
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016 71

Using Spatial Semijoins Over Multiple Sites in
Distributed Spatial Query Processing

Utilisation de semi-jointures spatiales
sur plusieurs sites dans le traitement

des requêtes spatiales distribuées
Wendy Osborn, Member, IEEE, and Saad Zaamout

Abstract— We present a strategy for geographically distributed spatial query optimization that
involves multiple sites. Previous work in the area of geographically distributed spatial query processing
and optimization focused only on strategies for performing spatial joins and spatial semijoins, and
geographically distributed spatial queries that only involve two sites. We propose a strategy for optimizing
a geographically distributed spatial query, which uses spatial semijoins and can involve any number of
sites in a geographically distributed spatial database. It identifies and initiates spatial semijoins from the
smaller spatial relations in order to reduce the larger spatial relations. By doing so, the data transmission
and I/O costs are significantly reduced. We compare the performance of our strategy against the naïve
approach of shipping entire spatial relations to the query site. We find that our optimized strategy
minimizes the data transmission cost and I/O cost in all cases, and significantly in specific situations. In
addition, the CPU cost is not significantly affected by our strategy.

Résumé— Nous présentons une stratégie pour l’optimisation des requêtes spatiales réparties
géographiquement qui impliquent plusieurs sites. Les travaux antérieurs dans le domaine de la répartition
géographique des traitements de requête spatiale et l’optimisation axée uniquement sur les stratégies pour
effectuer des jointures et semi-jointures spatiales, et les requêtes spatiales réparties géographiquement
qui impliquent uniquement deux sites. Nous proposons une stratégie pour optimiser une requête spatiale
répartie géographiquement, qui utilise semi-jointures spatiales et peut impliquer un certain nombre de
sites dans une base de données spatiales distribuées géographiquement. Cette stratégie identifie et initie
les semi-jointures spatiales des relations spatiales les plus petites afin de réduire les relations spatiales
les plus grandes. Ce faisant, la transmission de données et d’E/S coûts sont sensiblement réduits. Nous
comparons les performances de notre stratégie de lutte contre l’approche naïve de l’expédition entière
des relations spatiales sur le site de la requête. Nous constatons que notre stratégie optimisée minimise
le coût de transmission de données et le coût d’E/S dans tous les cas, et de façon significative dans des
situations particulières. En outre, le coût en terme de processeur n’a pas été significativement affecté par
notre stratégie.

Index Terms— Distributed databases, optimization, spatial data.

I. INTRODUCTION

NOWADAYS, different users and organizations from
around the world must work with spatial data that is

geographically distributed. In several cases, the spatial data
are geographically distributed over a very long distance. For
example, let us consider emergency and disaster management.
One example of a distributed disaster management application

Manuscript received June 24, 2014; revised February 12, 2015 and
June 6, 2015; accepted July 30, 2015. Date of current version April 20, 2016.

W. Osborn is with the Department of Mathematics and Computer
Science, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada (e-mail:
wendy.osborn@uleth.ca).

S. Zaamout was with the Department of Mathematics and Computer
Science, University of Lethbridge Lethbridge, AB T1K 3M4, Canada.
He is now with SCA Interactive, Calgary, AB T2H 0R5, Canada (e-mail:
s.zaamout@uleth.ca).

Associate Editor managing this paper’s review: Vahid Garousi.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/CJECE.2015.2463753

is for earthquake detection across many Canadian cities at
risk [2]. Another example is a distributed emergency manage-
ment system for Australia [3]. In both papers, it is stated that
storing and managing spatial data across several local sites
that are geographically distributed (as opposed to managing
it centrally in one repository) will significantly improve the
response times in emergency situations. This is because in
both Canada and Australia, many cities are separated by a
very long distance of up to thousands of miles. If one city is in
an emergency situation, and is required to wait for the spatial
data it needs to arrive from far away, a disastrous outcome
may be the result. Having the spatial data stored locally is
a better solution. Therefore, the geographic distribution of
spatial data has become an important matter globally, and
therefore, managing and querying it are very important.

A distributed spatial database system [5], [6] consists of
several individual spatial database sites that are interconnected
by a network. Each site manages its own collection of spatial

0840-8688 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

72 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016

data, but work collectively for processing intersite data require-
ments. One such type of a distributed spatial database system
is a geographically distributed spatial database system, where
the individual database sites are dispersed over a significant
geographical distance.

An important requirement of a geographically distrib-
uted spatial database system is the ability to efficiently
process a query that requires spatial data from the multiple
geographically distributed sites. This is a requirement for
planning purposes. For example, referring to the emergency
management system for Australia above [3], some important
queries can include: 1) how environmental concerns are related
to buildings and infrastructure considerations or 2) do natural
hazards have the appropriate emergency services for handling
them in certain regions. Each of these spatial queries can
only be answered by performing a geographically distributed
spatial query because the spatial data for emergency services,
infrastructure, natural hazards, and the environment are each
managed in individual spatial database sites that are dispersed
geographically.

Initially, the research in distributed relational databases
focused on generating query execution plans that minimized
the cost of data transmission over the network [6]–[10].
Later strategies also considered minimizing other cost factors,
such as I/O and CPU [8], [11]–[14]. Relational data consist
of alphanumeric values that can be matched using equality
or inequality when joined. However, spatial data are more
complex than alphanumeric data. Different types of spatial
data include objects [or their representations using minimum
bounding rectangles (MBRs)], points, lines, and any combina-
tion of these types [5]. In addition, these spatial data lead to
different joining predicates such as overlap, containment, and
adjacency, which in turn increases the complexity of joining
spatial relations. Therefore, CPU and I/O costs must always
be considered when processing a geographically distributed
spatial query [5].

Most existing strategies that process a geographically
distributed spatial query are only proposed for two
sites [15]–[19]. One exception to this [20] does not currently
support spatial joins. Therefore, this paper helps to address
this shortcoming by proposing a strategy for processing and
optimizing a geographically distributed spatial query that
utilizes spatial data from more than two sites. Our strategy,
called optimized, focuses on minimizing not only the data
transmission cost of a query, but also the I/O and CPU costs,
by applying spatial semijoins in a cost-effective manner.

