
A Compact-Trie-Based Structure for k-Nearest Neighbour Searching

Peng Gong

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, Alberta
T1K 3M4 Canada

Email: peng.gong@uleth.ca

Wendy Osborn

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, Alberta
T1K 3M4 Canada

Email: wendy.osborn@uleth.ca

Abstract—This paper proposes a k-nearest neighbour search
method inspired by grid space partitioning and the compact-
trie structure. A compact trie structure, and a k-nearest neigh-
bour search strategy are presented. Then, a k-nearest neigh-
bour search performance comparison is carried out against two
well-known methods, using one million two-dimensional spatial
points and finding up to 1000 nearest neighbours. The results of
the comparison shows that the proposed compact-trie method
can perform up to 300 times better when k is small, and up to
25 times better for larger k values, suggesting that the proposed
method is suitable for low dimensions and location-dependent
spatial queries in applications such as mobile computing.

Keywords-nearest neighbour search; location-based services;
compact trie; performance

I. INTRODUCTION

Along with the popularity of smartphones is the rise of

mobile computing. Location-aware mobile devices demand

location-dependent services. The location-dependent spatial

query is one such service that draws intensive research [1].

A spatial query is a query supported by a spatial database

[2]. A spatial database is a database organized to store

spatial data and optimized to facilitate spatial query pro-

cessing. Spatial data, which represent objects in space, can

be as simple as spatial points in arbitrary dimensions. For

example, spatial data can be (Longitude, Latitude) pairs,

representing points of interest (POIs) on a two-dimensional

map. All POIs can be organized in a spatial database, and

used to answer spatial queries.

Different types of spatial queries exist. One type of spatial

query is the nearest neighbour search. The nearest neighbour

search is defined as: given a set of points P in an n-

dimensional space S and a metric to determine the distance

between any two points in S, how to efficiently find the point

in P which is nearest to an arbitrarily given query point q

in S [3]. For example, a user may use their mobile device

to locate the nearest POI, such as a restaurant or pub, based

on their current location which serves as the query point.

A generalization of nearest neighbour search is the k-

nearest neighbour search in which k points in set P nearest

to an arbitrarily given query point q in S are found, where

k can be 1, 2, ... up to P .

Several approaches for efficiently finding nearest neigh-

bours to a query point have been proposed [4]–[11]. How-

ever, all require the creation of some type of spatial access

method (e.g. k-d tree or the R-tree), which adds significant

overhead in space requirements. The compact trie [12] is a

more compact structure for storing information. Although

traditionally used for indexing strings, they can be applied

to a string representation of (Longitude, Latitude) co-

ordinate data as well, which can result in good performance

with lower space requirements.

Therefore, we propose a k-nearest neighbour search

method, which is inspired by grid space partitioning and

the compact trie structure. The current implementation of

this method adopts an array-based data structure and a

best-first nearest neighbour search scheme. Although it is

currently limited to two-dimensional data, the result of the

k-nearest neighbour search performance comparison shows

significant improvement over both the brute-force based

search method, and the benchmark k-d Tree search method.

Because many location-dependent mobile services utilize

two-dimensional geographic data, the proposed method may

be particularly suitable for nearest-neighbour based location-

dependent spatial queries in mobile computing.

The remainder of this paper proceeds as follows. Section

II summarizes some related work in the area of k-nearest

neighbour searching (in particular, approaches that utilize

an index), and some background on the compact trie that

is utilized in our work. Section III presents our compact-

trie approach to k-nearest neighbour searching. Section IV

presents the framework and results of the search perfor-

mance evaluation. Finally, Section V concludes the paper

and gives future research directions.

II. RELATED WORK

In this section, we summarize existing strategies for k-

nearest neighbour search. We also summarize the compact

trie that we utilize in our work.

A. k-nearest neighbour approaches

Nearest neighbour approaches can be classified into struc-

tureless and structured approaches. Structureless approaches

2017 IEEE 31st International Conference on Advanced Information Networking and Applications

1550-445X/17 $31.00 © 2017 IEEE

DOI 10.1109/AINA.2017.30

578

do not maintain a data structure to be utilized in the search.

The most straightforward structureless approach is a Brute-

force approach. Here, the distances between query point q
and all points in set P are calculated first, before processing

P to find the k-nearest neighbours. A list of k-nearest neigh-

bours is kept, with a new nearest neighbour being inserted

into the proper place. Although the space complexity is low,

inserting into the list of nearest neighbours can be costly for

higher values of k.

