1. (Page 157: \# 4.85) Find one vector in \mathbb{R}^{3} that spans the intersection of U and W where U is the $x-y$ plane - that is, $U=\left\{(a, b, 0)^{T} \mid a, b \in \mathbb{R}\right\}$ - and W is spanned by the vectors $(1,1,1)^{T}$ and $(1,2,3)^{T}$.
Solution Note that

$$
W=\left\{\left.\alpha\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\beta\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

Now note that an element of U has its third coordinate equal to 0 . Thus an element of $U \cap W$ has the form

$$
\alpha\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\beta\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
\alpha+\beta \\
\alpha+2 \beta \\
\alpha+3 \beta
\end{array}\right)
$$

with the additional constraint

$$
\alpha+3 \beta=0 \text { or } \alpha=-3 \beta .
$$

Therefore such a vector would be of the form

$$
(-3 \beta)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\beta\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\beta\left(\begin{array}{l}
-3+1 \\
-3+2 \\
-3+3
\end{array}\right)=\beta\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)
$$

with $\beta \in \mathbb{R}$. Thus $U \cap W$ is spanned by $\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)$ and

$$
U \cap W=\operatorname{span}\left\{\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)\right\} .
$$

2. (Page 157: \# 4.86) Prove that $\operatorname{span}(S)$ is the intersection of all subspaces of V containing S.
Solution By Theorem 4.5(ii) we know that if W is a subspace of W and $S \subseteq W$ then $\operatorname{span}(S) \subseteq W$. It follows that S is contained in the intersection of all vector spaces containing S. Or in symbols

$$
\operatorname{span}(S) \subseteq \bigcap_{W \text { a subspace of } \mathrm{V}}^{S \subseteq W} \mid
$$

On the other hand, let

$$
\vec{x} \in \bigcap_{W \text { a subspace of } \mathrm{V}}^{\substack{ \\W}} \mid W .
$$

This says that \vec{x} is contained in each subspace of V containing S. But $\operatorname{span}(S)$ is one of these subspaces. Therefore

$$
\vec{x} \in \operatorname{span}(S)
$$

It follows that

$$
\bigcap_{W \text { a subspace of } \mathrm{V}}^{S \subseteq W} \mid ~ W \subseteq \operatorname{span}(S)
$$

and hence

$$
\operatorname{span}(S)=\bigcap_{W \text { a subspace of } \mathrm{V}}^{S \subseteq W} \mid
$$

3. (Page 157: \# 4.87) Show that $\operatorname{span}(S)=\operatorname{span}(S \cup\{0\})$. That is by joining or deleting the zero vector from a set, we do not change the space spanned by the set.

Solution Let $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ and $\vec{v} \in \operatorname{span}(S)$. So there are scalars a_{1}, \cdots, a_{n} such that

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n} .
$$

It is clear that

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}+b \overrightarrow{0}
$$

This shows that $\vec{v} \in \operatorname{span}(S \cup\{0\})$. In other words $\operatorname{span}(S) \subseteq \operatorname{span}(S \cup\{\overrightarrow{0}\})$.
Now suppose that $\vec{v} \in \operatorname{span}(S \cup\{\overrightarrow{0}\})$, so there are scalars a_{1}, \cdots, a_{n}, and b such that

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}+b \overrightarrow{0}
$$

So

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}
$$

This shows that $\vec{v} \in \operatorname{span}(S)$. In other words $\operatorname{span}(S \cup\{\overrightarrow{0}\}) \subseteq \operatorname{span}(S)$.
From the previous two paragraphs we have $\operatorname{span}(S)=\operatorname{span}(S \cup\{0\})$.
4. (Page 157: \# 4.88(a)) Show that if $S \subseteq T$, then $\operatorname{span}(S) \subseteq \operatorname{span}(T)$.

Solution Let $|S|=n$ and $|T|=n+j$ where $n \in \mathbb{N}$ and $j \geq 0$. We have

$$
S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}
$$

and

$$
T=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}, \vec{w}_{1}, \ldots, \vec{w}_{j}\right\}
$$

since $S \subseteq T$. Suppose $\vec{x} \in \operatorname{span}(S)$. Then there exist field elements a_{1}, \ldots, a_{n} such that

$$
\vec{x}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}
$$

But this clearly also equals

$$
\vec{x}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}+0 \vec{w}_{1}+\cdots+0 \vec{w}_{j}
$$

