL(2, 2t) by a scalar matrix, which we have shown in Lemma 4.4 are distinct
modulo Dℓ, the fact that scalar matrices fix every point of PG(1, 2t) shows that every such group
satisfies this equation. With that said, the proof of [23, Lemma 4.9 (b)] is correct if we strengthen
the hypothesis to assume that SL(2, 2t)/Dℓ ≤ G ≤ ΣL(2, 2t)/Dℓ. So we can restate their result
correctly as follows, to identify the arc-transitive Marušič-Scapellato digraphs whose automorphism
group is contained in ΣL(2, 2t)/Dℓ.

Note that whenG = Aut(Γ) where Γ is one of these Marušič-Scapellato graphs, and SL(2, 2t)/Dℓ ≤
G ≤ ΣL(2, 2t)/Dℓ, all of these actions on Dℓ are faithful, so that SL(2, 2t)/Dℓ

∼= SL(2, 2t),
G/Dℓ

∼= G, and ΣL(2, 2t)/Dℓ
∼= ΣL(2, 2t). In [23], they were to some extent studying the ab-

stract structure of these groups, and did not make this distinction, which may have contributed to
the confusion and does lead to our statement looking somewhat different from theirs.

Theorem 4.5 (see [23], Lemma 4.9). Let p = 22
s
+ 1 be a Fermat prime and q|(22s − 1) be

prime. Let Γ = X(22
s
, q, S, T ) be an arc-transitive Marušič-Scapellato digraph and assume that

SL(2, 22
s
)/Dℓ ≤ Aut(Γ) ≤ ΣL(2, 2s)/Dℓ. Let a be the order of 2 modulo q. Then S = ∅ and one of

the following is true:

(1) T = {0}, Γ has valency q, and automorphism group ΣL(2, 22
s
)/Dℓ.

(2) There is a divisor b of gcd(a, 22
s
) and 1 < a/b < q − 1 such that T = Ub,i = {i2bj : 0 ≤ j <

a/b}. There are exactly (q− 1)b/a distinct graphs of this type for a given b, each of valency
qa/b, and the automorphism group of each is ⟨SL(2, 22s), L⟩/Dℓ where L ≤ ⟨f⟩ is of order
22

s
/b. Up to isomorphism, there are exactly (q − 1)/b such graphs.

Before turning to the characterization of arc-transitive Marušič-Scapellato digraphs of order qp,
we will need a solution to the isomorphism problem for these graphs. This problem has been solved
in [10], but the solution there is not suited to our needs. The solution given in [10] is also perhaps
not optimal in the sense that it requires one check |ΣL(2, 2t)| = |Aut(SL(2, 2t))| maps to determine
isomorphism, while we show in the next result that one only needs to check qs maps.

Theorem 4.6. Let p = 22
s
+1 be a Fermat prime, q|(22s −1) a prime, and Γ,Γ′ be non-degenerate

Marušič-Scapellato digraphs. Then Γ and Γ′ are isomorphic if and only if δ(Γ) = Γ′, where δ ∈
⟨Z, f⟩/Dℓ.

Proof. It is shown in [10, Theorem 1] that Γ′ = δ(Γ) for some δ if and only if this occurs for a δ
that normalizes SL(2, 2t). This normalizer is ΓL(2, 2t)/Dℓ as every element of Sqp that normalizes
SL(2, 2t)/Dℓ can be written in the form ab, where b ∈ SL(2, 2t), and a ∈ Aut(SL(2, 2t)), by [11,
Lemma 4.4.9]. It should be clear that the image of Γ under an inner automorphism of SL(2, 22)/Dℓ
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is just Γ. By [32, Subsection 3.3.4], the outer automorphisms are f and its powers as well as
conjugation by an element of Z. The result follows. □

We are now ready to determine the arc-transitive Marušič-Scapellato digraphs of order a product
of two distinct primes with imprimitive automorphism group.