Structured approaches, on the other hand, utilize some

type of data structure to improve performance, at the

possible expense of both space complexity and the cost

of constructing the index [4]–[11]. Burkhard and Keller

[4] proposed three data structures for nearest neighbour

search, which are equivalent to multi-way trees. Fukunaga

[5] employed recursive decomposition of a search space

and applied a branch-and-bound methodology to create the

resulting search data structure. The core of the branch-

and-bound methodology is that while systematically ac-

cessing and evaluating all candidate data, subsets of data

are eliminated as early and often as possible, according

to the continuously optimized bound(s) derived during the

evaluation.

The first nearest neighbour search algorithm proposed for

the k-d tree was proposed by Friedman et al. [6]. Sproull [7]

improved upon this approach by noting that since Euclidean

distance calculations are invariant under rotation, the planes

that partition space along a particular dimension in the k-

d tree can actually be arbitrary k-dimensional hyperplanes.

Although these may lead to an improved partitioning of

space, Sproull identifies the following limitations: 1) the

additional cost of computing the distance between a point

and an arbitrary hyperplane, and 2) choosing an arbitrary

partition hyperplane perpendicular to an axis other than the

coordinate axes can incur additional costly computations.

Nearest neighbour approaches using the R-tree are also

proposed, including one from Brinkhoff et al. [8], which

computes k-nearest neighbours via a spatial join operation.

Finally, some approaches can be applied to any hierarchi-

cal data structure. Roussopoulos et al. [10] propose a branch-

and-bound k-nearnest neighbour search that can be applied

to any tree-type data structure. It is a depth-first search

strategy, which for every node visited, places its children on

a queue in order of its distance from the query point. If a

node is too far from the query point, it is pruned. Otherwise,

it is visited further. This continues until k nearest neighbours

have been found. Hjaltason and Samet [11] propose a similar

best-first strategy that does not require the number of nearest

neighbours to be known in advance.

B. Compact Trie

The trie [14] is a hierarchical data structure traditionally

used for indexing strings. In a trie, every leaf node represents

a string, while a non-leaf node contains a sequence of one or

Figure 1. Trie for strings ”A”, ”to”, ”tea”, ”ted”, ”ten”, ”i”, ”in”, and
”inn” (from [13])

more characters that make up the prefix (i.e. beginning) of

every string that is a descendent of this node. Fig. 1 depicts

an example Trie for several strings. Note that the prefix of

every node is its immediate ancestor.

For this work, a compact trie is utilized. A compact trie

is a space-optimized trie, which is organized by requiring

all non-terminal nodes to have more than one descendant

[12]. Therefore, the compact trie will likely have fewer non-

terminal nodes than its equivalent full trie, and searching

within fewer non-terminal nodes would on average take

less time. Although insertion and deletion operations within

a compact trie involve additional adding, splitting, and

merging operations, insertion is only required to construct

the trie once, and deletion will not be needed (assuming a

static data set).

Several approaches for implementing a trie have been

proposed, including [15], [16]. We chose the double-array

implementation of trie, proposed by Aoe [15]. The double

array structure has a search time complexity similar to

the conceptual trie (see Fig. 1) and a reasonable space

complexity of: number(trie nodes) ∗ sizeof(string).
Here, a trie is represented by two arrays - BASE and

CHECK. When constructing a double-array trie and per-

forming basic trie operations (search, insertion, deletion),

all must conform to both of the following rules. When

traversing from a parent trie node S to its immediate child

trie node T as a result of character C:

T = BASE[S] + CODE[C]

CHECK[T] = S

where CODE[C] represents a unique numerical code for

character C. All trie nodes are mapped to the index values

of BASE and CHECK. Special algorithms are developed to

construct the double-array trie and perform basic operations

within the trie according to the rule.

579

III. COMPACT-TRIE-BASED K-NN SEARCH METHOD

In this section, a compact-trie-based k-nearest neighbour

search method is proposed. The method is divided into three

steps: (1) data preparation, (2) trie construction, and (3)

search. We first present some preliminaries and motivation

behind this approach before presenting the steps.

A. Preliminaries

The method is inspired by the intrinsic relationship be-

tween grid partitioning and Cartesian coordinates composed

of positive pure decimal numbers.

