
Revisiting 2DR-tree Insertion

Marc Moreau
Department of Mathematics

and Computer Science
University of Lethbridge

4401 University Drive West
Lethbridge, Alberta T1K 3M4

marc.moreau@uleth.ca

Wendy Osborn
Department of Mathematics

and Computer Science
University of Lethbridge

4401 University Drive West
Lethbridge, Alberta T1K 3M4

wendy.osborn@uleth.ca

ABSTRACT

We take another look at the 2DR-tree. In particular, we
revisit its node structure, validity rules and the insertion
strategy. The 2DR-tree uses 2D nodes so that the relation-
ships between all objects can be maintained. The existing
structure has many advantages. However, two limitations
include a high tree height and a low space utilization of its
nodes. We propose changes to the 2DR-tree structure, va-
lidity rules and insertion strategy. Preliminary results show
significant improvements in height and space utilization over
the existing 2DR-tree.

Categories and Subject Descriptors

H.2.2 [Database Management]: Physical Design—access

methods

General Terms

Algorithms, Design

Keywords

spatial access methods, insertion, performance

1. INTRODUCTION
Many applications exist today that store and manipulate

spatial data. A spatial database [10] contains a large collec-
tion of objects that are located in multidimensional space.
An important issue in spatial data management is to ef-
ficiently retrieve objects based on their location by using
spatial access methods.

An approximation method is a spatial access method that
maintains a hierarchy of approximations of both objects and
the space occupied by subsets of objects. Approximations
are usually represented using a minimum bounding rectangle
(MBR). Many approximation strategies have been proposed,
including [5, 2, 3, 1, 6, 9, 7, 8]. A comprehensive survey is
provided in [4]. Most proposed strategies do not preserve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-08 2008 May 12-13, Montreal, QC, Canada
Copyright (c)2008 ACM 978-1-60558-101-9/08/05 ...$5.00.

all spatial relationships between objects because the data,
which is represented in n-dimensional space, is forced into
a 1-dimensional ordering. A recently proposed spatial ac-
cess method, the 2DR-tree [8], uses two-dimensional nodes,
which allows data to be ordered and spatial relationships
to be preserved. Limitations of the 2DR-tree include a tree
height that is higher than necessary, and a low average space
utilization. It is suspected that the primary cause of these
limitations lies in the node validity rules and the insertion
algorithm.

We take another look at the 2DR-tree. In particular, we
revisit the 2DR-tree node structure, validity rules and inser-
tion algorithm. We propose modifications that show promise
in reducing tree height and increasing space utilization

2. THE INDEX

2.1 Preliminaries
As with the 2DR-tree, we determine the relative place-

ment of objects in the tree by using the centroids of their
MBRs. However, we redefine the relative orientation of two
centroids, as shown in Table 1. The 4 orientations (NE,
SE, SW, NW) are redefined to include centroids that fall on
the axes (E, S, W, N, respectively). Also, an equals (EQ)
orientation is added, to handle two centroids that overlap.

A node contains 5 locations. Each location can contain
a pointer to either another node or an object. A node also
stores a node MBR, which is an MBR that contains all
objects in its subtrees. A node must have at least two loca-
tions that reference either an object or a subtree, unless it
is the root.

A node is classified as either ’NORMAL’ or ’CENTER’.
In a NORMAL node, the locations are organized based on
the orientations defined above (see figure 1). A NORMAL

Ax = Bx Ax > Bx Ay = By Ay > By Placement of A

0 0 0 0 SW
0 0 1 0 SW
0 0 0 1 NW
1 0 0 1 NW
0 1 0 0 SE
1 0 0 0 SE
0 1 0 1 NE
0 1 1 0 NE
1 0 1 0 EQ

Table 1: Relative orientation of A with respect to B

129

SW

NW

SE

NE

EQ

Figure 1: Tree Node Figure 2: NorthEast Node

MBR expansion
Figure 3: SouthWest Node

MBR contraction

node is valid when:

1. The node MBR encloses all the MBRs in the objects
or subtrees that the node references, and

2. All objects or subtrees pointed to by a location are in
the proper quadrant relative to the node centroid.

In a CENTER node, the locations are organized linearly. A
CENTER node only references objects whose centroids are
the same as the centroid of the node MBR.

