

S. Sugimoto et al. (Eds.): ICADL 2006, LNCS 4312, pp. 303 – 312, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Extending Greenstone for Institutional Repositories

David Bainbridge1, Wendy Osborn2, Ian H. Witten1, and David M. Nichols1

1 Department of Computer Science
University of Waikato

Hamilton, New Zealand

{davidb, ihw, dmn}@cs.waikato.ac.nz
2 Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Canada

osborn@cs.uleth.ca

Abstract. We examine the problem of designing a generalized system for
building institutional repositories. Widely used schemes such as DSpace are
tailored to a particular set of requirements: fixed metadata set; standard view
when searching and browsing; pre-determined sequence for depositing items;
built-in workflow for vetting new items. In contrast, Fedora builds in flexibility:
institutional repositories are just one possible instantiation—however generality
incurs a high overhead and uptake has been sluggish. This paper shows how
existing components of the Greenstone software can be repurposed to provide a
generalized institutional repository that falls between these extremes.

1 Introduction

Institutional repositories are a popular form of digital library. Although many
software systems exist to support them, widely used ones (such as DSpace [1]) are
tailored to particular requirements. They assume a certain metadata set and present
readers with a fixed view of the collection when searching and browsing the
repository. Depositing an item involves a pre-determined sequence of steps; the
presentation of the pages in the sequence is difficult to customize; and the workflow
involved in reviewing new items is built-in. Although with sufficient programming
effort one can circumvent such restrictions—existing institutional repository systems
do provide some hooks to facilitate a limited degree of personalization—it is fair to
say that they are not designed with flexibility in mind. For example, it would be hard
to adapt them to use a radically different metadata set or a different sequence of
operations when depositing new items.

The Fedora framework [2] is an interesting exception that has been designed
expressly with flexibility in mind—an institutional repository is merely one possible
instantiation. However working with such a generalized system incurs a high
overhead and such manifestations have been slow to emerge. One promising
development in this area is Fez [3], which we review with other institutional
repository software solutions in Section 6.

304 D. Bainbridge et al.

The paper is structured as follows. First we discuss what we mean by a
“generalized institutional repository.” Section 3 demonstrates a minimalist example to
help convey the salient features of such a resource. Then we describe how existing
components of Greenstone were repurposed to give it functionality comparable to
existing repository systems. Section 5 presents a second worked example to show
how the new system can be configured to emulate DSpace’s submission workflow.
We conclude by placing the work in the context of other repository software: DSpace,
GNU EPrints and Fez.

2 Background

Greenstone is a suite of software for building and distributing digital library
collections [4]. It is not a digital library but a tool for building digital libraries. It
provides a flexible way of organizing information and publishing it on the Internet in
the form of a fully-searchable, metadata-driven digital library. Using it, a rich set of
different types of collections can be formed that reflect the nature of the source
documents and metadata available.

In extending Greenstone for institutional repository use our aim was to develop a
software solution that transcends the limitations imposed by current solutions
specifically targeted towards institutional repositories, without triggering the high
startup costs of shifting to a highly generalized framework.

We want to enable librarians to turn any Greenstone collection into a repository
into which new items and metadata can be deposited by authorized personnel through
an ordinary web interface. But different Greenstone collections have different
metadata sets, and there is no restriction on how extensive—or minimalist—such
metadata can be. So when metadata is entered through a sequence of web pages, the
content of these pages, the number of pages in the sequence, and the metadata items
that each one requests must all be customizable. For one collection a single web form
may suffice; another may require a long sequence of different forms. When the
depositing user goes back to an earlier to step to correct a metadata entry this variable
amount of data—which is entirely dependent on the metadata set in use—must be
remembered by the web browser.

We use the following notion of “generalized institutional repository”:

• The digital library collection can use any metadata set.
• Depositing an item can involve any number of steps.
• The stages involved in depositing an item can be designed individually.
• Flexible workflow.

Depending on institutional procedures librarians may have roles such as 'reviewer',
'approver' or 'editor' for deposited items [1].

3 Example of Operation

To help illustrate the core business of an institutional repository, here is a minimalist
example. Imagine a Faculty of Arts that has moved to a digital solution—couched as

 Extending Greenstone for Institutional Repositories 305

an institutional repository—that replaces the physical photographic color slide
resource that the Faculty previously provided.

Figure 1 shows the submission process, which has in fact been developed using the
newly extended version of Greenstone. A single page is used to gather salient facts
before an item is deposited. Only four items of metadata are requested along with a
picture of the artwork: title, artist, date and notes. A real-world version would most
likely request many more fields than this.

To reach this page the user has already had to log in. In Figure 1a she is selecting
the destination collection (the Art History repository). In the next step (Figure 1b) she
has used the file browser that is launched by pressing the “Browse …” button to
locate the artwork to submit, and entered metadata describing the items (Title: The
Bower Meadow; Artist: Rossetti; Date: 1871–1872) along with notes about the
painting. Along the bottom is a progress bar with a triangular marker showing the
current position (“specify metadata”).