Intuitively, an n-dimensional space can be partitioned by

orthogonal lines into n-dimensional cells. For example, take

a simple square-shaped two-dimensional space. Applying

the Cartesian coordinate system, the original space before

any grid partitioning can be defined by the Cartesian coor-

dinates of its four corners: the lower-left corner (0, 0), the

lower-right corner (1, 0), the upper-right corner (1, 1), and

the upper-left corner (0, 1). Further, the original space can

be assigned a label by using the Cartesian coordinates of

its lower-left corner (0, 0). Next, this space is partitioned

by orthogonal lines into 10 by 10, 100 square-shaped, non-

overlapping regions (i.e. cells) evenly. Each of these regions

can be labeled by the Cartesian coordinates of its lower-left

corner. For example, (0.0, 0.1) is the label for the region

(0.0, 0.1),(0.0, 0.2),(0.1, 0.1) and (0.1, 0.2), while (0.9, 0.9)
represents the region (0.9, 0.9),(0.9, 1.0),(1.0, 0.9), and

(1.0, 1.0). Similarly, any one region, such as the one la-

beled as (0.2, 0.3), can be partitioned further into 10 by

10, 100 square-shaped, non-overlapping sub-regions. Each

sub-region can be denoted or labeled by the Cartesian

coordinates of its lower-left corner, such as (0.20, 0.30),
(0.20, 0.31), (0.20, 0.32) . . . (0.29, 0.39).

Conceptually, such recursive partitioning of a space could

be performed infinitely. The only physical limit is the

precision of a positive pure decimal number. The resulting

region of space can be infinitely small so as to be deemed

as a spatial point. Alternatively, any spatial point can be

deemed as a certain region. For example, the spatial point

(0.20, 0.31) is the region labeled as (0.20, 0.31). So the

Cartesian coordinates of a spatial point composed of positive

pure decimal numbers can be deemed as the label of a certain

region resulted from such a grid partitioning.

The labels of the regions can be re-organized by making

some modifications as follows, by removing the leading

0s (before the decimal point) and then interleaving the

remaining digits. Using the grid partitioning example above,

the labels of the regions at the first level of partitioning:

(0.0, 0.0), (0.0, 0.1), (0.0, 0.2), . . . , (0.9, 0.9) can each

be modified to become 00, 01, 02, . . . , 99 respectively.

Similarly, the labels of the regions at the second level

of partitioning: (0.20, 0.30), (0.20, 0.31), (0.20, 0.32), . . . ,

(0.29, 0.39) can be modified to become 2300, 2301, 2302,

. . . , 2399. The common prefix 23 is the label of the first level

region encompassing the 100 second level regions which

can be uniquely denoted by the rest suffixes 00, 01, 02, . . . ,

99, respectively. Similar modifications can be applied to any

region at any level of partitioning.

Here are some benefit resulting from these label mod-

ifications. The new labels are more succinct. New labels

different in length indicate their corresponding regions are

at different levels of partitioning. The longer a new label,

the higher the partitioning level of the corresponding region,

and the smaller the corresponding region. New labels equal

in length indicate that their corresponding regions are at the

same level of partitioning. New labels sharing a common

prefix are within the same region, of which the new label

is the common prefix. This approach is used to assemble

Cartesian coordinates of spatial points composed of positive

pure decimal numbers into the strings in our strategy.

Grid partitioning will not result in any partially overlapped

regions. The regions at the same level of partitioning are

non-overlapping. A region at a lower level of partitioning

would either fully encompass a region at a higher level of

partitioning, or not encompass it at all. A tree-type data

structure is a natural fit for organizing the regions resulting

from such a grid partitioning. The root node represents the

entire space. Every other node can represent a certain region.

The level of a node indicates the partitioning level of the

region represented by the node. There is no direct connection

between any pair of nodes at the same level. The direct

connection between an upper level node and a lower level

node can indicate the region represented by the upper level

node encompasses the region represented by the lower level

node.