By definition $\vec{x} \in \operatorname{span}(T)$.
5. (Page 158: \# 4.104(b),(c))Find the rank of each of the following matrices:

$$
B=\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
1 & 3 & -2 & 0 \\
3 & 8 & -7 & -2 \\
2 & 1 & -9 & -10
\end{array}\right], C=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution (b) We apply the row operations $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$, $R_{4} \rightarrow R_{4}-2 R_{1}$:

$$
\begin{gathered}
B \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 1 & 2 \\
0 & 2 & 2 & 4 \\
0 & -3 & -3 & 6
\end{array}\right] . \\
R_{3} \rightarrow R_{3}-2 R_{2}, R_{4} \rightarrow R_{4}+3 R_{2} \\
B \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

This last matrix has 2 pivots and thus the rank of B is 2 .
(c) We apply the row operations $R_{2} \rightarrow R_{2}-4 R_{1}, R_{3} \rightarrow R_{3}-5 R_{1}, R_{4} \rightarrow R_{4}+R_{1}$.

$$
\begin{aligned}
& C \sim\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -3 \\
0 & 3 & -9 \\
0 & -1 & 4
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-3 R_{2}, R_{4} \rightarrow R_{4}+R_{2} \\
& C \sim\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{3} \leftrightarrow R_{4} \\
& C \sim\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

So the rank of the matrix is 3 .
6. (Page 166: \# 4.107) Determine which of the following matrices have the same row space:

$$
A=\left[\begin{array}{ccc}
1 & -2 & -1 \\
3 & -4 & 5
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & -1
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & -1 & 10 \\
3 & -5 & 1
\end{array}\right] .
$$

Solution Two matrices have the same row space if and only if they have the same non-zero rows in their reduced echelon forms.
We now row reduce the matrices beginning with A :

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-3 R_{1} \\
& A \sim\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 2 & 8
\end{array}\right] \\
& R_{2} \rightarrow R_{2} / 2 \\
& A \sim\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 4
\end{array}\right]
\end{aligned}
$$

$R_{1} \rightarrow R_{1}+2 R_{2}$

$$
A \sim\left[\begin{array}{lll}
1 & 0 & 7 \\
0 & 1 & 4
\end{array}\right]
$$

Row reduction of B :
$R_{2} \rightarrow R_{2}-2 R_{1}$

$$
\begin{aligned}
& B \sim\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 5 & -5
\end{array}\right] \\
& R_{2} \rightarrow R_{2} / 5 \\
& B \sim\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -1
\end{array}\right] \\
& R_{1} \rightarrow R_{1}+R_{2} \\
& B \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Row reduction of $C: R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$

$$
C \sim\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & 4 \\
0 & -2 & -8
\end{array}\right]
$$

$$
R_{3} \rightarrow R_{3}+2 R_{2}
$$

$$
C \sim\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

$R_{1} \rightarrow R_{1}+R_{2}$

$$
C \sim\left[\begin{array}{lll}
1 & 0 & 7 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

The reduced echelon form of A, B, and C are respectively

$$
\left[\begin{array}{ccc}
1 & 0 & 7 \\
0 & 1 & 4
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 0 & 7 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

So A and C the have the same row space, and the row spaces of A and B are different.
7. (Page 159: \# 4.111) Show that if any row is deleted from a matrix in echelon (repectively,row canonical) form, then the resulting matrix is still in echelon (respectively, row canonical) form.
Solution We prove this in the second case (row canonical form).
Let A be an $m \times n$ matrix with rows $\vec{R}_{1}, \ldots, \vec{R}_{m}$. That is

$$
A=\left[\begin{array}{c}
-\vec{R}_{1}- \\
-\vec{R}_{2}- \\
\vdots \\
-\vec{R}_{m}-
\end{array}\right]
$$

Suppose we remove the i-th row \vec{R}_{i} with $1 \leq i \leq m$. Note that the pivot in \vec{R}_{i} (if there is one) is to the right of the pivot in $\overline{\vec{R}}_{i-1}$ and the pivot in \vec{R}_{i+1} (if there is one) is to the right of the one in \vec{R}_{i}. Therefore the pivot in \vec{R}_{i+1} must be to the right of the one in \vec{R}_{i-1}.
Let j denote the index of one of the other non-zero rows (i.e $j \neq i$). If $j<i$ it is clear that there are there are only zeros above the pivot. If $j>i$ it is also clear that there are only zeros above the pivot. (Removing the i-th row does not change this fact.)
Thus the matrix formed from removing \vec{R}_{i} is still in row canonical form.