Theorem 4.7. Let s > 1, p = 22
s
+ 1 be a Fermat prime, and q|(22s − 1) be prime. Let Γ =

X(22
s
, q, S, T ) be a nondegenerate arc-transitive Marušič-Scapellato digraph constructed with the

primitive root ω of F22s with an imprimitive automorphism group. Let a be the order of 2 modulo
q, and d =

√
ωI2. Then S = ∅ and one of the following is true:

(1) T = {−2k}, Γ has valency q, and automorphism group d−kΣL(2, 22
s
)dk/Dℓ, k ∈ Zq.

(2) There is a divisor b of gcd(a, 2s), 1 < a/b < q − 1, and k ∈ Zq such that T = Ub,i,k =

{i2bj−2k : 0 ≤ j < a/b}. There are exactly (q−1)b/a distinct graphs of this type for a given b
and k, each of valency qa/b, and the automorphism group of each is d−k⟨SL(2, 22s), L⟩dk/Dℓ

where L ≤ ⟨f⟩ is of order 22s/b. Up to isomorphism, there are exactly (q−1)/b such graphs.

Proof. For the proof of this result, we will abuse notation by writing H instead of H/Dℓ where
H/Dℓ ≤ d−kΣL(2, 2t)dk/Dℓ, and will similarly abuse notation for elements of d−kΣL(2, 2t)dk/Dℓ.
This should cause no confusion. The result follows by Theorem 4.5 if Aut(Γ) ≤ ΣL(2, 2t), in
which case k = 0. Suppose that Aut(Γ) is not contained in ΣL(2, 2t). As Aut(Γ) is imprimitive
and contains SL(2, 2t), by [19, Theorem] either Γ is metacirculant or the only invariant partition of
Aut(Γ) is B = PG(1, 2t) which is also the only invariant partition of SL(2, 2t). If Γ is metacirculant,
then it is degenerate by [17, Theorem 2.1]. Hence Γ is not metacirculant and so fixAut(Γ)(B) = 1
by [18, Theorem 3.4]. Then Aut(Γ)/B ∼= Aut(Γ) is a group of prime degree p. By [5, Corollary
3.5B] we have Aut(Γ)/B ≤ AGL(1, p) or is a doubly-transitive group. By [5, Theorem 4.1B] we
see either Aut(Γ)/B ≤ AGL(1, p) or is a doubly-transitive group with nonabelian simple socle. If
Aut(Γ)/B ≤ AGL(1, p) then Aut(Γ) contains a normal subgroup of order p, and so has blocks of
size p, a contradiction. Thus Aut(Γ)/B is a doubly-transitive group with nonabelian simple socle.
By [23, Lemmas 4.5, 4.6, and 4.7] we have SL(2, 2t)◁Aut(Γ).

Now, as above, NSV
(SL(2, 2t)) = ⟨SL(2, 2t), f, Z⟩ = ΓL(2, 2t) = (SL(2, 2t) × Z) ⋊ ⟨f⟩ by [32,

Subsection 3.3.4] and [11, Lemma 4.4.9]. Thus every element γ of NSV
(SL(2, 2t)), and hence

γ ∈ Aut(Γ), can be written as γ = f izω, where ω ∈ SL(2, 2t), z ∈ Z, and i is a positive integer. Of
course, as SL(2, 2t) ≤ Aut(Γ), f iz ∈ Aut(Γ) if and only if f izω ∈ Aut(Γ) for some ω ∈ SL(2, 2t).
Then H = Aut(Γ) ∩ {f iz : i ∈ Z, z ∈ Z} is a subgroup of Aut(Γ), and Aut(Γ)/SL(2, 2t) ∼= H by
the First Isomorphism Theorem. As Aut(Γ) ∩ Z = 1, H is isomorphic to a subgroup of ⟨f⟩, and
Aut(Γ)/SL(2, 2t) is isomorphic to a cyclic 2-subgroup. Then Aut(Γ)/SL(2, 2t) is conjugate by an
element z/SL(2, 2t) ∈ Z/SL(2, 2t) to a subgroup of ⟨f⟩/SL(2, 2t), and so z−1Aut(Γ)z ≤ ΣL(2, 2t).
Then Aut(Γ) ≤ zΣL(2, 2t)z−1 and z−1(Γ) is a nondegenerate arc-transitive Marušič-Scapellato
digraph with Aut(z−1(Γ)) ≤ ΣL(2, 2t), and so is given by Theorem 4.5.

