1. (Page 163: \# 4.77) Determine whether or not W is a subspace of \mathbb{R}^{3} such that:
(a) $a=3 b$, (b) $a \leq b \leq c$, (c) $a b=0$, (d) $a+b+c=0$, (e) $b=a^{2}$, (f) $a=2 b=3 c$.

Solution (a) Since $0=3(0)$ we have $(0,0,0) \in W$.
If $\left(a_{1}, b_{1}, c_{1}\right) \in W$ and $\left(a_{2}, b_{2}, c_{2}\right) \in W$ we have $a_{1}=3 b_{1}$ and $a_{2}=3 b_{2}$, so $a_{1}+a_{2}=3\left(b_{1}+b_{2}\right)$, thus $\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) \in W$.
If $(a, b, c) \in W$ and $k \in \mathbb{R}$, we have $a=3 b$ and so $k a=3(k b)$. Thus $k(a, b, c) \in W$. Therefore by Theorem $4.2 W$ is a subspace of \mathbb{R}^{3}.
(b) $(1,2,3) \in W$ however $-1(1,2,3)=(-1,-2,-3) \notin W$, so W is not closed under scalar multiplication and so it is not a subspace of \mathbb{R}^{3}.
(c) $(0,1,1) \in W$ and $(1,0,0) \in W$, however $(0,1,1)+(1,0,0)=(1,1,1) \notin W$, so W is not closed under addition and thus it is not a subspace of \mathbb{R}^{3}.
(d) Since $0+0+0=0$ we have $(0,0,0) \in W$.

If $\left(a_{1}, b_{1}, c_{1}\right) \in W$ and $\left(a_{2}, b_{2}, c_{2}\right) \in W$ we have $a_{1}+b_{1}+c_{1}=0$ and $a_{2}+b_{2}+c_{2}=0$, so $\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)+\left(c_{1}+c_{2}\right)=0$. This shows that $\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) \in W$. If $(a, b, c) \in W$ and $k \in \mathbb{R}$, we have $a+b+c=0$ and so $k a+k b+k c=0$. Thus $k(a, b, c) \in W$.
Therefore by Theorem $4.2 W$ is a subspace of \mathbb{R}^{3}.
(e) $(1,1,0) \in W$, however $2(1,1,0)=(2,2,0) \notin W$, so W is not closed under scalar multiplication and so it is not a subspace of \mathbb{R}^{3}.
(f) Since $0=2(0)=3(0)$ we have $(0,0,0) \in W$.

If $\left(a_{1}, b_{1}, c_{1}\right) \in W$ and $\left(a_{2}, b_{2}, c_{2}\right) \in W$ we have $a_{1}=2\left(b_{1}\right)=3\left(c_{1}\right)$ and $a_{2}=$ $2\left(b_{2}\right)=3\left(c_{2}\right)$, so $\left(a_{1}+a_{2}\right)=2\left(b_{1}+b_{2}\right)=3\left(c_{1}+c_{2}\right)$. This shows that $\left(a_{1}+a_{2}, b_{1}+\right.$ $\left.b_{2}, c_{1}+c_{2}\right) \in W$.
If $(a, b, c) \in W$ and $k \in \mathbb{R}$, we have $a=2 b=3 c$ and so $k a=2 k b=3 k c$. Thus $k(a, b, c) \in W$.
Therefore by Theorem $4.2 W$ is a subspace of \mathbb{R}^{3}.
2. (Page 163: \# 4.78) Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of V if W consists of all matrices $A=\left[a_{i j}\right]$ that are
(a) symmetric $\left(A^{T}=A\right.$ or $\left.a_{i j}=a_{j i}\right)$, (b) (upper) triangular, (c) diagonal, (d) scalar.
Solution (a) Since $0^{T}=0$ we have $0 \in W$.
If $A \in W$ and $B \in W$ we have $A^{T}=A$ and $B^{T}=B$, so $(A+B)^{T}=A^{T}+B^{T}=$ $A+B$. This shows that $A+B \in W$.
If $A \in W$ and $k \in K$, we have $A^{T}=A$ and so $(k A)^{T}=k A^{T}=k A$. Thus $k A \in W$.
Therefore by Theorem 4.2 W is a subspace of V.
(b) Recall that a square matrix $A=\left[a_{i j}\right]$ is upper triangular if $a_{i j}=0$ for $i>j$.

