2014 28th International Conference on Advanced Information Networking and Applications Workshops

A First Look at Caching during TIP-tree Navigation
for Location Based Services

Wendy Osborn
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
Email: wendy.osborn@uleth.ca

Abstract—This paper explores the issue of caching during TIP-
tree navigation for location-based services. The TIP-tree is a re-
cently proposed spatial access method for supporting continuous
point queries in a tourist information system. In addition, its
navigation strategy avoids repeating searching, thus providing
efficient processing of user trajectories that are not known in
advance. This paper proposes a caching strategy that further
improves upon the efficiency of the TIP-tree navigation algorithm.
A performance evaluation shows that significant improvement is
possible when navigation and caching are applied together.

Keywords—location-based services;spatial access method; con-
tinuous query processing; navigation

I. INTRODUCTION

A location-based service [15] provides information to the
user of a mobile device, such as an tablet or smartphone, based
on their current location. For example, a user can issue a query
to a server to find the location of the nearest few restaurants
based on their current location. As the user moves around,
however, the nearest few restaurants will change, and therefore
be updated, on their device. Location-based services can serve
many applications, such as tourist information services [13],

(81, [4], [3], [11].

Location-based services require efficient continuous spatial
query processing strategies [6]. A continuous spatial query
involves the processing of a moving query, such as a moving
point, nearest neighbours to a moving point, or a moving
region query. One approach to processing a continuous spatial
query is to perform a new query for every update on the user’s
trajectory. However, this results in high network and unneces-
sary processing costs [16]. So many approaches attempt to
reduce the number of queries that need to be executed.

Several have been proposed that utilized spatial access
methods [1], including [16], [17], [5], [7], [9], [12]. Limita-
tions of these approaches include the need to repeated search
the spatial index, caching a significant amount of data, or
maintaining a sparse index. A recently proposed spatial access
method, the TIP-tree [11], organizes point data and related
items of interest, in a way that supports navigation, given
a user trajectory, within the structure itself, and therefore
repeated searching from the root is not required. In addition,
the trajectory is not required to be known in advance.

The TIP-tree was shown to outperform existing spatial
access methods with respect to disk accesses. However, one
limitation of the TIP-tree is the repeated retrieval of the same

978-1-4799-2652-7/14 $31.00 © 2014 IEEE
DOI 10.1109/WAINA.2014.37

174

node in sequence. If the user trajectory has many co-ordinates
that are close together, then many nodes only need to be
fetched from the server once, and that portion of the trajectory
can be processed on the mobile device. Combined with the
in-structure navigation, this leads to a significant reduction in
the number of node accesses required from the server.

Therefore, this paper proposes an update to the TIP-tree
navigation strategy that takes node caching on the mobile
device into consideration. First, the data that needs to be
cached is identified. Then, we identify the situations where
the current cached data is still valid, and therefore a call to
the server for updated data is not required.

The navigation strategy that utilizes caching is compared to
the original (i.e not-caching) navigation strategy with respect
to the number of disk accesses required to locate information
for the user. It is discovered that when caching is applied,
there is a significant reduction in the number of disk accesses
required for retrieving information for the user.

This paper proceeds as follows. Section II presents some
related work in the area of continuous query processing using
spatial indexing. Section III presents a summary of the TIP-
tree and its navigation algorithm. Section IV presents the
motivation and approach to continuous point query processing
in the presence of caching. Section V presents the evaluation
of the proposed caching strategy. Finally, Section VI concludes
the paper and provides some directions of future work.

II. RELATED WORK

Some strategies exist for processing continuous spatial
queries that utilize a spatial index such as an R-tree [2] or
a modified grid file [10].

Song and Roussopoulos [16] propose an approach to
continuous nearest neighbour query processing that utilizes
existing stationary nearest neighbour approaches (e.g. [14])
to obtain a superset of nearest neighbour points, so that the
result stays current while the query point moves around. An
issue with this approach is in choosing an appropriate value of
m, so that fewer query calls are made but not at the expense
of significantly increased storage at the client.

Tao et al. [17] propose a strategy that utilizes an R-tree for
speeding up searches. One limitation of this approach is that
“vertical” searching for new co-ordinates must be performed
repeatedly. An improvement to this approach was proposed
by Park et al. [12], which proposes a “horizontal” search for

IEEE
computer
® psouety

nearest neighbour objects along a trajectory. Although their
strategy is shown to be efficient when spatial indexes are used,
the entire trajectory must be known in advance.