In order to verify the numbers of arc-transitive Marušič-Scapellato digraphs are as in the re-
sult, we need only to see different scalar matrices do indeed give different arc-transitive Marušič-
Scapellato digraphs. Suppose that there exist two different arc-transitive Marušič-Scapellato graphs
Γ1 and Γ2 with automorphism groups contained in ΣL(2, 2t), such that z1(Γ1) = z2(Γ2), for
z1, z2 ∈ Z. Then Γ2 = z−1

2 z1(Γ1). This implies that Γ1 and Γ2 are of the same valency and
since by Theorem 4.5 all Marušič-Scapellato graphs with the same valency have the same automor-
phism groups, it follows that Aut(Γ1) = Aut(Γ2) = ⟨SL(2, 2t), L⟩, where L = ⟨f b⟩. By Lemma 4.4
it follows that z−1⟨SL(2, 2t), L⟩z = ⟨SL(2, 2t), L⟩ holds only when z = 1. On the other hand, since
Γ2 = z−1

2 z1(Γ1) it follows that

⟨SL(2, 2t), L⟩ = Aut(Γ2) = (z−1
2 z1)Aut(Γ1)(z

−1
2 z1)

−1 = (z−1
2 z1)⟨SL(2, 2t), L⟩(z−1

2 z1)
−1,
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and hence z−1
2 z1 = 1. This gives z1 = z2, which implies that different scalar matrices do indeed

give different arc-transitive Marušič-Scapellato graphs.
Let z−1(Γ) = X(2t, q, ∅, T ′), where T ′ = {0} or T ′ = Ub,i = {i2bj : 0 ≤ j < a/b}. Let z = dk for

some positive integer k. We need only verify that T ′ = {2k} or Ub,i,k = {i2bj + 2k : 0 ≤ j < a/b}.
Now, in z−1(Γ), the neighbors of (∞, r) are {(y, r+u) : y ∈ F2t , u ∈ Ub,i}. Considering z(z−1(Γ)) =
Γ and applying Lemma 4.3, we see the neighbors of (∞, r+ k) in Γ are {(y, r+u− k) : y ∈ F2t , u ∈
Ub,i}. Equivalently, the neighbors of (∞, r) in Γ are {(y, r + u − 2k) : y ∈ F2t , u ∈ Ub,i} and the
result follows. □

We now determine the full automorphism group of any Marušič-Scapellato digraph of order a
product of two distinct primes.

Theorem 4.8. Let p = 22
s
+ 1 be a Fermat prime, q|(22s − 1) be prime, and Γ be a Marušič-

Scapellato digraph of order qp. Then Γ or its complement is X(22
s
, q, S, T ) and one of the following

is true.

(1) Aut(Γ) is primitive and
(a) 2s = 2, qp = 15, S = Z∗

3 and T = {0}, {1}, or {2}. Then Γ is isomorphic to the line
graph of K6 and has automorphism group d−1ΣL(2, 4)d ∼= S6 for some d ∈ Z.

(b) p = k2 + 1, q = k + 1, S = Z∗
q and |T | = 1. Then there exists d ∈ Z/Dℓ such that

Aut(Γ) = d−1PΓSp(4, k)d.
(c) S = Z∗

q, T = Zq, and Γ is a complete graph with automorphism group Sqp.
(2) Aut(Γ) is imprimitive and

(a) S ⊂ Z∗
q, T = Zq, Γ is degenerate, and Aut(Γ) ∼= Sp ≀Aut(Cay(Zq, S)).