An empirical evaluation of the optimized strategy versus
the naïve strategy (i.e., initial feasible solution (IFS) based
on [21]) shows significant reductions in the data transmission
cost and the I/O cost over all queries when optimized strategy
is utilized. We find a 50% reduction in most cases, in both
the amount of data being transmitted and the amount of
I/O being incurred. In particular, when the query involves both
smaller and larger relations, the reductions in both the data
transmission and I/O costs are very significant, at ∼90% or
greater. With respect to CPU, the optimized strategy achieves
a slightly higher number of spatial predicate comparisons than
the naïve strategy. However, for all cases it is <10% and for

many it is <5%. This is a small price to pay for the significant
achievements in the data transmission and I/O costs.

This paper proceeds as follows. Section II presents some
background that is necessary. Section III presents related work
in the area of geographically distributed spatial query process-
ing. Section IV presents our algorithm, called the optimal
algorithm, for processing a geographically distributed spatial
query that can handle multiple (and more than two) sites.
Section V presents an example that illustrates our new
algorithm. Section VI presents our experimental methodology
and cost estimation formulas. Section VII presents the results
and discussion of our experiments. Finally, Section VIII con-
cludes this paper and presents future research directions.

II. BACKGROUND

This background section presents some definitions that are
required for our proposed strategy and for the section on
related work (Section III). These include definitions for spatial
join, spatial semijoin, Bloom filter, naïve approach, and R-tree.

A. Distributed Spatial Query Operators
A spatial join [5], [22]–[24] takes two spatial relations

Y and Z, each with a spatial attribute, and relates pairs of
tuples between Y and Z using a spatial predicate that is applied
to the spatial attribute values. Examples of spatial predicates
include the overlap, containment, and adjacency of two spatial
attributes. This paper assumes that the overlap predicate is
used, but will work for any other spatial predicate.

A spatial semijoin [17] is performed by projecting the
spatial attribute from one relation, transmitting it to the site
that contains the other spatial relation, and performing a spatial
join between the spatial projection and relation. Then, the
qualifying tuples from the second site are shipped back to
the first site and joined with the spatial relation on that site.
We used a modified version of this semijoin strategy, which
will be presented in Section IV.

A Bloom filter [25] is a hashed bit array that provides a
compact but imprecise representation of the values of a joining
attribute. A 1 b represents the possible existence of a joining
attribute value, while a 0 b represents the absence of the value.

B. Naïve Approach
Our new optimized strategy for geographically distributed

spatial query processing will be compared for performance
against a naïve approach, which is also known as an IFS. Our
naïve approach is based on the IFS utilized in [21] and used
with spatial data instead of standard relational data. In the
naïve strategy, all spatial relations are transmitted in their
original, unreduced form, to the query site. In addition to the
potentially large size of the relations, many tuples that will
not participate in the final result are being sent unnecessarily
to the query site.

C. R-Tree
The R-tree [4], [26] is a spatial access method (i.e., spatial

index) that indexes a set of spatial objects or MBRs by their
location in multidimensional space. The leaf level contains
the spatial objects or MBRs, while the nonleaf levels contain

OSBORN AND ZAAMOUT: USING SPATIAL SEMIJOINS OVER MULTIPLE SITES 73

Fig. 1. Spatial projection from an R-tree (data from [4]).

MBRs that encompass other MBRs in the lower levels. In this
paper, we utilize the R-tree for obtaining the spatial attribute
projection required for a semijoin. The leaf level nodes can
be scanned and the MBRs can be extracted. This allows the
algorithm to avoid having to scan entire spatial relations in
order to only obtain the spatial objects and corresponding
identifiers. Fig. 1 shows this strategy.

Many variants of the R-tree have been proposed (see [4]
for a comprehensive survey). Some recent adaptations include
indexing in peer-to-peer systems [27] and in temporal
data [28].

III. RELATED WORK

In this section, we focus on previously proposed approaches
and operators used to process geographically distributed spatial
queries. Most research in geographically distributed spatial
query processing focuses on spatial join algorithms, spa-
tial semijoins algorithms, and the use of Bloom filters for
processing geographically distributed spatial queries. With the
exception of [20], all the proposed strategies for processing
geographically distributed spatial queries are proposed for two
sites only. We summarize these works below.

A. Spatial Join

A significant majority of spatial join algorithms are designed
for a centralized system (see [23], [24]) or for a parallel
system that lacks geographic distribution (see [29], [30]).
Jacox and Samet [22] present a comprehensive survey on
these algorithms for further information. This section focuses
on spatial join strategies for geographically distributed spatial
queries.

Kang et al. [15] proposed a parallel spatial join strategy
that is adapted to a geographically distributed spatial database.
Their strategy has two phases: 1) data redistribution and
2) filter and refinement. In the data redistribution phase,
on each site, the space that contains objects is partitioned

into regions (i.e., buckets). A subset of regions is trans-
mitted between sites so that each site has the same cor-
responding regions from both spatial data sets. This subset
is chosen by estimating which subset will result in the lowest
overall response time (although it is unclear if I/O costs are
considered). Then, the filter and refinement phase is carried
out on both sites by performing a spatial join. An experimental
evaluation shows that the parallel spatial join technique has a
significantly faster response time—up to a 33% improvement
over a semijoin-based strategy. However, it is unclear if this
strategy can be extended efficiently to multiple sites.

Kalnis et al. [31] proposed a spatial join strategy between
two spatial data sets R and S on noncooperating sites. For
their strategy, the query site is any mobile device. Given the
limited memory on a mobile device, the goal of their work
is to reduce the cost of data transmission by pruning objects
that will not be a part of the final result before they are sent
to the mobile device for the final join. This is accomplished
through the recursive partitioning of the overall space on both
sites. If one subregion on one site contains no objects, then
the corresponding subregion on the other site will be pruned
as well. Related subregions between relations R and S that
qualify for transmission to the query site are transmitted and
can be joined with any spatial join technique, such as a nested
loop join. An experimental evaluation shows that this approach
achieves a lower data transmission cost in many cases, with the
exception being in a comparison against the spatial semijoin.
One limitation of their work is the consideration of spatial
data sets from two sites only, although it is mentioned by the
authors that joins of three or more sites will be considered in
the future.

B. Spatial Semijoin
Tan et al. [16] and Abel et al. [17] proposed a spatial

semijoin operator that combines the conventional semijoin
operator with the filter stage of spatial query processing in
order to reduce the data transmission, I/O cost, and CPU cost.