3. THE INSERTION STRATEGY
The new insertion strategy works as follows. Beginning at

the root node, the node MBR is adjusted to include the new
object. Then, the appropriate location, relative to the cen-
troid of the node MBR, is identified for inserting a reference
to the new object. If the location is empty, the reference to
the object is inserted. Otherwise, the subtree is traversed in
the same manner, until a leaf node is reached. If the object
cannot be inserted in the proper location of the leaf node,
then a new leaf node is created.

Next, node validity is maintained by reinserting objects
that have changed orientation relative to the centroid of the
node MBR during the insertion process. When inserting
or deleting an object from a node, one of three things will
happen to the node MBR:

1. The centroid of the node will not change and therefore
all objects remain in their proper orientation,

2. The centroid of the node moves and the area of the
node MBR increases,

3. The centroid of the node moves and the area of the
node MBR decreases.

In the latter two cases, objects no longer in their proper
relative node location must be located and moved.

Figure 2 shows a NorthEast expansion of the node MBR
from the original area (shaded) to the new area. Both MBRs
are split into four quadrants using hashed lines. The direc-
tion of the hash indicates the quadrant in which object on
that line are included. The regions that are labeled repre-
sent the destination location for the objects found within
that region. The ’EQ’ location has been omited for clarity.
Figure 3 shows the SouthWest contration in a similar man-
ner. All other expansions and contractions work in a similar
manner.

4. PROPERTIES
In our preliminary investigations, we have identified some

interesting properties of the modified index and insertion
algorithm:

• Any point, and therefore any MBR centroid, has only
one possible location in the tree. This leads to a tree
which is independent of the insertion order of all ob-
jects.

• The centroid of a node will have the same orientation
in its parent as does all the objects inclosed by the
node MBR.

• The MBR of a location will have less then half of its
area outside its quadrant, except for the ’EQ’ quad-
rant. This may lead to a minimizing in overlap.

• With datasets consisting of only points, the overlap of
any two MBRs at any level of the tree is zero. There
is no area that has the potential to be covered twice.

5. EVALUATION
The new insertion algorithm was compared with the orig-

inal 2DR-tree insertion algorithm. We used 4 collection of
road and rail data from Canada (121416 and 35074 line seg-
ments, respectively) and California (21831 and 11381 line
segments, respectively), obtained from [11]. For each dataset,
we created 1001 trees for each of the old and new strate-
gies. For 1000 trees, each were built using randomly-ordered
data. For 1 tree, it was built using a sorted dataset, which
was determined to be a worst-case scenario. For each tree,
we calculated the number of nodes, height, average space
utilization in each node, total coverage of all MBRs, total
overcoverage (i.e. whitespace) of all MBRs, and the total
overlap between all MBRs.

Table 2 displays the results over the 1000 trees built with
randomly-ordered data. Note that for the old strategy, the
values for all parameters are averages over all 1000 runs,
since all values vary for each tree. For the new strategy, the
values are identical for all 1000 trees. As mentioned earlier,
the new insertion strategy is independent of the order in
which the objects are inserted. The only variation is in how
many objects are moved in order to maintain node validity.
Also note that tree height for the new insertion strategy is
a fractional number. This number represents the average
path length from the root to a leaf node.