The compact trie is adopted to store, index, and search

spatial points. The spatial points are deemed as regions

resulting from the grid partitioning described earlier. Every

node of the compact trie represents a certain region and

is associated with the new label of the region. The new

label associated with any non-terminal node, except for the

root node, must be the longest possible common prefix of

the new labels associated with its immediate child nodes,

and the length of the common prefix must be an integral

multiple of the dimensionality of the spatial points. The

region denoted by such a new label is actually the smallest

possible region resulted from the same grid partitioning that

encompasses all regions represented by the child nodes of

the non-terminal node. So, constructing a compact trie from

spatial points naturally groups certain spatial points and/or

certain regions together, and naturally partitions the space,

which is appealing to a search for a certain spatial point or

region. It is worth mentioning that the level of a compact trie

node does not indicate the partitioning level of the region

represented by the node.

Last, referring back to the grid partitioning example, it is

worth noting that the length of the new label of any region

at the first partitioning level is 2, or the dimensionality 2

580

multiplied by the level of partitioning 1. The length of the

new label of any region at the second partitioning level is 4,

or the dimensionality 2 multiplied by the level of partitioning

2. To generalize, the length of the new label of any region

at the nth partitioning level is the dimensionality multiplied

by the level of partitioning n. That is why the length of

the unique string associated with any compact trie node,

except for the root node, must be an integral multiple of

the dimensionality. So, the length of the longest possible

common prefix referred in the previous paragraph must also

be an integral multiple of the dimensionality, rather than

the length of the longest common prefix. Therefore, the

compact trie constructed in this proposed method is not

literally following the compact trie definition because the

string associated with a non-terminal node (except for the

root node) in the compact trie is not the longest common

prefix of all strings associated with its immediate child

nodes.

B. Sample Point Set

For illustration purposes, and inspired by the (Longitude,

Latitude) pair of the Global Position System (GPS) data

format (e.g. (47.644548, -122.326897)), we generate a syn-

thetic data set consisting of 15 two-dimensional spatial

points, whose coordinates are represented as positive pure

decimal numbers. Table I shows the data set. The number of

digits after the decimal point is 6 in the present illustration,

but can be larger if higher spatial resolution is needed for

the application. In addition, we assume that all points in the

data set are unique.

C. Data Preparation

We now describe our strategy, by first assembling the

strings for each co-ordinate. We first normalize all co-

ordinate values to positive pure decimal numbers between 0

and 1, and to as many digits after the decimal as required.

Table I shows the co-ordinate values normalized to 6 digits

after the decimal.

Next, the core step of data preparation is to, for each

spatial point in the data set, assemble a string composed

of digits only, based on its preprocessed positive pure

decimal number coordinates, by interleaving the digits after

the decimal point of all coordinates in an orderly fashion.

The complete numeric information of the multi-dimensional

coordinates of the spatial point will be preserved. For

example, let us take spatial point 1 (0.001251, 0.563585)

from Table I to illustrate the assembling process. The first

digits after the decimal point of the two coordinates are

0 and 5. Interleave them to form a string 05. Next, the

second digits after the decimal point of the two coordinates

are 0 and 6. Interleave them in the same order to form a

string 06. Append the string 06 to the string 05 to form

a string 0506. Repeat the same interleaving and appending

procedures for the remaining digits after the decimal point

ID Longitude Latitude String Format
1 0.001251 0.563585 050613255815
2 0.193304 0.808741 189038370441
3 0.585009 0.479873 548759080793
4 0.350291 0.895962 385905299612
5 0.822840 0.746605 872426864005
6 0.174108 0.858943 187548190483
7 0.710501 0.513535 751103550315
8 0.303995 0.014985 300134999855
9 0.091403 0.364452 039614440532

10 0.147313 0.165899 114675381939
11 0.147313 0.165890 114675381930
12 0.091403 0.374452 039714440532
13 0.091403 0.374552 039714450532
14 0.710501 0.514535 751104550315
15 0.091403 0.365452 039615440532

Table I
SAMPLE POINT SET

039614440532
039615440532
039714440532
039714450532
050613255815
114675381930
114675381939
187548190483
189038370441
300134999855
385905299612
548759080793
751103550315
751104550315
872426864005

Table II
SORTED STRING FORMATS

of the two coordinates, ultimately producing the final string

050613255815 for spatial point 1. Similarly, the remaining

spatial points are processed.