Since 0 is upper triangular we have $0 \in W$.
If $A=\left[a_{i j}\right] \in W$ and $B=\left[b_{i j}\right] \in W$ we have $a_{i j}=b_{i j}=0$ for $i>j$, so $a_{i j}+b_{i j}=0$ for $i>j$. This shows that $A+B$ is upper triangular and so $A+B \in W$.
If $A=\left[a_{i j}\right] \in W$ and $k \in K$, we have $a_{i j}=0$ for $i>j$ and so $k a_{i j}=0$ for $i>j$. Thus $k A$ is upper triangular and so $k A \in W$.

Therefore by Theorem 4.2 W is a subspace of V.
(c) Recall that a square matrix $A=\left[a_{i j}\right]$ is diagonal if $a_{i j}=0$ for $i \neq j$.

Since 0 is diagonal we have $0 \in W$.
If $A=\left[a_{i j}\right] \in W$ and $B=\left[b_{i j}\right] \in W$ we have $a_{i j}=b_{i j}=0$ for $i \neq j$, so $a_{i j}+b_{i j}=0$ for $i \neq j$. This shows that $A+B$ is diagonal and so $A+B \in W$.
If $A=\left[a_{i j}\right] \in W$ and $k \in K$, we have $a_{i j}=0$ for $i \neq j$ and so $k a_{i j}=0$ for $i \neq j$. Thus $k A$ is diagonal and so $k A \in W$.

Therefore by Theorem $4.2 W$ is a subspace of V.
(d) Recall that a diagonal matrix $A=\left[a_{i j}\right]$ is called scalar if $a_{i i}=a$ for fixed $a \in K$.

Since 0 is an scalar matrix we have $0 \in W$.
If $A=\left[a_{i j}\right] \in W$ and $B=\left[b_{i j}\right] \in W$ we have $a_{i j}=b_{i j}=0$ for $i \neq j, a_{i i}=a$, and $b_{i i}=b$, so $a_{i j}+b_{i j}=0$ for $i \neq j$ and $a_{i i}+b_{i i}=a+b$. This shows that $A+B$ is an scalar matrix and so $A+B \in W$.

If $A=\left[a_{i j}\right] \in W$ and $k \in K$, we have $a_{i j}=0$ for $i \neq j$ and $a_{i i}=a$, so $k a_{i j}=0$ for $i \neq j$, and $k a_{i i}=k a$. Thus $k A$ is an scalar matrix and so $k A \in W$.
Therefore by Theorem $4.2 W$ is a subspace of V.
3. (Page 163: \# 4.79) Let $A X=B$ be a nonhomogeneous system of linear equations in n unknowns, that is, $B \neq 0$. Show that the solution set is not a subspace of K^{n}.
Solution Let X_{1} and X_{2} be two solutions of $A X=B$. We have $A X_{1}=B$ and $A X_{2}=B$ and so $A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2}=B+B=2 B \neq B$. (Since $B \neq 0$ we have $B \neq 2 B$.) So $X_{1}+X_{2}$ is not a solution of $A X=B$, thus the solution set of $A X=B$ is not closed under addition and so it is not a subspace of K^{n}.
4. (Page 163: \# 4.80) Suppose U and W are subspaces of V for which $U \cup W$ is a subspace. Show that $U \subseteq W$ or $W \subseteq U$.
Solution Suppose that $U \cup W$ is a subspace of V but $U \nsubseteq W$ and $W \nsubseteq U$. Since $U \nsubseteq W$ then there is $x \in U$ such that $x \notin W$. Similarly since $W \nsubseteq U$ there is $y \in W$ such that $y \notin U$.
We now consider $x+y$. Since $U \cup W$ is a subspace we have $x+y \in U \cup W$. Now $x+y \in U$ or $x+y \in W$. We show that both cases result in contradictions. If $x+y \in W$, then $x=(x+y)-y \in W$ which is a contradiction since $x \notin W$. Similarly if $x+y \in U$, then $y=(x+y)-x \in U$ which is again a contradiction since $y \notin U$.
The contradiction shows that either $U \subseteq W$ or $W \subseteq U$.