74 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016

Their work explores two adaptations of the spatial semijoin.
In the first, a projection of a set of MBRs from one spatial
relation is transmitted to another site and applied its spatial
relation using a spatial join. In the second, the projection is
a single-dimensional mapping that represents the objects in
each spatial relation. A performance evaluation between these
approaches shows that: 1) for object sets with very large spatial
descriptions, both strategies have similar performance; 2) for
object sets with smaller spatial descriptions, a spatial semijoin
that uses single-dimensional mapping works best; 3) using the
R-tree for retrieving the MBRs incurs significant CPU costs;
and 4) single-dimensional mapping causes more false drops
than the MBRs.

Karam and Petry [19] proposed a spatial semijoin, which
differs from [16] and [17] in that the MBRs from different
levels of the R-tree are chosen for the spatial semijoin, instead
of requiring that all come from the same level. A performance
evaluation shows that their spatial semijoin outperforms the
naïve spatial join (i.e., the whole relation is shipped to the
other site for joining) when applied to real world spatial data,
but not when applied to randomly generated rectangle sets.
Limitation of their work is: 1) no comparison versus other
strategies and 2) no consideration of CPU time.

C. Bloom Filters

Karam [18] proposed a 2-D bit-matrix approach for
performing a spatial semijoin of two relations that attempts
to minimize the data transmission, I/O cost, and CPU cost.
A 2-D space is partitioned into equal-sized regions, with each
region mapping to a bit in a 2-D array. If a region contains
any objects, the corresponding bit is set to 1. This bit-matrix is
transmitted to the site containing the other spatial relation, and
is applied by testing each region that contains objects for the
existence of a 1 bit in the bit-matrix. Any qualifying objects
are sent to the first site. A performance evaluation shows that
this approach shows the best improvement when applied to real
world spatial data. Limitation of this paper is: 1) an evaluation
against the spatial join, and not versus a spatial semijoin,
which in functionality is a closer match to the bit-matrix
approach and 2) no compression of the bit-matrix—a
bit-matrix that contains many zeros is still transmitted in its
entirety.

Hua et al. [20] proposed the BR-tree, which is an R-tree
that is augmented with Bloom filters to support an exact-
match spatial query. Each node entry contains: 1) an MBR
that approximates an object or a subset of objects and 2) a
Bloom filter that also represents one or more objects. In a
leaf node, a Bloom filter is created by taking each object and
producing k bits in the filter using different hash functions. In
a nonleaf node entry, a Bloom filter is created by intersecting
the Bloom filters in its child node. Although the BR-tree
supports exact-match spatial queries using Bloom filters, it
still requires the MBRs for region and point queries. A
general strategy for processing distributed region, point, and
exact-match queries is proposed. The algorithm duplicates the
root of every BR-tree across every site in the geographically
distributed spatial database. Any objects that pass the test
against a root node is shipped to the site containing the

original BR-tree. This strategy works for any number of
sites. A significant limitation is a lack of support for spatial
joins.

IV. OPTIMIZED STRATEGY

In this section, we present our optimized strategy for
processing a geographically distributed spatial query. The
focus is to reduce the data transmission, I/O cost, and CPU
cost by utilizing the semijoin operator. We first present our
preliminaries, followed by the optimized algorithm itself.

A. Preliminaries

We attempt to reduce all of the cost factors—primarily data
transmission, but also the I/O and CPU costs—by utilizing the
spatial semijoin operator. The original semijoin was proposed
for the use in optimizing a geographically distributed relational
query [6], [8], [32]. Its primary focus was to significantly
reduce the cost of data transmissions across network lines
by eliminating the data that were not needed for the final
result before they were shipped. The spatial semijoin has the
same primary objective in a geographically distributed spatial
database system.

We utilize a greedy approach in our strategy. Spatial
semijoins are applied in the following manner. We transmit
the smaller spatial attributes to other sites and apply them to
the larger spatial relations in order to eliminate a significant
amount of data that will not participate in the final result.
The transmission of the spatial projection from the smaller
spatial relations to the larger ones, instead of the other
way around, can significantly reduce the amount of spatial
data that participates in the query, because it is more likely
that the smaller spatial relation will have more participating
tuples than the larger spatial relation. Reducing the larger
spatial relation, therefore, is more advantageous. This not only
reduces the amount of spatial data that must be transmitted,
but also reduces the amount of spatial data that must be
read and written, thus, reducing I/O. Although this approach
has been applied for different types of spatial joins and
strategies for processing geographically distributed relational
queries [6], [8], it has not been applied in processing a
geographically distributed spatial query that involves multiple
(i.e., more than two) sites. Given that many sites (and spatial
relations) are now involved, this affects the choice of which
smaller spatial attribute projections to send to which larger
spatial relations.

We chose to apply this technique for reducing the cost
factors, and not to use estimations of selectivity for the follow-
ing reasons. First, since our spatial attributes are representing
random sets of objects, we felt it was not realistic to expect
duplicate objects (or at least duplicate MBRs) in a spatial
attribute that would be removed during a projection operation.
Therefore, selectivity methods that are based on a low ratio
of distinct values to the total number of values in an attribute
would not be applicable. Second, we also consider this to be
a worst case scenario, since an entire spatial attribute must
ultimately be shipped to another site in order to perform a
spatial semijoin.

OSBORN AND ZAAMOUT: USING SPATIAL SEMIJOINS OVER MULTIPLE SITES 75

We utilize a modified version of the approximation-based
spatial semijoin that is proposed in [16]. In our implementa-
tion of the spatial semijoin, we use the following approach.
We have two sites Y and Z that each contains a spatial relation.
First, we obtain the spatial attribute projection from relation Y
(or from an R-tree index if available). Then, the spatial
projection is transferred to the site containing relation Z and
joined on its spatial attribute. Our spatial semijoin differs after
this point. Instead of sending the qualifying tuples from Z back
to Y for the final join, we send back to Y the identifiers that
correspond to the objects from the spatial attribute projection
that participated in the spatial semijoin. These identifiers are
used to select tuples from relation Y to ship to the final query
site. In addition, the tuples on site Z that qualified in the
spatial semijoin are also shipped to the query site. Using this
spatial semijoin strategy allows us to incorporate more than
two sites when processing a geographically distributed spatial
query. In addition, sending all qualifying tuples from relation Z
directly to the query site for a final join, as opposed to sending
them back to Y first, performing a spatial join and then sending
the partial result to the query site, will further reduce the cost
of data transmission.

We make the following assumptions in this paper.
1) Every spatial relation has one spatial attribute. We use

this as a starting point for processing geographically dis-
tributed spatial queries, because the focus of this paper
is to propose a strategy that can be applied to more than
two sites. Extensions to two or more spatial attributes in
a spatial relation will be a future consideration.