After all co-ordinates are mapped to strings, the strings

are sorted in ascending order according to their numeric

values. Such an ordering naturally groups together strings

sharing the longest common prefix. Table II shows the

ordered strings for our example. Strings 039614440532 and

039615440532 are grouped together because they share

the prefix 03961, while 039714440532 and 039714450532

are grouped together because they share the prefix

0397144. Similarly, strings 039614440532, 039615440532,

039714440532 and 039714450532 are grouped together

because they share the prefix 039; while 114675381930

and 114675381939 are grouped together because they share

the prefix 11467538193; 187548190483 and 189038370441

are grouped together because they share the prefix 18;

and finally, 751103550315 and 751104550315 are grouped

together because they share the prefix 75110.

The purpose of such an ordered output is to facilitate the

construction of the compact trie, which is presented in the

581

Figure 2. Trie Structure after Inserting the First Eight Strings from TABLE II

582

next section. It is worth mentioning that sorting strings in

some way is frequently employed in the initial construction

of a trie, when indexing a large number of strings [14].

D. Compact Trie Construction

Once the strings corresponding to the co-ordinates of each

spatial point have been formed, they are used to create a

compact trie.

Fig. 2 depicts a partially constructed compact trie after the

first 8 strings from TABLE II have been inserted. Each node

is represented by a rectangular box. There is always one and

only one depth-0 node, the root node, which is associated

with an empty string according to the definition of the trie.

Every other node of the compact trie is associated with

one unique string. The unique string associated with any

non-terminal node (except for the root node) is the longest

common prefix of all strings associated with its immediate

child nodes. Every terminal node contains one unique string

corresponding to one unique spatial point. Each also contains

the unique ID associated with the spatial point uniquely

corresponding to that terminal node.

After all 15 strings have been inserted, the resulting

compact trie is composed of 22 nodes. There are 15 terminal

nodes in total.

With respect to the arrows in Fig. 2, an arrow in the

compact trie points from a parent node to its immediate

child node. The directional arrow is not intended to suggest

that the traverse between a parent node and its immediate

child node is only in one direction. The directional arrow

is used to indicate the parental-child relationship between

the two nodes. The traversal between a parent node and its

immediate child node is bi-directional. In other words, a tree

traversal algorithm would be able to traverse either from a

parent node to its immediate child node or from a child

node to its immediate parent node. A node can be accessed

both from its immediate parent node and from its immediate

child node, if they do exist. If there is no arrow between two

nodes, accessing one node from the other node must be via

existing arrows or paths.

E. Searching the Compact Trie

For k-nearest neighbour searching the compact trie, we

utilized the best-first nearest neighbor search (BFNNS)

algorithm [17]. The core of the BFNNS algorithm is to build

and maintain a priority queue. Applicable to all nodes, the

shorter the minimum distance of a node to the query point,

the higher the priority of the node in the priority queue.

Since a terminal node represents one unique spatial point,

the minimum distance of a terminal node to the query

point is certain and fixed. A non-terminal node represents

one region, as explained earlier. Therefore, the minimum

distance of a non-terminal node to the query point is the

shortest distance from the boundary of the region to the

query point. This minimum distance is also the minimum

distance possible between any point within the region and

the query point. The distance is calculated by re-forming

the original co-ordinates from the string representation of

the node.

There is no need to differentiate their priority in the

priority queue when a terminal node and a non-terminal node

have the same minimum distance to the query point; either

one can be processed first because both would have to be

processed anyway in order to find all k-nearest neighbours.

After the priority queue is initialized with the root node,

the k-nearest neighbour search starts by always removing

the first item of the priority queue until either all k-nearest

neighbours have been found or the priority queue is depleted

completely. If the item removed from the priority queue

is a non-terminal node, all of its immediate child nodes

are inserted into the priority queue first before any item is

removed from the priority queue. The insertion will follow

the same principles described above. If an item removed

from the priority queue is a terminal node, the next nearest

neighbour is found as the unique spatial point represented

by the terminal node.

One advantage of the BFNNS algorithm is that the next

best or the next nearest neighbour will always be the

next terminal node (i.e. spatial point) identified from the

priority queue. So, if a k-nearest neighbour search needs

to identify more nearest neighbours, the search can resume

from where it stops last time rather than start over again,

which can be significant in continuous k-nearest neighbour

search. This is significant in structures that have more than

two children from a given node. In contrast, the depth-

first nearest neighbour search (DFNNS) algorithm [17] is

largely based on branch-and-bound and keeps pruning the

branch determined to be outside the most updated bound.