(b) In all other cases there exists L ≤ ⟨f/Dℓ⟩ and d ∈ Z/Dℓ such that

Aut(Γ) = d−1⟨SL(2, 22s), L⟩d/Dℓ

which is isomorphic to a subgroup of ΣL(2, 22
s
)/Dℓ that contains SL(2, 22

s
)/Dℓ.

Proof. As in the previous result, we will abuse notation and drop the Dℓs from our notation. The
case when Aut(Γ) = Sqp is trivial. The other Marušič-Scapellato graphs of order qp with primitive
automorphism group were calculated up to isomorphism in [17] and their automorphism groups
were computed to be isomorphic to either ΣL(2, 4) or PΓSp(4, k) in [24]. We observe that ΣL(2, 2t)
is contained in Aut(Γ), and so the only possible isomorphisms with other Marušič-Scapellato graphs
are with elements of Z by Lemma 4.6. That the elements of Z give different graphs follows as they
normalize SL(2, 2t) but are not contained in Aut(Γ).

If Aut(Γ) is imprimitive and Γ is degenerate, then T = ∅ or Zq and as Aut(Γ) is imprimitive,
S ̸= ∅ or Z∗

q respectively, as otherwise Γ = Kqp has a primitive automorphism group. If T = Zq, then

asX(2t, q, ∅,Zq) ∼= Kp ≀K̄q, Γ ∼= Kp ≀Γ[B], where B is a nontrivial block of Γ. As a nontrivial block of
Γ has order q, which is a prime, Γ[B] is isomorphic to Cay(Zq, S) by [28]. Then Γ ∼= Kp ≀Cay(Zq, S)
and by [9, Theorem 5.7] Aut(Γ) ∼= Sp ≀Aut(Cay(Zq, S)).

If Aut(Γ) is imprimitive and Γ is non-degenerate, then Γ is a generalized orbital digraph of
Aut(Γ). We write Γ = Γ1 ∪ · · · ∪ Γr where each Γi is an orbital digraph of Aut(Γ). Note that
as Aut(Γ) is imprimitive, some orbital digraph of Aut(Γ) is disconnected. Also, each connected
orbital digraph of Aut(Γ) is either arc-transitive or 1/2-transitive (that is, is edge but not arc-
transitive), and as each orbital digraph of Γ is a generalized orbital digraph of SL(2, 2t), we see
each connected orbital digraph of Aut(Γ) is arc-transitive as each connected orbital digraph of
SL(2, 2t) is arc-transitive.

If there exist connected orbital digraphs of Aut(Γ) that are subdigraphs of Γ whose automorphism
groups are contained in d−1ΣL(2, 2t)d and e−1ΣL(2, 2t)e for d ̸= e both in Z, then

SL(2, 2t) ≤ Aut(Γ) ≤ d−1ΣL(2, 2t)d ∩ e−1ΣL(2, 2t)e ≤ d−1ΣL(2, 2t)d.
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Thus Aut(Γ) is a subgroup of d−1ΣL(2, 2t)d that contains SL(2, 2t). Now let SL(2, 2t) ≤ K ≤
ΣL(2, 2t). As SL(2, 2t)◁ΣL(2, 2t), every element of ΣL(2, 2t), and consequently every element of K,
can be written as gf c for some g ∈ SL(2, 2t) and integer c. As SL(2, 2t) ≤ K, we have gf c ∈ K
if and only if f c in K. We conclude K = ⟨SL(2, 2t), L⟩, where L ≤ ⟨f⟩ consists of all powers of f
contained in K. Then d−1SL(2, 2t)d ≤ Aut(Γ) ≤ d−1ΣL(2, 2t)d and Aut(Γ) = d−1⟨SL(2, 2t), L⟩d
for some L ≤ ⟨f⟩ as required. We thus assume that every connected orbital digraph of Aut(Γ) that
is a subdigraph of Γ has automorphism group contained in d−1ΣL(2, 2t)d for some scalar matrix
d ∈ Z. Suppose that Γ1, . . . ,Γw, w ≤ r are the connected orbital digraphs of Aut(Γ) that are
subdigraphs of Γ. Then by Theorem 4.7, Γi has automorphism group d−1⟨SL(2, 2t), Li⟩d where
Li ≤ ⟨f⟩. Then Aut(Γ) ≤ d−1⟨SL(2, 2t), L′⟩d where L′ = ∩w

i=1Li. Finally, let L be the subgroup
of L′ consisting of automorphisms of the subdigraph of Γ obtained by removing all edges between
elements of PG(1, 2t)/Dℓ. Then Aut(Γ) = d−1⟨SL(2, 2t), L⟩d and the result follows. □