A caching strategy is proposed by Hu et al. [5] to support
multiple spatial query types, such as nearest neighbour and
region. Their strategy caches on the mobile device results from
previous queries and the R-tree nodes that lead to them. The
cached partial R-tree is always searched first, with required
additional objects that are not available in the cached R-
tree fetched afterwards from the server. One issue is that the
caching overhead and local processing may be costly.

Jung et al. [7] propose a continuous nearest neighbour
approach using a grid index. Every cell in the grid contains
a minimum bounding rectangle (MBR), which defines the
bounds that contain the points in the cell. If a query does not
overlap the MBR, none of its points will either. One limitation
is that many portions of the index may be sparse, and thus
space is wasted.

Lee et al. [9] propose a strategy that attempts to reduce
the number of required queries by fetching both required and
additional complementary objects, using an R-tree. One issue
is that repeated searching is still required to obtain enough
complementary objects.

III. BACKGROUND

In this section, we present some background on both the
TIP-tree and its navigation strategy.

The TIP-tree [11] is a spatial index that provides a user
with access to items of interest, which are at a location that
is close to the user, based on their current location. It has two
key features:

e The TIP-tree provides location-based access to items
that are stored within TIP itself, and stored externally
to TIP in an information repository such as a digital

library collection.

The TIP-tree can be navigated from within the struc-
ture itself to continually present information to the
user as the move around.

Figure 2 depicts an example TIP-tree structure and a navi-
gation example (from [11]). Some of the TIP-tree structure will
be summarized below, followed by the navigation example.
More details on TIP-tree construction can be found in [11].

The root node is indicated with bold lines. The child node
that is accessed from the NE location of the node represents
a region of space that covers the North Island of NZ. From
this node, the child node that is accessed from the NW
location represents a region of space that contains Auckland
and Hamilton.

The trajectory consists of locations in Auckland (point 1),
Hamilton (point 2), somewhere in central North Island (point
3), and Wellington (point 4). An initial query is performed
to locate the node containing points of interest (POIs) in
Auckland, and send them to the user’s mobile device. The
user then proceeds to Hamilton. On arrival in Hamilton, the
POIs for Hamilton are fetched and sent to the user’s device.
As the user proceeds south, the navigation strategy proceeds

175

up one level of the tree to the parent of the node containing
Auckland and Hamilton.

Figure 1 presents the navigation algorithm from [11]. In the
algorithm, (x,y) is the set of co-ordinates that represent user
query and X is the node whose region contains the query point.
An initial search is done to locate a stating node, given the
query point. From there, the navigation proceeds as follows.
First, a new set of user query co-ordinates are received from
the mobile device, and the current node X is fetched. Then,
the one of the following situations occurs:

e The user query is in the region of space represented
by X, and is in a region that contains a list node of
items. In this case, the information is retrieved and

sent to the user.

The user query is in the region of space represented
by X, and is in a region that contains a link to a child
node. The query point is transferred to the child node
of X.

The user query is no longer in the region of space
represented by X. The user query is sent to the parent
node of X. If the existing node happens to be the root,
then the search terminates.

Otherwise, there is no further information to send to
the user.

The navigation repeats through the above situations until it
terminates.

IV. CACHING FOR TIP-TREE NAVIGATION

In this section, the motivation for this work is presented,
followed by the proposed approach to caching and navigation
given the existing of caching.

Given the example summarized in Section III, and the
experiments that were performed in [11], we observed the
following: many points along the user trajectory may reside
in the same region of space that is represented by a node.
This is resulting in the same node being retrieved many times,
when it is not necessary. This node (and the information on all
items that are reference from it) can be cached on the mobile
device, which will stop the occurrence of multiple retrievals
for a sequence of trajectory points.

Referring back to Figure 2, we see that Auckland and
Hamilton reside in the region of space that is reference by the
same node. Therefore, the additional node retrieval to retrieve
Hamilton could have been avoided. Similarly, one less node
retrieval could have occurred for the last two points on the
trajectory as the user made their way to Wellington.