Any additional nearest neighbour would likely require the

DFNNS to start over again because the branch containing

the next nearest neighbour may have been pruned and cannot

be recovered.

IV. EVALUATION

In this section, we preliminarily evaluate the k-nearest-

neighbour search performance using the proposed compact-

trie structure. The experimental environment and tests are

presented first, followed by the results of the evaluation.

A. Environment and Tests

We compare our structure versus both the brute-force

method, and the k-d Tree method proposed in [17]. Brute-

force provides the absolute base line performance that any

other method must surpass, especially in a low number of

dimensions, while the k-d Tree method can be considered

a benchmark approach for processing k-nearest neighbour

queries. The performance comparison is carried out using a

Lenovo ThinkPad T420, with Intel(R) Core(TM) i5-2520M

583

��

������

������

������

������

������

	�����

�� �� �� �� �� 	�
� �� �� ���

��
��
��
�	

�

��
��

�
�

��
�

��

��
�

�������
������������
���
����

����������� ������������� ���������

Figure 3. Search Performance, 1 to 10 Nearest Neighbours

��

������

������

������

������

������

	�����

��� ��� ��� ��� ��� 	��
�� ��� ��� ����

��
��
��
�	

�

��
��

�
�

��
�

��

��
�

�������
������������
���
����

����������� ������������� ���������

Figure 4. Search Performance, 10 to 100 Nearest Neighbours

��

������

������

������

������

������

	�����

���� ���� ���� ���� ���� 	���
��� ���� ���� �����

��
��
��
�	

�

��
��

�
�

��
�

��

��
�

�������
������������
���
����

����������� ������������� ���������

Figure 5. Search Performance, 100 to 1000 Nearest Neighbours

CPU at 2.50 GHz, 8.00 GB RAM, and running 64-bit Win-

dows 7 Professional Service Pack 1. We utilize a synthetic

data set of 1,000,000 randomly-generated points of interest

(POIs). In addition, point queries are randomly generated

for each test.

The test is that for a given two-dimensional query point,

search for its k nearest neighbours in the POIs. For several k
values ranging from 1 to 1000, both the compact-trie-based

search and the brute-voce search are executed one thousand

times, each time with a different randomly-generated query

point. The average running time (in microseconds) of the

program to complete one test for a given k value is used to

measure the k-nearest neighbour search performance of the

program.

B. Results

Figs. 3,4, and 5 presents the results of our evaluation.

As we can see, the compact-trie-based method performs

consistently better than both the brute-force based k-d Tree

search methods:

• The best improvements are found for between 100

and 1000 nearest neighbours (Fig. 5) The compact-

trie-based method performs at least 25 times better

than both of the other approaches. We found that the

execution times for the compact-trie approach are be-

tween approximately 115 microseconds for 100 nearest

neighbours, up to 850 microseconds for 1000 nearest

neighbours. For brute-force, the execution times are

between approximately 13,000 and 52,000 for locating

between 100 and 1000 nearest neighbours, respectively.

For the k-d Tree search, the execution times are be-

tween approximately 14,500 and 29,000 microseconds

for locating between 100 and 1000 nearest neighbours.

• For up to 100 nearest neighbours (Fig. 4), the compact-

trie-based method performs at least 175 times better.

For the compact-trie approach, the range of execution

times is between 54 and 115 microseconds for between

10 to 100 nearest neighbours. For the brute-force and

k-d Tree approaches, the range for the same k values

is between 9,900 and 13,000 microseconds, and 13,200

and 15,000 microseconds, respectively.

• Even at the smaller numbers of nearest neighbours,

the improvement is significant. The smaller the value

of k, the higher the performance ratio is, up to 300

times better (as seen in Fig. 3. This suggests the

compact-trie-based method may still have a significant

advantage in k-nearest neighbour search applications

where k is less than 100. Executions times for up to

10 nearest neighbours are between 40 and 54 microsec-

onds for the compact-trie method, between 9,300 and

9,900 microseconds for the brute-force approach, and

between 13,000 and 13,200 microseconds for the k-d

Tree approach.

V. CONCLUSION

In this paper, a compact-trie-based k-nearest neighbour

search method is proposed. Through the k-nearest neigh-

bour search performance comparison against both the brute-

force based and the k-d Tree methods, the compact-trie-

based method shows consistent performance superiority.