We remark that the automorphism group of a Marušič-Scapellato digraph Γ can be calculated
quite quickly:

If Γ is nondegenerate and Aut(Γ) imprimitive, then one only needs to determine the subgroup
of d−1ΣL(2, 2t)d/Dℓ = ⟨SL(2, 2t), d−1fd⟩/Dℓ which is Aut(Γ). In particular, one only needs to
determine the maximal subgroup of d−1⟨f⟩d contained in Aut(Γ). This can easily be accomplished
as all such subgroups can be computed quickly. As F (x) = x2, f has order 2t, so there are t + 1
subgroups of ⟨f⟩ each determined by a generator of the form f2r , 0 ≤ r ≤ t. As Z/Dℓ has order at
most 2t, there are at most (t + 1)2t maps which need to be tested as elements of Aut(Γ) in order
to determine Aut(Γ).

If Γ is degenerate or Aut(Γ) is primitive, then this can be determined easily as the sets S and
T are given explicitly. Again, one only needs to determine d, and this can be done as above by
checking which d−1gd is contained in Aut(Γ).

5. Missing digraphs whose automorphism group is primitive

The first error in the literature is most probably simply an unfortunate typographical error. The
misprint occurs in [15, Table 3] for the groups PSL(2, q) of degree q(q2−1)/24 with point stabilizer
A4. In the “Comment” column, the paper literally lists “q ≡ +3 (mod 8), q ≤ 19”. Of course, as
written the “+” is entirely superfluous, but in reality it should be a “±”. Indeed, without the ±
the group PSL(2, 13) which has A4 as a maximal subgroup is not listed. The action of PSL(2, 13)
on right cosets of A4 is primitive of degree |PSL(2, 13)|/|A4| = 7 · 13. The authors thank Primož
Potočnik for pointing out this error.

Lemma 5.1. Let PSL(2, 13) act transitively on 7 · 13 points with point-stabilizer A4.
Then there are 3 self-paired orbitals of size 4 all of which are 2-arc-transitive. No other orbital

digraphs are 2-arc-transitive. Two of the graphs corresponding to these self-paired orbitals are
isomorphic with automorphism group PSL(2, 13). The graph corresponding to the union of these
orbitals is arc-transitive and has automorphism group PGL(2, 13). The graph corresponding to the
remaining orbital has automorphism group PGL(2, 13) and is arc-transitive.

There is 1 self-paired orbital of size 6 whose corresponding graph is arc-transitive and has auto-
morphism group PGL(2, 13).

There are 2 non self-paired orbitals of size 12 whose corresponding digraphs have automorphism
group PSL(2, 13), and whose union corresponds to an arc-transitive graph with automorphism group
PGL(2, 13).

There are 4 self-paired orbitals of size 12 that are all arc-transitive, two of which correspond
to graphs that are isomorphic with automorphism group PSL(2, 13). Their union corresponds to a
graph that has automorphism group PGL(2, 13) and is arc-transitive. The remaining two self-paired
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orbitals correspond to graphs that are non-isomorphic and have automorphism group PGL(2, 13)
and are arc-transitive.

Any other digraph of order 91 that contains PSL(2, 13) as a transitive subgroup and is not com-
plete or the complement of a complete graph is a union of the above digraphs and is not arc-
transitive. It will have automorphism group either PSL(2, 13) or PGL(2, 13), depending upon
whether or not it can be written as a union of graphs all of whose automorphism groups are
PGL(2, 13). If this is possible, then it has automorphism group PGL(2, 13); otherwise, its au-
tomorphism group will be PSL(2, 13).