2) The spatial attribute for every spatial relation is already
indexed by an R-tree (or a similar index that places the
MBRs for all spatial objects in its leaf level). Many
database vendors provide the R-tree for indexing spatial
data [33]. Therefore, it is safe to expect one to be
available and used for indexing the spatial attribute of a
spatial relation.

3) Every spatial object is represented using its MBR.
R-tree-based structures store object approximations in
the form of MBRs, with a reference to the actual object
in the spatial database. Although utilizing MBRs instead
of the actual objects themselves will result in some false
positives, utilizing them will also result in faster spatial
join times, since testing for the overlap of two MBRs
is faster than testing for overlap of arbirarily shaped
objects.

4) All spatial objects (or corresponding MBRs) in all
spatial attribute are drawn from the same spatial domain
(i.e., the same region of space). This is to ensure that
the potential for overlap between MBRs from different
spatial relations exists. However, our strategy will work
across different spatial domains if they overlap, or some
domains are contained in others. Furthermore, our strat-
egy will determine via spatial semijoins if no overlap
between spatial relations exists, and would avoid sending
any spatial data to the query site.

5) Every site that participates in the geographically distrib-
uted spatial query has one spatial relation that is required
for the query. If a site contains other spatial relations

that are required for the query, it is assumed that all
local processing has taken place and one spatial relation
remains. Since, by the definition of a database, all data
are related in some way [6] it is fair to say that the
data can be processed locally with joins and selections
to produce one overall spatial relation.

6) The cardinality of each spatial attribute is equal to the
number of MBRs in the relation. That is, we assume
that all the MBRs in a spatial attribute are distinct and
represent a random collection of spatial objects. Unless
several cases exist where two or more objects happen
to have the same exact MBR representation, it is fair to
say that all MBRs will be distinct.

7) Finally, the number of sites participating in the geo-
graphically distributed spatial query is a multiple of two.
The reason for this is to be able to reduce the spatial
relations on all participating sites using our strategy
below. However, in the worst case, if there is an odd
number of sites, then only one spatial relation will not
be reduced, and therefore be shipped to the query site
in its entirety. This could be the smallest spatial relation
in order to keep this cost minimal.

B. Optimized Strategy

Given n sites that will be participating in process-
ing a geographically distributed spatial query, where each
site has one spatial relation, our strategy has four main
steps:

1) ordering and grouping participating sites (i.e., spatial
relations) by spatial attribute cardinality;

2) transmission of spatial attributes;
3) spatial semijoin execution;
4) transmission of qualifying tuples to query site for the

final spatial join and processing.
Each step is described in detail next.
1) Ordering and Transmission of Spatial Attributes: First,

all participating sites are ordered by increasing cardinality of
the spatial attribute contained in its spatial relation. After the
sites are ordered, the first n/2 sites of the ordered list are
placed in a set P, while the remaining n/2 sites are placed in
a set Q.

Then, the spatial attribute from the spatial relation on each
site in P is projected and transmitted to a site in Q in the
following manner.

a) The spatial attribute from the site with the smallest
cardinality in P is sent to the site with the smallest
cardinality in Q.

b) The spatial attribute from the site with the next smallest
cardinality in P is sent to the site with the next smallest
cardinality in Q.

c) This happens until the spatial attribute from the site with
the largest cardinality in P is sent to the site with the
largest cardinality in Q.

Because we are assuming that every participating spatial
attribute contains unique MBRs, we will not have the benefit
of reduced spatial attribute projection sizes. Therefore, sending
the smaller spatial attributes to the sites of larger spatial

76 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016

relations will further reduce the amount of spatial data that
is being transmitted, especially if the larger spatial relations
have fewer participating tuples.

2) Spatial Semijoins and Final Transmission: Next, on
each site in Q, a spatial semijoin is performed between the
existing spatial relation and the spatial attribute sent from
the corresponding site in P. The results of the semijoin are:
1) the set of tuples on the site in Q that qualified during the
spatial semijoin and 2) a set of identifiers from the spatial
attribute from P whose MBRs also qualified during the spatial
semijoin. While the spatial semijoin is being executed, any
tuples from the spatial relation from the site in Q that qualified
are automatically shipped to the query site. At the same
time, any identifiers from any qualifying MBRs from the
spatial attribute from P are sent back to its corresponding
site.

Finally, for all sites in P, the tuples corresponding to any
identifiers that are shipped back from the spatial semijoin sites
(i.e., sites in Q) are fetched and sent to the query site. At the
query site, the final spatial join is performed.

V. EXAMPLE

Suppose there exists a geographically distributed spatial
database with six sites, as shown in Fig. 2(a). Each site con-
tains a spatial relation. R1 contains 100 tuples, while R2, R3,
R4, R5, and R6 contain 800, 200, 600, 1000, and 400 tuples,
respectively. In addition, each spatial relation contains one
spatial attribute. Our strategy for processing a geographically
distributed spatial query that involves these sites proceeds
as follows. First, the sites are ordered by increasing spatial
attribute cardinality. Then, the list of sites is divided into the
two sets. The set P will contain the sites R1, R3, and R6,
while the set Q will contain the sites R4, R2, and R5.

Next, the spatial attributes from the sites in set P are
projected and sent to the sites in Q in the following manner.
First, the spatial attribute from the site R1 is first projected
from the corresponding relation, and then sent to the site R4.
Since we have an R-tree indexing the relation on its spatial
attribute, a scan of the leaf nodes will provide us with the
spatial projection. Similarly, the spatial attribute from the
site R3 is projected and sent to the site R2, while the spatial
attribute from the site R6 is projected and sent to the site R5.
This is shown in Fig. 2(b).

Then, on each of the sites R4, R2, and R5, a spatial semijoin
is performed between the local spatial relation and the spatial
attribute projection that was shipped to it. During this process,
the identifiers that correspond to the MBRs in the spatial
attribute that qualified during the spatial semijoin are sent back
to originating site. This is shown in Fig. 2(c). For example,
on site R4, the identifiers corresponding to the qualifying
MBRs are sent back to site R1, and are used to select the
corresponding tuples. In addition, the qualifying tuples from
the local relation on sites R4, R2, and R6 are sent to the query
site. In Fig. 2(d), R4 will have 280 tuples sent to the query site
while R2 and R5 will have 350 and 565 tuples, respectively,
sent to the query site.

