Solutions to Homework 4 - Math 3410

1. (Page 157: # 4.85) Find one vector in \mathbb{R}^3 that spans the intersection of U and W where U is the x - y plane - that is, $U = \{(a, b, 0)^T \mid a, b \in \mathbb{R}\}$ - and W is spanned by the vectors $(1, 1, 1)^T$ and $(1, 2, 3)^T$.

Solution Note that

$$W = \{ \alpha \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \beta \begin{pmatrix} 1\\2\\3 \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \}$$

Now note that an element of U has its third coordinate equal to 0. Thus an element of $U \cap W$ has the form

$$\alpha \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \beta \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} \alpha + \beta\\\alpha + 2\beta\\\alpha + 3\beta \end{pmatrix}$$

with the additional constraint

$$\alpha + 3\beta = 0$$
 or $\alpha = -3\beta$.

Therefore such a vector would be of the form

$$(-3\beta)\begin{pmatrix}1\\1\\1\end{pmatrix}+\beta\begin{pmatrix}1\\2\\3\end{pmatrix}=\beta\begin{pmatrix}-3+1\\-3+2\\-3+3\end{pmatrix}=\beta\begin{pmatrix}-2\\-1\\0\end{pmatrix}$$

with $\beta \in \mathbb{R}$. Thus $U \cap W$ is spanned by $\begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$ and

$$U \cap W = \operatorname{span}\left\{ \begin{pmatrix} -2\\ -1\\ 0 \end{pmatrix} \right\}.$$

2. (Page 157: # 4.86) Prove that span(S) is the intersection of all subspaces of V containing S.

Solution By Theorem 4.5(ii) we know that if W is a subspace of W and $S \subseteq W$ then span $(S) \subseteq W$. It follows that S is contained in the intersection of all vector spaces containing S. Or in symbols

$$\operatorname{span}(S) \subseteq \bigcap_{\substack{W \text{ a subspace of } V\\S \subseteq W}} W$$

On the other hand, let

$$\vec{x} \in \bigcap_{\substack{W \text{ a subspace of V}\\S \subset W}} W.$$

This says that \vec{x} is contained in each subspace of V containing S. But span(S) is one of these subspaces. Therefore

$$\vec{x} \in \operatorname{span}(S).$$

It follows that

$$\bigcap_{\substack{W \text{ a subspace of } V\\S \subseteq W}} W \subseteq \operatorname{span}(S)$$

and hence

$$\operatorname{span}(S) = \bigcap_{\substack{W \text{ a subspace of V}\\S \subset W}} W$$

3. (Page 157: # 4.87) Show that $\operatorname{span}(S) = \operatorname{span}(S \cup \{0\})$. That is by joining or deleting the zero vector from a set, we do not change the space spanned by the set.

Solution Let $S = {\vec{v_1}, \dots, \vec{v_n}}$ and $\vec{v} \in \text{span}(S)$. So there are scalars a_1, \dots, a_n such that

 $\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n.$

It is clear that

$$\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n + b \vec{0}.$$

This shows that $\vec{v} \in \text{span}(S \cup \{0\})$. In other words $\text{span}(S) \subseteq \text{span}(S \cup \{\vec{0}\})$. Now suppose that $\vec{v} \in \text{span}(S \cup \{\vec{0}\})$, so there are scalars a_1, \dots, a_n , and b such that

 $\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n + b \vec{0}.$

So

 $\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n.$

This shows that $\vec{v} \in \operatorname{span}(S)$. In other words $\operatorname{span}(S \cup \{\vec{0}\}) \subseteq \operatorname{span}(S)$. From the previous two paragraphs we have $\operatorname{span}(S) = \operatorname{span}(S \cup \{0\})$.

4. (Page 157: # 4.88(a)) Show that if $S \subseteq T$, then span $(S) \subseteq$ span(T). Solution Let |S| = n and |T| = n + j where $n \in \mathbb{N}$ and $j \ge 0$. We have

$$S = \{\vec{v}_1, \dots, \vec{v}_n\}$$

and

$$T = \{\vec{v}_1, \dots, \vec{v}_n, \vec{w}_1, \dots, \vec{w}_j\}$$

since $S \subseteq T$. Suppose $\vec{x} \in \text{span}(S)$. Then there exist field elements a_1, \ldots, a_n such that

 $\vec{x} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n.$

But this clearly also equals

$$\vec{x} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n + 0 \vec{w}_1 + \dots + 0 \vec{w}_j.$$

By definition $\vec{x} \in \operatorname{span}(T)$.