Proof. The information about the orbital digraphs of PSL(2, 13), including whether or not they are
self-paired and their automorphism groups and whether they are 2-arc-transitive or arc-transitive,
was obtained using magma. So was information about the automorphism groups of unions of exactly
two orbital digraphs. It thus remains to determine the automorphism group of any other digraph
of order 91 that contains PSL(2, 13) and is not complete or its complement.

Let Γ be such a digraph. Then Aut(Γ) ̸= S91, and Aut(Γ) is 2-closed. There is only one
other socle of a primitive but not 2-transitive subgroup of S91, namely PSL(3, 9) by [5, Table B.2].
However, PSL(3, 9) contains no subgroup isomorphic to PSL(2, 13) by [2]. Thus soc(Aut(Γ)) =
PSL(2, 13) and so Aut(Γ) = PSL(2, 13) or PGL(2, 13). Clearly, if Γ can be written as a union of
graphs whose automorphism group is PGL(2, 13), then Aut(Γ) = PGL(2, 13). Otherwise, by the
first part of this lemma, Γ is a union of digraphs one of which has automorphism group PSL(2, 13)
but is not invariant under PGL(2, 13) and its different image under PGL(2, 13) is not a subdigraph
of Γ. Hence Aut(Γ) = PSL(2, 13). □

This leads to the next error in the literature, which is also mainly typographical. Namely,
in [24, Table II] the entries for PSL(2, p) require p ≥ 11 (this restriction is found in the last
paragraph of page 262). So the primes p = 5 and 7 were not considered. For p = 5, PSL(2, 5) is
2-transitive in its representation of degree 6, and so any digraph of order 6 whose automorphism
group contains PSL(2, 5) is necessarily complete or has no arcs and has automorphism group S6.
For PSL(2, 7) ∼= PSL(3, 2), we see from Theorem 3.1 that there are other digraphs that are not
graphs that are not listed in [24, Table II]. The error here is one of omission rather than a mistake
in the proof - in [24] the proofs are for vertex-transitive digraphs and graphs of order at least 5p
(see for example [24, Table IV]), p ≥ 7, as the case when p = 3 was already considered in [29] -
but [29] did not consider digraphs that were not graphs, and so these examples were overlooked
in [24, Table II].

The next error involves M23 in its actions on 11 · 23 points. There are two actions of M23 on
253 = 11 · 23 points. One is on pairs taken from a set of 23 elements, while the other is on the
heptads (sets of size 7) in the Steiner system S(4, 7, 23) [4]. The action on pairs gives M23 as a
transitive subgroup of Aut(T23), the triangle graph, whose automorphism group is S23, and this
graph is listed in the row corresponding to A23. The action of M23 on heptads was not considered
in [24].

Lemma 5.2. The action of M23 on heptads (sets of size 7) in the Steiner system S(4, 7, 23) of
degree 11 · 23 has two orbital digraphs which are graphs of valency 112 and 140. Both of these
graphs are Cayley graphs of the nonabelian group of order 11 · 23 and so are also isomorphic to
metacirculant graphs. Both graphs have automorphism group M23 and neither is 2-arc-transitive.

Proof. The action on heptads gives M23 as a transitive subgroup of Aut(M23). By [25] the suborbits
are of length 112 and 140, and by [4] there is a maximal subgroup H of M23 of order 253, and H is
isomorphic to the Frobenius group of order 253. By order arguments no element of H is contained
in the stabilizer of a heptad, and so H must be semiregular. By the Orbit-Stabilizer Theorem we
see that H is regular. As Sabidussi showed [26] that a graph is isomorphic to a Cayley graph of
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soc(G) qp Valency Cayley Reference
Aqp qp 0, qp− 1 Y

Ap
p(p−1)

2 2(p− 2), (p−2)(p−3)
2 Y* [24, 3.1]

Ap+1
p(p+1)