Given a node (and information on all items that are
referenced from it), we can cache this data on the mobile
device and use it while it is still considered valid. Referring
back to Figure 2, we see that the following information is
referenced from a node:

One or more list nodes that contain items of interest,
and,

One or more regions of space corresponding to a child
node.

traversing = true;
search_point (x,y)

= obtain_start_co—ordinates (x,y);
node X = search(x,y);

while (traversing) {

(x,y) = new_co—ordinates (x,y);
fetch_node (X);

/+is search within the bounded region
covered by current node?x/

if ((x,y) within node_MBR(X)) {
Loc = determineLoc(X);

/*does location contain coordinate ?x/

if (contains_co—ordinate (Loc)) {
Sights = access_all_sites (Loc);
display_all_sights (Sights);

}

/xtraverse subtree ?x/
else if (with_node_MBR_of_child(Loc)){
X = child_node (X);

/+xotherwise , there is no information
to display, so nothing is done
until co—ordinates are updated.x/

}

/+1if search outside current region,

move to parent region if exists.x/

else if(has_parent_node(X)) {
X = parent_node (X);

}

/+«otherwise , outside of space covered by
index , so terminate search %/
else {
traversing = false;
}

Fig. 1. TIP-tree Navigation (from [11])

When this information is cached, it is considered valid under
the following circumstances, and a query does not need to be
performed on the server:

e The user query point does not move outside of the
region of space that corresponds to the current node,
and

e The user query does not move inside of the region of
space corresponding to a child node that is referenced
from the current node.

Otherwise, a query call needs to be made from the mobile
device to the server. For the first circumstance above, at least
the parent node will need to be retrieved, and possibly along
with others in order to locate the node whose region contains
the current query point. For the second circumstance, the child
node will need to be retrieved.

176

All Blacks Game

Eden Park (TIP)
Auckland Museum
(Greenstone)
University of Auckland
Documents (DSpace)

o
B f Plent
‘* ayo* enty

bl J’
/ \ Taupo <@
Founders \
Theatre (TIP) | (X 7ORB Rotorua
Plant&Garden % (TIP)
(Greenstone) Wai—o—Tapu
Waikato History | (: ~ (Greenstone)
(DSpace) .)?
Te Rapa
Wellington (TIP)
Matiu/Somes Island
(Greenstone)
Proposed Chinese
@—— Christchurch | Garden (DSpace)
[}
Dunedin

Fig. 2. TIP-tree with navigation example (from [11])

However, if a region of space is significantly large, and the
user trajectory consists of points that are very close together,
this will result in cached information remaining valid for many
query points on the trajectory. This, in turn, will result in
significantly fewer calls to the server for updated information.

If we refer back to Figure 2, we observe that only two
node accesses are required now, instead of the four accesses
that were required initially. The second node access only
takes place when the user query moves south of Hamilton
and ultimately moves outside of the region of space that is
reference by the first node. The navigation strategy on the

800 800
700 < <> * * * * < . 4 < > 700 & < . s . 2 . 2 . . 2 . 4 . 4 o
600 600
500 .
=#=No Caching 500 ~—No Caching
400 ~#-Caching 400 ~#-Caching
300 300
200 200
100 100
o +—t—it—_i—-_it——-_iliC—C_l—_lG—LbLLG——GLaL0_:_ o0 -
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Fig. 3. Data Set Size vs. Disk Accesses Fig. 4. Data Set Size vs. Disk Accesses (High Density)
800 N N ° ° 800
700 & o P
700
600 500 e
500 /
500
400 ~*"NoCaching 7| 449 o ~+—No Caching
300 =#-Caching | / —B-Cachi
300 aching
200 200 el
100
100 __‘r/
0 - T T T T T T
0 4
100K 200K 300K 400K 500K 600K 700K 800K 900K 1M
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fig. 5. Data Set Size vs. Disk Accesses (High Point Count)
Fig. 6. Path Points vs. Disk Accesses
800 800
.
700 4'
700
o / / 600
500 P
P 500
400 =#=No Caching /
/ i 400 =#=No Caching ~
300 =#-Caching /
200 / 300 / ~#-Caching .
100 / 200 /
L 4
0 - 100
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 ! ! ! ! ! ! ! ! ! '
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fig. 7. Data Set Size vs. Disk Accesses (High Density)
Fig. 8. Path Points vs. Disk Accesses (High Point Count)

177

server then proceeds to the parent node, and send that node
(and all related information) to the mobile device.

V. EVALUATION

This section presents the methodology and results of the
performance evaluation. Here, we compare the performance of
TIP-tree navigation when caching is utilized, versus TIP-tree
navigation when caching is not used.