Finally, all qualifying tuples from sites R1, R3, and R6
are shipped to the query site. In Fig. 2(d), R1 will have

Fig. 2. Example geographically distributed spatial query. (a) Example geo-
graphically distributed spatial database. (b) Transmission of MBRs. (c) Trans-
mission of IDs back to originating sites. (d) Transmission of qualifying tuples
to query site.

50 qualifying tuples, and R3 and R6 will have 80 and
125 qualifying tuples, respectively, sent to the query site for
the final spatial join.

VI. EVALUATION METHODOLOGY

In this section, we present our empirical approach for
evaluating our optimized strategy. We compared our strat-
egy with the naïve approach that we summarized earlier

OSBORN AND ZAAMOUT: USING SPATIAL SEMIJOINS OVER MULTIPLE SITES 77

in Section II. Here, we present our geographically distributed
spatial database environment, spatial data sets, tests, and all
formulas and criteria for estimating the data transmission,
I/O and CPU costs.

A. Environment and Data

We simulate a six-site geographically distributed spatial
database. In this simulation, we assume that all sites are
homogeneous with respect to both hardware and software.
In addition, the code used for the simulation is written in the
C++ programming language. This includes the implementa-
tion for both the overall execution strategy and the spatial
semijoin.

We utilize spatial relations with sizes ranging from
1000 to 100 000 tuples. This provides an opportunity to
evaluate our strategy for both smaller and larger spatial object
sets. Every spatial relation is indexed on its spatial attribute
using an R-tree [26].

Each site contains the following spatial relations:
1) R1: 1000 tuples;
2) R2: 2000 tuples;
3) R3: 4000 and 40 000 tuples;
4) R4: 6000 and 60 000 tuples;
5) R5: 8000 and 80 000 tuples;
6) R6: 10 000 and 100 000 tuples.

It must be noted that although sites R3 through R6 have two
spatial relations, only one is used at a time, depending on the
query being evaluated.

Each spatial relation has one spatial attribute, which consists
of four values (lx, ly, hx, hy) that represent the extents of
an MBR. In addition, each spatial relation has the following
nonspatial attributes: 1) identifier; 2) region name; 3) pop-
ulation; and 4) a line slope indicator. No fault tolerance
mechanisms, in particular using data replication, are utilized
in our simulated geographically distributed spatial database.
We chose to address data replication in the future work
because our focus is to determine how well our algorithm
performs over multiple sites. However, future considerations
of fault tolerance will make our algorithms more robust.

B. Evaluation Tests and Criteria

For all test queries, our performance criteria include data
transmission, I/O cost and CPU cost.

For our evaluation, we perform the following sets of tests.
For the first test set, we evaluate the optimized strategy
using queries that require spatial relations from two sites of
our geographically distributed spatial database. We executed
16 queries. The first eight queries process spatial relations that
range between 1000 and 10 000 tuples. The remaining eight
queries process spatial relations that range between 1000 and
100 000 tuples. The different combinations of spatial relations
can be found by consulting Tables I–III.

For the second test set, we evaluated six queries that require
data from four of the six sites, using the following spatial
relations:

1) 1000, 2000, 4000, and 6000 tuples;
2) 1000, 2000, 8000, and 10 000 tuples;

TABLE I

TWO SITES—TRANSMISSION COST

TABLE II

TWO SITES—I/O COST

TABLE III

TWO SITES—CPU COST

3) 4000, 6000, 8000, and 10 000 tuples;
4) 1000, 2000, 40 000, and 60 000 tuples;
5) 1000, 2000, 80 000, and 100 000 tuples;
6) 4000, 6000, 80 000, and 100 000 tuples.

Finally, we performed two queries that require data from all
six sites, using the following spatial relations:

1) 1000, 2000, 4000, 6000, 8000, and 10 000 tuples;
2) 1000, 2000, 4000, 60 000, 80 000, and 100 000 tuples.

78 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016

C. Data Transmission Cost Calculation

For our evaluation, we estimated the cost of data trans-
mission as the total number of bytes that are transmitted.
For estimating the cost for transmitting a data item X, the
following formula has been proposed [11]:

T cost(X) = TINIT + TBYTE ∗ sizeof(X) (1)

where TINIT is the time to initiate the transmission and TBYTE
is the time required to transmit one byte of data. However,
given the homogeneous system we are simulating, we assume
that both TINIT and TBYTE are constant, and therefore, are not
incorporated into our calculations below.

In addition, we assume an integer size of 2 B, a double-
precision floating point size of 8 B, a long integer size of 8 B,
and a character size of 1 B. We first present the various costs
of data transmission and finish with overall costs for both the
optimized strategy and the naïve approach.

The various costs of data transmission are calculated in
the following manner. There are several calculations required.
First, the cost for transmitting an identifier between two sites is

T cost(ID) = sizeof(int). (2)

Next, the cost for transmitting an MBR is equal to the
number of bytes used to represent an MBR

T cost(MBR) = 4 ∗ sizeof(double) + T cost(ID) (3)

which encompasses the coordinate values (lx, ly, hx, hy) of
the MBR itself, and the tuple identifier. Similarly, the cost for
transmitting a tuple is

T cost(tuple) = T cost(MBR) + 20 ∗ sizeof(char)

+ sizeof(longint) + sizeof(int) (4)

which encompasses the region name (up to 20 characters),
population, and line slope indicator.

Finally, given spatial attribute X from spatial relation Y
(i.e., site Y from the set P above) that is shipped to spatial
relation Z (i.e., site Z from set Q above), the total data
transmission cost for processing the spatial semijoin in the
optimized strategy is

T cost(X, Y, Z)

= #tuples(Y) ∗ T cost(MBR)

+ #qualifiers(X) ∗ (T cost(ID) + T cost(tuple))

+ #qualifiers(Z) ∗ T cost(tuple). (5)

The first term is the cost of transmitting the spatial attribute X
from spatial relation Y to spatial relation Z. The second term
is the cost of both transmitting back to Y the corresponding
tuple identifiers for the qualifying the MBRs in X, and
then transmitting the tuples that correspond to those tuple
identifiers to the query site. Finally, the third term is the cost
of transmitting qualifying tuples from Z to the query site. This
cost is calculated for every pair (Y, Z) of sites that are involved
in the query, with all costs summed together to obtain the total
cost of the query. The function #qualifiers(relation) return the
number of tuples from a relation that participate in the result
of a spatial semijoin operation.