584

The intrinsic relationship between grid partitioning and the

Cartesian coordinates of spatial points composed of positive

decimal numbers, and the natural space partitioning by

a compact trie constructed from the modified Cartesian

coordinates of spatial points composed of positive deci-

mal numbers inspired me to devise the compact-trie-based

method.

More theoretical analysis needs to be done to prove

the better performance of the compact-trie-based method

in theory. And the k-nearest neighbour search performance

comparison result needs to be verified with more compar-

isons versus other strategies, in particular ones that utilize

hierarchical data structures in their search strategies.

We found that applying the best-first search scheme to

the compact-trie-based method seems relatively not that

promising because for each non-terminal node traversed, a

list of its child nodes sorted by their minimum distances

to the query point may need to be created, which could be

computationally expensive. It would be quite worthwhile to

implement other approaches for comparison, for even further

performance improvements.

So far, the implementation of the compact-trie-based

method is limited to positive decimal numbers. Expand-

ing the input to negative decimal numbers may just be a

matter of conversion. And other numeral systems might

be worthwhile exploring, especially the binary system be-

cause any information can be represented by bits or binary

numbers, and bit-based storage and/or computing may be

more efficient. Last, it is more significant to explore the

potential applicability of the compact-trie-based method to

high-dimensional data, to tackle the curse of dimensionality.

ACKNOWLEDGMENT

The authors would like to thank reviewers for their helpful

comments in the current and previous drafts of this paper.

REFERENCES

[1] S. Ilarri, E. Mena, and A. Illarramendi, “Location-dependent
query processing: Where we are and where we are heading,”
ACM Computing Surveys, vol. 42, no. 3, pp. 1–73, March
2010.

[2] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Pren-
tice Hall, 2003.

[3] M. L. Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry. Cambridge, Massachusetts: MIT
Press, 1969.

[4] W. A. Burkhard and R. M. Keller, “Some approaches to best-
match file searching,” Communications of the ACM, vol. 16,
no. 4, pp. 230–236, 1973.

[5] K. Fukunage and P. M. Narendra, “A branch and bound algo-
rithm for computing k-nearest neighbors,” IEEE Transactions
on Computers, vol. 24, no. 7, pp. 750–753, 1975.

[6] J. H. Friedman, F. Baskett, and L. J. Shustek, “An algo-
rithm for finding nearest neighbors,” IEEE Trans. Computers,
vol. 24, no. 10, pp. 1000–1006, 1975.

[7] R. Sproull, “Refinements to nearest-neighbor searching in k-
dimensional trees.” Algorithmica, vol. 6, no. 4, pp. 579–589,
1991.

[8] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient process-
ing of spatial joins using r-trees,” in Proceedings of the 1993
ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’93. New York, NY, USA: ACM, 1993,
pp. 237–246.

[9] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu,
“An optimal algorithm for approximate nearest neighbor
searching fixed dimensions,” Journal of the ACM, vol. 45,
no. 6, pp. 891–923, 1998.

[10] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor
queries,” SIGMOD Record, vol. 24, no. 2, pp. 71–79, May
1995.

[11] G. R. Hjaltason and H. Samet, “Ranking in spatial databases,”
in SSD ’95: Proceedings of the 4th International Symposium
on Advances in Spatial Databases. Springer-Verlag, 1995,
pp. 83–95.

[12] D. Morrison, “Patricia – practical algorithm to retrieve infor-
mation coded in alphanumeric,” Journal of the ACM, vol. 15,
no. 4, pp. 514–534, 1968.

[13] “Trie,” http://en.wikipedia.org/wiki/Trie, 2006, accessed 10-
Apr-2016.

[14] E. Fredkin, “Trie memory,” Communications of the ACM,
vol. 3, no. 9, pp. 490–499, 1960.

[15] J.-I. Aoe, “An efficient digital search algorithm by using
a double-array structure,” IEEE Transactions on Software
Engineering, vol. 15, no. 9, pp. 1066–1077, 1989.

[16] J.-I. Aoe, K. Morimoto, and T. Sato, “An efficient implemen-
tation of trie structures,” Software Practice and Experience,
vol. 22, no. 9, pp. 695–721, 1992.

[17] G. R. Hjaltason and H. Samet, “Index-driven similarity search
in metric spaces,” ACM Transactions on Database Systems,
vol. 28, no. 4, pp. 517–580, 2003.

585