The evaluation uses four data sets - one user trajectory
(T) and three sets of co-ordinates (P1, P2 and P3). The set
T contains 712 co-ordinates that represent a user’s trajectory
between two cities on the North Island that are 16 kilometres
apart. The trajectory was recorded using a mobile device. The
set P1 consists of 10,000 co-ordinates, which represent various
locations around the North Island of New Zealand. P2 consists
of 10,000 co-ordinates, which represents locations from around
the Waikato Region of New Zealand. Both P1 and P2 consist of
co-ordinates that represent the location of actual municipalities
in New Zealand, as well as randomly generated co-ordinates
that represent other points of interest. The purpose of set P2 is
to to be able to evaluate the strategies for a very dense point
set. P3 consists of 1,000,000 randomly generated co-ordinates
from around the North Island of New Zealand. The purpose of
set P3 is to be able to evaluate the strategies for a very large
point set.

The performance criteria for all tests is the number of disk
accesses required in the TIP-tree for locating items of interest
that are near the user query. For the navigation algorithm that
does not utilize caching, we assume the worst-case scenario -
a disk access is required every time a node is touched. When
caching is used, we still record a disk access for every node
touch. However, this only occurs when the cached node is no
longer valid and the mobile device sends co-ordinates to the
server to fetch the next node.

Our evaluation includes six tests. The first three tests
examines the effect of the number of co-ordinates in the TIP-
tree on the number of disk accesses required to locate items
of interest for the user. The remaining three tests examines the
effect of the number of co-ordinates on the user trajectory on
the number of disk accesses needed for locating information.

A. Data Set Size

For the first test, we set P1 and trajectory T. For each of the
10 test runs performed, a TIP-tree was created using a subset
of the points in P1, beginning with 10% of the co-ordinates,
20% of the co-ordinates, up to the entire set. Then, both the
caching and non-caching versions of the navigation algorithm
are executed using the entire trajectory T, and for both the
number of disk accesses are recorded.

The second and third tests are similar to the first test. The
only difference is that set P2 is used for the second test, while
set P3 was used for the third test.

Figures 3, 4 and 5 depicts the results of the first, second
and third test respectively. Over all tests, we see a common
trend of a significantly lower number of disk accesses when
caching is used over when caching is not used. In addition,
we see for all tests that the number of co-ordinates in the
index does not result in a significant change in the number of

178

disk accesses required to process T. For test one, the number
of disk accesses required for processing T when caching is
used is between 7 and 11, while the number required for the
non-caching scenario is between 718 and 724. For test two,
between 7 and 9 disk accesses were required in when caching
was used, versus between 721 to 725 when caching was not
used. For test 3, between 16 and 39 disk accesses were required
when caching was used, versus between 729 and 750 when
caching was not used. Another observation at this point is that
the number of disk accesses when caching was used increases
when the number of co-ordinates in the index increases - as
noticed in test three where the number of co-ordinates in the
index is into the hundreds of thousands. However, this increase
is very minimal when compared to the index size.

B. User Trajectory Size

For tests four, five and six, we vary the number of points
on the user trajectory T, while keeping the number of points
in the index constant. For the fourth test, we create a TIP-tree
with using all co-ordinates in set P1. For each of the 10 tests
runs, we use 10% of the co-ordinates on T, followed by 20%
of the co-ordinates, up to all of the co-ordinates on T. For all
tests runs, the overall distance of 16 kms is maintained.

Again, the fifth and sixth tests are similar to the fourth test,
with the only difference being that set P2 (i.e a dense 10,000
co-ordinate TIP-tree) is used for the fifth test and P3 (i.e. a
1,000,000 co-ordinate TIP-tree) is used for the sixth test.

Figures 6, 7 and 8 depicts the results of the fourth, fifth and
sixth tests respectively. Again, we see some common trends
among all of the tests. First, the number of disk accesses
required when caching is used is still significantly lower
than the number of disk access when caching is not used.
Second, when caching is not used, the number of disk accesses
increases linearly as the number of points on the trajectory
increases. However, the surprising result is that the number of
disk accesses appears to remain constant when caching is used
and does not appear to be affected by the number of points on
the user trajectory!

For the fourth test, the number of disk accesses required
for processing T when caching is used is constant at 11, where
that number varies between 84 and 724 when no caching is
used. For the fifth test, the number of disk accesses required
when caching is used is constant at 9, while the number varies
from 85 to 725 when no caching is used. Finally for the sixth
test, the number of disk access when caching is used varies
from 33 to 37, and from 108 to 750 when no caching is used.
Again, we do see that for a larger number of co-ordinates in the
index, the number of disk accesses required when no caching
is used is higher than when when fewer points exist in the
index. However, this number is still constant and significantly
lower than when caching is used.