For the naïve approach, the total data transmission cost
consists of the transmission of all participating spatial relations
to the query site. The cost for shipping one spatial relation R
to the query is calculated as

T cost(R) = #tuples(R) ∗ T cost(tuple). (6)

D. I/O Cost Calculation

The I/O cost will be calculated as time in milliseconds.
We use a seek time of 4 ms, a transfer time of 0.3 ms
per block, a R-tree node size of 1024 B (i.e., approx-
imately 50 MBRs), and a disk block size of 1024 B.
We first present the calculations for various costs and finish
with overall costs for both the optimized strategy and the naïve
approach.

We estimate the cost of fetching spatial attribute X from
spatial relation Y on a site from set P as

IOcostA(X, Y) = #nodes(X, Y) ∗ (seek + transfer) (7)

where #nodes(X, Y) is the number of leaf nodes in the R-tree
that is indexing spatial relation Y.

We estimate the I/O cost for reading in spatial relation Y
on a site as

IOcostR(Y)

= seek + transfer

(
#tuples(Y) ∗ tuple_size(Y)

block_size

)
. (8)

The relation is only being read in once because we are
assuming the spatial attribute being sent from the other site
can be stored in memory.

The cost of reading individual qualifying tuples from spatial
relation Y to send to the query site is

IOcostRI(Y) = #qualifiers(Y)

((log50(#tuples(Y)) + 1) ∗ (seek + transfer)) (9)

where log50(#tuples(Y)) is the height of the R-tree that is
indexing spatial relation Y.

The cost of writing the set of qualifying tuples from spatial
relation Y as they arrive at the query site is

IOcostW(Y) = (seek + transfer) ∗ #qualifiers(Y). (10)

We assume the worst case, here, that tuples are arriving
individually from any site and, therefore, each may require
a seek and transfer to store with the correct relation.

Given the above equations, for the optimized strategy, the
I/O cost for performing a spatial semijoin between spatial
relations Y and Z on spatial attribute X, and sending the
intermediate results to the query site is

IOcost(X, Y, Z) = IOcostA(X, Y) + IOcostR(Z)

IOcostRI(Y) + IOcostW(Y) + IOcostW(Z) (11)

where the first term is the cost of projecting the spatial
attribute X from spatial relation Y, the second term is the
cost of reading in spatial relation Z in order to perform the
spatial semijoin, the third term is the cost of reading individual
tuples from spatial relation Y to send to the query site, and the

OSBORN AND ZAAMOUT: USING SPATIAL SEMIJOINS OVER MULTIPLE SITES 79

fourth and the fifth terms are the cost of writing the
intermediate result tuples from spatial relations Y and Z,
respectively.

Finally, the I/O costs for the final join of n relations at the
query site are the following. For the first pair of intermediate
result spatial relations YI and ZI, and assuming a block nested
loop spatial join is used, we require that each block is fetched
in one relation

IOcostJ1(YI)

= (seek + transfer) ∗
(

#tuples(YI) ∗ tuple_size(YI)

block_size

)
(12)

and for each block in spatial relation YI, the entire spatial
relation ZI must be fetched for comparison

IOcostJ2(ZI)

= seek + transfer ∗
(

#tuples(ZI) ∗ tuple_size(ZI)

block_size

)
. (13)

Then, for the remaining n −2 spatial relations, each is fetched
and compared with the intermediate result using (13). It is
assumed, here, that the intermediate result is smaller, will fit
in memory and therefore does not need to be written out to
disk after each join is performed.

For the naïve approach, the total I/O cost will consist of the
cost of reading the spatial relation from each site, writing the
tuples at the query site, and performing the final spatial join.
First, the total I/O cost for shipping spatial relation Y to the
query site is

IOcost(Y) = IOcostR(Y) + IOcostW(Y). (14)

Finally, for the naïve approach, the total I/O cost for
performing the final spatial join is the same as that for the
optimized strategy.

E. CPU Cost Calculation

The CPU cost will be determined by calculating, for both
the optimized and naïve strategies, the total number of spatial
predicate comparisons that are carried out. For the optimized
strategy, this will include spatial predicate comparisons for all
the semijoins and the final joins at the query site. For the naïve
strategy, this will include the spatial predicate comparisons at
the query site. In addition, we discuss the CPU running time
for the semijoin operations.

VII. EVALUATION RESULTS

In this section, we present the results of our empirical evalu-
ation. We present the results for the geographically distributed
spatial queries that involves two of the six sites, followed by
four of the six sites, and finally, all six sites.

A. Two-Site Query Test

We first present the results of the comparison that involved
two sites of the geographically distributed spatial database.
Table I shows the results of the data transmission cost com-
parison. Along with the pairs of spatial relations (i.e., sites)
that were evaluated, the cost (in bytes) of both our optimized

TABLE IV

FOUR SITES—TRANSMISSION COST

TABLE V

FOUR SITES—I/O COST

strategy (column optimized) and the naïve approach (column
naïve) are presented. In all cases, the optimized strategy has a
lower data transmission cost over the naïve approach. In par-
ticular, the most significant improvement is achieved when
there exists a significant difference in the size of the spatial
relations between the two sites. For example, when the query
involves the sites that contain the 1000- and 100 000-tuple
spatial relations, we have over 90% less data that are being
transmitted when the Optimized strategy is being used to
process the query.

Table II shows the results of the I/O cost comparison.
Again, along with the pairs of relations that were evaluated,
the cost (in milliseconds) of both our optimized strategy
(column optimized) and the naïve approach (column naïve)
is presented. We see a trend that is very similar to that for the
data transmission costs. The optimized strategy outperforms
the naïve approach in all cases, with the most significant
differences occurring when there exists a significant difference
in size of the spatial relations across the two sites.

Table VI shows the CPU cost results. We do find a slight
increase in the number of spatial predicate comparisons for
the optimized strategy over the naïve approach. However, this
increase is <10%, and is significantly less when the spatial
relations vary greatly in size. In addition, the increases are
minimal when compared with the significant savings in the
data transmission and I/O costs.

B. Four-Site Query Test

We now present the results for the four-site queries. Table IV
shows the data transmission results, while Table V shows the
I/O results. For both cases, we find that the optimized strategy
outperforms the naïve approach. In addition, we also find that
the most significant improvement in both data transmission
cost and I/O cost occurs where a significant size difference
exists between the spatial relations—in this case, 1000, 2000,
80 000, and 100 000 tuples.