130

dataset algorithm #nodes height sp.util (%) coverage overcoverage overlap
old 224080 29.19 38.5 166097.00 132272.00 129407.00

CDrdline
new 77000 9.55 51.4 9523.12 2975.79 110.28
old 64651 24.84 38.5 57582.10 14571.20 13027.90

CDrrline
new 23107 8.68 50.2 4334.23 1574.26 30.90
old 40266 23.44 38.5 4163.12 1700.43 1607.44

CArdline
new 14118 8.02 51.0 354.68 100.23 7.24
old 20905 22.57 38.5 3058.00 423.33 330.22

CArrline
new 7760 8.34 49.2 249.00 94.59 1.48

Table 2: Comparison of Insertion Algorithms - Average Cases

dataset algorithm #nodes height sp.util (%) coverage overcoverage overlap
old 355697 88 33.5 490255.06 79004.80 76139.29

CDrdline
new 77000 9.55 51.4 9523.12 2975.79 110.28
old 113611 88 32.8 209655.42 10284.43 8741.10

CDrrline
new 23107 8.68 50.2 4334.23 1574.26 30.90
old 64471 38 33.3 5846.69 627.37 534.36

CArdline
new 14118 8.02 51.0 354.68 100.23 7.24
old 42872 60 31.0 8508.06 610.36 517.26

CArrline
new 7760 8.34 49.2 249.00 94.59 1.48

Table 3: Comparison of Insertion Algorithms - Worst Cases

Results show that the new strategy achieves a significant
improvement over the old strategy in all aspects. In particu-
lar, there is an 11-13% increase in space utilization, with ap-
proximately 50% space utilization overall for the new strat-
egy. In addition, there is a 63-66% lower height when the
new strategy is used insertion. There are also significant de-
creases in coverage, overcoverage, overlap and the number
of nodes. It must also be noted that the maximum height
from the root to a leaf node for the new insertion strategy
is 13 (for both California datasets, and the Canada railroad
dataset), and 15 (for the Canada road dataset).

Table 3 presents the results for the build using sorted data.
The 2DR-tree appears to perform very poorly when index-
ing ordered data with the original insertion algorithm. How-
ever, the new algorithm still performs well, and significantly
better than the original insertion algorithm.

6. CONCLUSION AND FUTURE WORK
We propose a new node structure, validity rules and inser-

tion algorithm for the 2DR-tree. Preliminary results show
that the new strategy is superior to the old strategy. Cur-
rently, the new algorithm is limited to two dimentions.

Future work includes the following. The first is to evaluate
the new insertion strategy and node structure versus other
existing strategies (such as the R-tree [5]). The second is to
extend the node structure to multiple dimensions. The third
is to increase the number of locations in a 2-dimensional
node. The fourth is to create a bottom-up tree-construction
strategy to handle multiple insertions at once. The fifth is
to improve the CENTER nodes. The final improvement is
a paging strategy that groups nodes based on a high proba-
bility that they are retrieved for the same queries.

7. REFERENCES

[1] C. Aggarwal, J. Wolf, P. Yu, and M. Epelman. The
S-tree: an efficient index for multidimensional objects.
In Advances in Spatial Databases: 5th International

Symposium on Spatial Databases SSD ’97, number
1262 in Lecture Notes in Computer Science, pages
350–73. Springer-Verlag, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R∗-tree: an efficient and robust access
method for points and rectangles. In Proceedings of

the ACM SIGMOD International Conference on

Management of Data, pages 322–31, 1990.

[3] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In
Proceedings of the 22nd International Conference on

Very Large Data Bases, pages 28–39, 1996.

[4] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30:170–231, 1998.

[5] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proceedings of the ACM

SIGMOD International Conference on Management of

Data, pages 47–57, 1984.

[6] I. Kamel and C. Faloutsos. Hilbert R-tree: an
improved r-tree using fractals. In Proceedings of the

20th International Conference on Very Large Data

Bases, pages 500–9, 1994.

[7] N. Koudas. Indexing support for spatial joins. Data

and Knowledge Engineering, 34:99–124, 2000.

[8] W. Osborn and K. Barker. An insertion strategy for a
two-dimensional spatial access method. In Proceedings

of the 9th International Conference on Enterprise

Information Systems, 2007.

[9] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: a dynamic index for multi-dimensional
objects. In Proceedings of the 13th International

Conference on Very Large Data Bases, 1987.

[10] S. Shekhar and S. Chawla. Spatial databases: a tour.
Prentice Hall, 2003.

[11] Y. Theodoridis. R-tree Portal,
http://www.rtreeportal.org/. (visited March 2008),
2005.

131