VI. CONCLUSION

In this paper, we propose an update to the TIP-tree naviga-
tion strategy that takes node caching on the mobile device into
consideration. The data that needs to be cached is identified
first. Then, we identify the situations where the current cached
data is still valid, and therefore a call to the server for updated
data is not required.

The navigation strategy that utilizes caching is compared to
the original (i.e not-caching) navigation strategy with respect
to the number of disk accesses required to locate information
for the user. It is discovered that when caching is applied,
there is a significant reduction in the number of disk accesses
required for retrieving information for the user. Furthermore,
we find that when caching is considered, a constant number of
disk accesses is achieved, regardless of the number of points
on the same-length user trajectory.

Some directions of future research include the following.
The first is to extend the navigation strategy to work for
continuous k-nearest neighbour and region queries. Another is
to investigate support for moving co-ordinate data, as currently
this work assumed stationary co-ordinates. In addition, not all
items of interest are point data, and therefore investigating the
inclusion of items of non-zero size is important. Finally, further
evaluation of the navigation with caching strategy with longer
trajectories is required.

REFERENCES

V. Gaede and O. Giinther. Multidimensional access methods. ACM

Computing Surveys, 30:170-231, 1998.

A. Guttman. R-trees: a dynamic index structure for spatial searching.
In Proc. ACM SIGMOD Int’l Conf. Management of Data, pages 47-57,
1984.

A. Hinze and Q. Quan. Trust- and location-based recommendations for
tourism. In Cooperating Information Sytsems (Coopis), pages 414-422,
2009.

A. Hinze, A. Voisard, and G. Buchanan. TIP: Personalizing information
delivery in a tourist information system. Journal of IT & Tourism,
11(3):247-264, 2009.

H. Hu, J. Xu, W. Wong, B. Zheng, D. Lee, and W.-C. Lee. Proactive
caching for spatial queries in mobile environments. In Proc. 21st Int’t
Conf. on Data Engineering, 2005.

(1]

(41

(51

179

(6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Harri, E. Mena, and A. Illarramendi. Location-dependent query
processing: Where we are and where we are heading. ACM Comput.
Surv., 42(3):12:1-12:73, 2010.

H. Jung, S.-W. Kang, M. Song, S. Im, J. Kim, and C.-S. Hwang.
Towards real-time processing of monitoring continuous k-nearest neigh-
bour queries. In Proc. 2006 Int’l Conf. Frontiers of High Performance
Computing and Networking, 2006.

P. Klante, J. Krshe, and S. Boll. Accessignts - a multimodal location-
aware mobile information system. In Proc. 9th Int’l Conf. on Computers
Helping People with Special Needs, Paris, France, July 2004.

K. Lee, W.-C. Lee, H. Leong, B. Unger, and B. Zhang. Efficient valid
scope computation for location-dependent spatial queries in mobile and
wireless environments. In Proc. 3rd Int’l. Conf. Ubiquitous Information
Management and Communication, 2009.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable, symmetric multikey file structure. ACM Trans. Database
Syst., 9(1):38-71, Mar. 1984.

W. Osborn and A. Hinze. Tip-tree: A spatial index for traversing
location in context-aware mobile systems to digital libraries. Pervasive
and Mobile Computing, 2013. in press.

Y. Park, K. Bok, and J. Yoo. An efficient path nearest neighbour query
processing scheme for location-based services. In Proc. 17th Int’l Conf.
Database Systems for Advanced Applications, 2012.

S. Poslad, H. Laamanen, R. Malaka, A. Nick, P. Buckle, and A. Zipf.
Crumpet: Creation of user-friendly mobile services personalized for
tourism. In Proc. IEE 3G2001 Mobile Communication Technologies
Conf., London, UK, 2001.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
SIGMOD Rec., 24(2):71-79, May 1995.

J. H. Schiller and A. Voisard, editors. Location-Based Services. Morgan
Kaufmann, 2004.

Z. Song and N. Roussopoulos. K-nearest neighbor search for moving
query point. In Proc. 7th Int’l Symp. on Advances in Spatial and
Temporal Databases, pages 79-96, 2001.

Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.
In Proc. 28th Int’l Conf. Very Large Data Bases, pages 287-298, 2002.