Table VI shows the CPU cost results. We do find a slight
increase in the number of spatial predicate comparisons for
the Optimized strategy over the naïve approach. However, this
overall increase is <10%, and is significantly less when the

80 CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, VOL. 39, NO. 2, SPRING 2016

TABLE VI

FOUR SITES—CPU COST

spatial relations vary greatly in size. Again, these increases
are minimal when compared with the significant savings in
the data transmission and I/O costs.

C. Six-Site Query Test

Finally, we present the results of the two six-site
queries: 1) from 1000 to 10 000 tuples and 2) from
1000 to 100 000 tuples.

For the first query, we found the data transmission cost
from optimized strategy to be 616 550 B and that from the
naïve strategy to be 2 108 000 B. This gives an improvement
of ∼70%. For the I/O cost, we found that the I/O cost for
the optimized strategy is 76978.83 ms, while the cost for the
naïve strategy is 142 784 ms, for an improvement of ∼46%.
In addition, we found that 26 739 820 231 spatial predicate
comparisons were required by the optimized strategy, and
26 732 000 000 were required by the naïve strategy, for a small
increase in CPU cost.

For the second query, we found a data transmission cost of
376 896 B from the optimized strategy and 13 940 000 B from
the naïve strategy, for a significant improvement of ∼97%.
With respect to the I/O cost, the optimized strategy achieved
64618.22 ms while the naïve strategy produced 942219.46 ms,
for an improvement of ∼93%. Finally, once again the CPU
times are comparable, with a predicate comparison count of
14 054 794 061 for the optimized strategy and 14 050 000 000
for the naïve strategy.

D. Discussion

In all cases, we discovered a significantly lower data trans-
mission cost and lower I/O cost from the optimized over the
naïve approach. We discovered the following trends. First,
the greater the difference in the number of tuples between the
participating relations, the greater the reduction in both the
data transmission cost and the I/O cost that the optimized
strategy achieves over the naïve approach.

Second, we discovered that, although the CPU cost—with
respect to the number of spatial predicate comparisons—is
slightly higher for the optimized strategy than the naïve
approach, we note that the number of spatial predicate com-
parisons that are carried out during the final spatial join is
a very small fraction of the overall number required by the
final spatial join in the naïve approach. The increase in CPU
cost by the optimized approach is at most 10% and in many
cases, <5%, over the CPU cost by the naïve approach. This is
minimal compared with the significant reduction in the other
two factors.

We also performed some evaluations that utilized spatial
relations containing over 100 000 tuples up to 1 million tuples.

We found similar trends with respect to both the data
transmission and I/O costs.

However, with respect to actual CPU clock time, for the
queries involving two sites, the CPU time for semijoin exe-
cution ranged from 1 min for the 1000–4000 tuple query to
50 min for the 2000–100 000 tuple query. When working with
spatial relations containing over 100 000 tuples, the time it look
to execute the spatial semijoins proved to be a bottleneck. This
is due to the choice of using a block nested loop join, which
works well for smaller spatial relations but not larger ones.
In addition, this is due to running our simulations on a machine
that is not high performance. However, further improvement
can be gained by considering other options for spatial joins
and spatial semijoins.

VIII. CONCLUSION

In this paper, we propose a strategy for optimizing queries
in a geographically distributed spatial database that involves
spatial relations on more than two sites. Our optimized strategy
focuses on minimizing the cost of data transmission, as well
as the I/O cost, by applying spatial semijoins. Smaller spatial
attributes are chosen for transmission and application to larger
spatial relations so that both the overall data transmission and
I/O costs are minimized.

We also evaluate empirically our optimized strategy versus
the naïve strategy. Our results are obtained through simulation.
We show that significant reductions in the data transmission
cost and I/O cost over all queries are achieved when then
optimized strategy is utilized. We find at least a 50% reduction
in most cases, in the amount of data being transmitted and
the amount of I/O being incurred. In particular, when the
query involves both smaller and larger spatial relations, the
reductions in both data transmission and I/O costs are very
significant, at ∼90% or greater. With respect to CPU, the
optimized strategy achieves a slightly higher number of spatial
predicate comparisons than the naïve strategy. However, for all
cases it is <10% and for many it is <5%. This is a small price
to pay for the significant achievements in the data transmission
and I/O costs.

A. Future Work

Some directions of future work include the following. One
is to create a real geographical distributed spatial database
system with multiple sites, which will provide a means to
better evaluate our strategy. Another is to evaluate the two-
site version of our strategy (i.e., when only two sites are
involved) versus other existing strategies. Although the focus
of this paper was to extend the number of sites handled
by a geographically distributed spatial query, evaluating the
efficiency of our algorithm in the two-site case versus existing
strategies is also important and would better identify if our
strategy is superior in this situation.

A further research direction includes the consideration of
fault tolerance, in particular, using data replication and frag-
mentation, for our strategy in order to further improve upon
its performance. Finally, some final research directions are to
develop and evaluate other strategies for processing and

OSBORN AND ZAAMOUT: USING SPATIAL SEMIJOINS OVER MULTIPLE SITES 81

optimizing a geographically distributed spatial query.
In particular, it is important to consider the following.

1) The case of spatial relations with more than one spatial
attribute.

2) The use of join indices [34] and other implementations
of the spatial join, spatial semijoin, and a spatial Bloom
filter, as ways to improve overall performance, and in
particular, the CPU time for processing very large spatial
data sets.

3) Estimating the selectivity of spatial attributes when they
contain (mostly) distinct objects.

As discussed, very limited work has been proposed, which
leads to many exciting opportunities for research in the area
of geographically distributed spatial query processing.

ACKNOWLEDGMENT

The authors would like to thank the referees for their
thoughtful and constructive reviews of previous drafts of this
paper.

REFERENCES

[1] W. Osborn and S. Zaamout, “Multiple-site distributed spatial query
optimization using spatial semijoins,” in Proc. 10th Int. Baltic Conf.
Databases Inf. Syst.-Local, 2012, pp. 11–19.

[2] R. Abdalla and V. Tao, “Integrated distributed GIS approach for
earthquake disaster modeling and visualization,” in Geo-Information
for Disaster Management. Berlin, Germany: Springer-Verlag, 2005,
pp. 1183–1192.

[3] T. Hunter, “A distributed spatial data library for emergency
management,” in Geo-Information for Disaster Management. Berlin,
Germany: Springer-Verlag, 2005, pp. 733–750.