2 2(p− 1), (p−1)(p−2)
2 N† [24, 3.1]

A7 5 · 7 4, 12, 18 N [24, 3.2]
PSL(4, 2) 5 · 7 16, 18 N [24, 3.3]
PSL(5, 2) 5 · 31 42, 112 Y [24, 3.3]

Ω±(2d, 2) (2d ∓ 1)(2d ± 1) 22d−2, 2(2d−1 ∓ 1)(2d−2 ± 1) N [24, 3.4]

PSp(4, k) (k2 + 1)(k + 1) k2 + k, k3, k even N† [24, 3.5]

PSL(2, k2) k(k2 + 1)/2 k2 − 1, k
2−k
2 , k2 ± k, k ≡ 1 (mod 4) N [24, 4.1]

PSL(2, k2) k(k2 + 1)/2 k2 − 1, k
2+k
2 , k2 ± k, k ≡ 3 (mod 4) N [24, 4.1]

PSL(2, p) p(p∓1)
2

p±1
2 , p± 1, or Y** [24, 4.4]

p±1
4 or 2(p− 1)

G = PGL(2, 7) 3 · 7 4, 8 Y [29, Example 2.3]
G = PGL(2, 11) 5 · 11 4, 6, 8, 12, 24 Y [23, 4.3]

PSL(2, 13) 7 · 13 4, 6, 12, 24 N Lemma 5.1
PSL(2, 19) 3 · 19 6, 20, 30 Y [23, 4.2]
PSL(2, 23) 11 · 23 4, 6, 8, 12, 24 Y [23, 4.3]

PSL(2, 29) 7 · 29 12, 20, 30, 60 N# [23, 4.2]
PSL(2, 59) 29 · 59 6, 10, 12, 20, 30, 60 Y [23, 4.2]
PSL(2, 61) 31 · 61 6, 10, 12, 20, 30, 60 N [23, 4.2]

M22 7 · 11 16, 60 N [23, 3.6]
M23 11 · 23 112, 140 Y Lemma 5.2
Table 1. The graphs of order pq with primitive automorphism groups. Bold font
indicates the corresponding graph is 2-arc-transitive.

the group G if and only if it contains a regular subgroup isomorphic to G, each of the two orbital
graphs of M23 are Cayley graphs. As every Cayley graph of order qp is a metacirculant graph,
these two graphs are also metacirculant.

Turning to the automorphism groups of the two orbital digraphs Γ1 and Γ2 of M23, they are
complements of each other and so Aut(Γ1) = Aut(Γ2). Also, with respect to the 2-closure of
this action of M23 (which can be defined as the intersection of the automorphism groups of its

orbital digraphs), we have M
(2)
23 = Aut(Γ1) ∩ Aut(Γ2) = Aut(Γ1). By [14, Theorem 1] we have

M23◁Aut(Γ1). By [5, Table B.2] we have Aut(Γ1) = M23.
Finally, in order to be 2-arc-transitive, d(d− 1) must divide the order of the stabilizer of a point

in M23 where d is the valency of Γ1 or Γ2, and this stabilizer has order 27 · 32 · 5 · 7. So neither Γ1

nor Γ2 is 2-arc-transitive. □

Theorem 5.3. Let Γ be an arc-transitive graph of order qp, where q and p are distinct primes,
whose automorphism group G is simply primitive. Then soc(G) is given in Table 1. There is
a boldface entry in the column “Valency” if and only if there is a 2-arc-transitive graph of that
valency. The superscipt symbols in the table have the following meanings:

• ∗ means p ≥ 7,
• † means that these graphs are also Marušič-Scapellato graphs but in the case of Ap+1 this
is only true for A6,

16



• ∗∗ means these graphs are Cayley if and only if p ≡ 3 (mod 4),
• # means that these graphs are metacirculant graphs which are not Cayley graphs.