5. (Page 158: # 4.104(b),(c))Find the rank of each of the following matrices:

$$B = \begin{bmatrix} 1 & 2 & -3 & 2 \\ 1 & 3 & -2 & 0 \\ 3 & 8 & -7 & -2 \\ 2 & 1 & -9 & -10 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution (b) We apply the row operations $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - 3R_1$, $R_4 \rightarrow R_4 - 2R_1$:

$$B \sim \begin{bmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 4 \\ 0 & -3 & -3 & 6 \end{bmatrix}.$$
$$R_3 \rightarrow R_3 - 2R_2, R_4 \rightarrow R_4 + 3R_2$$
$$B \sim \begin{bmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

This last matrix has 2 pivots and thus the rank of B is 2.

(c) We apply the row operations $R_2 \rightarrow R_2 - 4R_1$, $R_3 \rightarrow R_3 - 5R_1$, $R_4 \rightarrow R_4 + R_1$.

$$C \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 3 & -9 \\ 0 & -1 & 4 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - 3R_2, R_4 \rightarrow R_4 + R_2$$

$$C \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_3 \leftrightarrow R_4$$

$$C \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} ..$$

So the rank of the matrix is 3.

6. (Page 166: # 4.107) Determine which of the following matrices have the same row space:

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & -4 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 & 3 \\ 2 & -1 & 10 \\ 3 & -5 & 1 \end{bmatrix}.$$

Solution Two matrices have the same row space if and only if they have the same non-zero rows in their reduced echelon forms.

We now row reduce the matrices beginning with A: $R_2 \rightarrow R_2 - 3R_1$

$$A \sim \begin{bmatrix} 1 & -2 & -1 \\ 0 & 2 & 8 \end{bmatrix}$$
$$R_2 \rightarrow R_2/2$$
$$A \sim \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

$$R_1 \to R_1 + 2R_2$$
$$A \sim \begin{bmatrix} 1 & 0 & 7\\ 0 & 1 & 4 \end{bmatrix}$$
Row reduction of B:

 $R_{2} \to R_{2} - 2R_{1}$ $B \sim \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & -5 \end{bmatrix}$ $R_{2} \to R_{2}/5$ $B \sim \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix}$ $R_{1} \to R_{1} + R_{2}$ $B \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Row reduction of C: $R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1$

$$C \sim \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & 4 \\ 0 & -2 & -8 \end{bmatrix}.$$

$$R_3 \rightarrow R_3 + 2R_2$$

$$C \sim \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$R_1 \rightarrow R_1 + R_2$$

$$C \sim \begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

The reduced echelon form of A, B, and C are respectively

Γ1	0	7]	Γ1	0	1]	1	[1	0	7]
	1	' , ,		1	1	,	0	1	4	.
[0	1	4]		T	-1		0	0	0	

So A and C the have the same row space, and the row spaces of A and B are different.

7. (Page 159: # 4.111) Show that if any row is deleted from a matrix in echelon (repectively,row canonical) form, then the resulting matrix is still in echelon (respectively, row canonical) form.

Solution We prove this in the second case (row canonical form).

Let A be an $m \times n$ matrix with rows $\vec{R}_1, \ldots, \vec{R}_m$. That is

$$A = \begin{bmatrix} -\vec{R}_1 - \\ -\vec{R}_2 - \\ \vdots \\ -\vec{R}_m - \end{bmatrix}$$

Suppose we remove the *i*-th row $\vec{R_i}$ with $1 \leq i \leq m$. Note that the pivot in $\vec{R_i}$ (if there is one) is to the right of the pivot in $\vec{R_{i-1}}$ and the pivot in $\vec{R_{i+1}}$ (if there is one) is to the right of the one in $\vec{R_i}$. Therefore the pivot in $\vec{R_{i+1}}$ must be to the right of the one in $\vec{R_{i-1}}$.

Let j denote the index of one of the other non-zero rows (i.e $j \neq i$). If j < i it is clear that there are there are only zeros above the pivot. If j > i it is also clear that there are only zeros above the pivot. (Removing the *i*-th row does not change this fact.)

Thus the matrix formed from removing \vec{R}_i is still in row canonical form.