[4] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun. 1998.

[5] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Englewood Cliffs,
NJ, USA: Prentice-Hall, 2003.

[6] M. Özsu and P. Valduriez, Principles of Distributed Database Systems.
New York, NY, USA: Springer-Verlag, 2011.

[7] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and
J. B. Rothnie, Jr., “Query processing in a system for distributed
databases (SDD-1),” ACM Trans. Database Syst., vol. 6, no. 4,
pp. 602–625, 1981.

[8] P. M. G. Apers, A. R. Hevner, and S. B. Yao, “Optimization algorithms
for distributed queries,” IEEE Trans. Softw. Eng., vol. 9, no. 1,
pp. 57–68, Jan. 1983.

[9] C. Wang, V. O. K. Li, and A. L. P. Chen, “Distributed query optimization
by one-shot fixed-precision semi-join execution,” in Proc. 7th Int. Conf.
Data Eng., Apr. 1991, pp. 756–763.

[10] N. Roussopoulos and H. Kang, “A pipeline N -way join algorithm based
on the 2-way semijoin program,” IEEE Trans. Knowl. Data Eng., vol. 3,
no. 4, pp. 486–495, Dec. 1991.

[11] G. Lohman et al., “Query processing in R∗,” in Query Processing in
Database Systems. Berlin, Germany: Springer-Verlag, 1985, pp. 31–47.

[12] P. Legato, G. Paletta, and L. Palopoli, “Optimization of join strategies
in distributed databases,” Inf. Syst., vol. 16, no. 4, pp. 363–374, 1991.

[13] C. Wang, A. L. P. Chen, and S.-C. Shyu, “A parallel execution method
for minimizing distributed query response time,” IEEE Trans. Parallel
Distrib. Syst., vol. 3, no. 3, pp. 325–332, May 1992.

[14] D. Kossmann, “The state of the art in distributed query processing,”
ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[15] M.-S. Kang, S.-K. Ko, K. Koh, and Y.-C. Choy, “A parallel spatial
join processing for distributed spatial databases,” in Proc. 5th Int. Conf.
Flexible Query Answering Syst. (FQAS), 2002, pp. 212–225. [Online].
Available: http://portal.acm.org/citation.cfm?id=645424.652610

[16] K.-L. Tan, B. C. Ooi, and D. J. Abel, “Exploiting spatial indexes for
semijoin-based join processing in distributed spatial databases,” IEEE
Trans. Knowl. Data Eng., vol. 12, no. 6, pp. 920–937, Nov./Dec. 2000.

[17] D. J. Abel, B. C. Ooi, K.-L. Tan, R. Power, and J. X. Yu, “Spatial join
strategies in distributed spatial DBMS,” in Proc. 4th Int. Symp. Adv.
Spatial Databases, 1995, pp. 348–367.

[18] O. Karam, “Optimizing distributed spatial joins,” Ph.D. dissertation,
Dept. Comp. Sci., Tulane Univ., New Orleans, LA, USA, 2001.

[19] O. Karam and F. Petry, “Optimizing distributed spatial joins using
R-trees,” in Proc. 43rd ACM Southeast Conf., 2006, pp. 222–226.

[20] Y. Hua, B. Xiao, and J. Wang, “BR-tree: A scalable prototype for
supporting multiple queries of multidimensional data,” IEEE Trans.
Comput., vol. 58, no. 12, pp. 1585–1598, Dec. 2009.

[21] E. Wong, “Retrieving dispersed data from SDD-1,” in Proc. 2nd Berkeley
Workshop Distrib. Data Manage. Comput. Netw., 1977, pp. 217–235.

[22] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, 2007, Art. ID 7.

[23] Y.-W. Huang, N. Jing, and E. A. Rundensteiner, “Integrated query
processing strategies for spatial path queries,” in Proc. 13th Int. Conf.
Data Eng., Apr. 1997, pp. 477–486.

[24] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. C. Vitter,
“Scalable sweeping-based spatial join,” in Proc. 24th Int. Conf. Very
Large Databases, 1998, pp. 570–581.

[25] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[26] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57.

[27] A. Mondal, Y. Lifu, and M. Kitsuregawa, “P2PR-tree: An R-tree-based
spatial index for peer-to-peer environments,” in Proc. EDBT Workshops,
2004, pp. 516–525.

[28] Y. Tao, D. Papadias, and J. Sun, “The TPR∗-tree: An optimized
spatio-temporal access method for predictive queries,” in Proc. 29th Int.
Conf. Very Large Databases, 2003, pp. 790–801.

[29] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen, “Towards paral-
lel spatial query processing for big spatial data,” in Proc. IEEE 26th Int.
Parallel Distrib. Process. Symp. Workshops, May 2012, pp. 2085–2094.

[30] A. Aji et al., “Hadoop GIS: A high performance spatial data warehousing
system over mapreduce,” in Proc. VLDB, vol. 6. 2013, pp. 1009–1020.

[31] P. Kalnis, N. Mamoulis, S. Bakiras, and X. Li, “Ad-hoc distributed
spatial joins on mobile devices,” in Proc. 20th IEEE Int. Parallel Distrib.
Process. Symp., Apr. 2006, pp. 1–10.

[32] P. Bodorik, J. S. Riordon, and J. S. Pyra, “Deciding to correct distributed
query processing,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 3,
pp. 253–265, Jun. 1992.

[33] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and
Y. Theodoridis, R-Trees: Theory and Applications. London, U.K.:
Springer-Verlag, 2005.

[34] P. Valduriez, “Join indices,” ACM Trans. Database Syst., vol. 12, no. 2,
pp. 218–246, 1987.

Wendy Osborn (M’14) received the B.C.S. (Hons.)
and M.Sc. degrees from the University of Windsor,
Windsor, ON, Canada, in 1996 and 1998, respec-
tively, and the Ph.D. degree from the University
of Calgary, Alberta, AB, Canada, in 2005, all in
computer science.

She is currently an Associate Professor with the
Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, AB, Canada.
Her current research interests include distributed
spatial query optimization, query processing for

location-based services in mobile information systems, spatial indexing, and
digital humanities.

Saad Zaamout received the B.Sc. degree in com-
puters and computer information systems from
Philadelphia University, Amman, Jordan, in 2005.

He was a Research Assistant and B.Sc. Student
in computer science with the University of
Lethbridge, Alberta, AB, Canada. He is currently a
Software Developer with SCA Interactive, Calgary,
AB, Canada.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