Proof. Most of the information in the Table 1 is taken directly from the sources in the column
“Reference”, with the following exceptions. First, information about 2-arc-transitive graphs not
given in Lemma 5.1 or 5.2 can be found in [22]. That the generalized orbital digraphs of PSL(2, 29)
are metacirculants is proven in [17, pg. 192, paragraph 3]. The vertex-transitive graphs of order
pq with primitive automorphism group that are also isomorphic to nontrivial Marušič-Scapellato
graphs are determine in [17] starting at the bottom of page 192. □

There is one final gap in the information about automorphism groups of vertex-transitive digraphs
of order qp that we are aware of. Namely, what are the automorphism groups of such a digraph
when it is not a graph and its automorphism group is primitive?

Theorem 5.4. Let Γ be a vertex-transitive digraph of order qp such that Γ is not a graph and
Aut(Γ) is primitive with socle G. Let H be the stabilizer of a point in G. Then one of the following
is true:

(1) qp = 7 · 13 or 11 · 23, G ∼= PSL(2, 13) or PSL(2, 23), respectively, and H ∼= S4,
(2) qp = 29 · 59 or 31 · 61, G ∼= PSL(2, 59) or PSL(2, 61), respectively, and H ∼= A5, or
(3) qp = p(p± 1)/2, G ∼= PSL(2, p), and H ∼= Dp∓1.

Furthermore, in all cases Aut(Γ) = G.

Proof. Let Γ satisfy the hypothesis of the result. As Γ is a digraph, Γ must contain the arc set of
an orbital digraph of G which is not a graph. Checking the cases considered in [24] where qp satisfy
q < p and q ≥ 5, we see that the only groups with orbital digraphs which are not graphs are given
in [24, Lemmas 4.2, 4.3, 4.4], and are listed in the result. There are the additional digraphs given
in Lemma 5.1 as well as in [29, Example 2.3]. These are all the possible socles of Aut(Γ). It only
remains to show that in all cases we have that Aut(Γ) = G.

The case where G = PSL(2, 13) follows from Lemma 5.1. For G = PSL(2, p) with point stabilizer
Dp∓1, we have by [24, Lemma 4.4] that every orbital digraph of PGL(2, p) is a graph. As the only
possibility for Aut(Γ) other than G is PGL(2, p), the result follows. In all of the remaining cases,
suppose γ ∈ Aut(Γ). Then γ normalizes G. By [11, Exercise 1.4.16], we see that γ permutes the
orbital digraphs of G. By [24, Lemmas 4.3 (b) and 4.4 (b)], we see that the orbital digraphs of G
are pairwise non-isomorphic and have automorphism group G. Hence γ fixes each orbital digraph
of G, and so γ is an automorphism of each orbital digraph of G whose arc set is contained in the
arc set of Γ. Hence γ ∈ G. □

6. Other errors in the literature

To conclude this paper, we list the errors that we are aware in the literature that follow from
the errors above and that are not in the original papers where the error was made.

• The statement of [8, Theorem 2.5] is missing the graphs given in Theorem 3.1 with imprim-
itive automorphism group PSL(2, 11). This result is only used to discuss graphs of order
21, and so this error does not affect any results proven in the paper.

• The result [30, Proposition 2.5] does not list the arc-transitive graphs of valency 4 given by
Lemma 5.1. Consequently, [30, Lemma 3.4] has a small gap which can be filled using GAP
or magma.

• The result [22, Proposition 4.2] is missing the 2-arc-transitive graphs of valency 4 given by
Lemma 5.1.

• The result [6, Corollary 3.3, Table 1] is missing the graphs given by Lemmas 5.1 and 5.2.
Additionally, [6, Theorem 3.2] and [6, Corollary 3.3] are missing the group PSL(2, 11) in its
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imprimitive action action on 55 points. Finally, [6, Theorem 4.1(3)] is missing these same
graphs.

The result from [6, Theorem 3.2(1)] could be strengthened to digraphs by including the
digraphs with simple and imprimitive automorphism groups.

• The result [13, Theorem] does not consider the action of PSL(2, 13) given in Lemma 5.1
nor the action of M23 given in Lemma 5.2.
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