Clicking on “deposit item” takes her to the next step (Figure 1c) where the new
information is digested into the collection, which occurs in a matter of seconds. The
final step is to view the collection, which is shown in Figure 1d where the user is
browsing the Art History Repository by title. The repository is clearly in its early
stages with only three items added so far, with the newest addition, The Bower
Meadow, listed at the top.

4 Implementation

Only a modest amount of development work was necessary to extend Greenstone to
support the notion of generalized institutional repository given earlier. The three
enabling technologies were macros, runtime actions, and incremental building, all of
which exist in Greenstone.

Greenstone macros are the key to controlling the generalized workflow. Checking
form content and manipulations of form layout (adding in previous values etc.) are
spliced into macros through JavaScript and DOM manipulation. To enable document
submission, an existing runtime 'action' called The Collector [5], which supports the
creation and building of collections through a web browser, was further abstracted
and generalized. This 'action' was already able to provide a progress bar and used a
database to store previously entered values from one page to the next. The new
extension was to add support for multipart form file-upload with the new action called
“the depositor.” Incremental building using the Lucene indexer [6] is already a feature
of Greenstone.

4.1 Macros

A Greenstone installation’s look and feel, page structure and language interfaces, are
all achieved using a simple macro language. Figure 2 shows an artificial excerpt to
illustrate the syntax through which macros are defined and used. Macro definitions
comprise a name, flanked by underscores, and the corresponding content, placed
within braces ({ … }).

306 D. Bainbridge et al.

Macros are grouped together into packages, with lexical scoping, and an
inheritance scheme is used to determine which definitions are in effect at any given
time. This allows global formatting styles to be embedded with the particular content
that is generated for a page. For example, typical pages contain a _header_ …
content … _footer_ sequence. Figure 2 shows a baseline page defined in the
“Globals” package, which, in fact, is never intended to be seen. It is overridden in the
“query” package below to generate a page that invites the user to enter search terms
and perform a query.

Macros can include parameters interposed in square brackets between name and
content. These are known as “page parameters” because they control the overall
generation of a page. They are expressed as [x=y], which gives parameter x the value
y. Two parameters of particular interest are l, which determines what language is
used, and v, which controls whether or not images are used in the interface.

(a)

(b)

(c)

(d)

Fig. 1. A simple example (a) selecting the Art History repository (b) selecting and image and
entering metadata (c) depositing the item (d) browsing the collection

 Extending Greenstone for Institutional Repositories 307

In Figure 2 three versions of the macro _header_ are defined within the “query”
package, corresponding to the English, French and Spanish languages. They set the
parameter I to the appropriate two-letter international standard abbreviation (ISO
639), enabling the system to present the appropriate version when the page is
generated.

A precedence ordering for evaluating page parameters is built into the macro
language to resolve conflicting definitions. Also included are conditional
statements—an example can be seen in the _content_ macro of Figure 2, which uses
an “If” statement, conditioned by the macro _cgiargqb_, to determine whether the
query box that appears on the search page should be the normal one or a large one.
The value of _cgiargqb_ is set at runtime by the Greenstone system (the user can
change it on a “Preferences” page). Many other system-defined macros have values
that are determined at runtime: examples include the URL prefix where Greenstone is
installed on the system, and the number of documents returned by a search.

4.2 Controlling the Workflow

Figure 3 shows edited highlights of the macro file that produces the simple workflow
shown in Figure 1. ssKey points in the file are:

• _numsteps_, a compulsory macro that defines the number N of stages in this
submission process.

• _step1content_, _step2content_, … _stepNcontent_ is the convention used to
define the page content that is displayed, along with _stepNtext_ which controls
what appears in the progress bar.

• _step1text_ in this example is defined to be _textmeta_, another macro (defined
at the bottom of Figure 2) which resolves through the language independence
feature to “specify metadata” when viewed in English

• _laststep_ controls how the workflow ends: for example, automatic building the
collection, or going to the collection’s editor for review.

package Globals

header \{ The New Zealand Digital Library Project \}
content \{ Oops. If you are reading this then an error
 has occurred in the runtime system. \}
footer \{ Powered by Greenstone.

\}

package query

content \{ _If_(_cgiargqb_ eq

"large",_largequerybox_,_normalquerybox_)
 ... \}

... the macro descriptions for _largequerybox_, _normalquerybox_,
and other nested macros are omitted for brevity

header [l=en] \{Begin search \}
header [l=fr] \{D\'emarrer la recherche \}
header [l=es] \{Iniciar la b\'usqueda\}

... and so on

Fig. 2. Excerpt of macro file syntax to demonstrate main features

308 D. Bainbridge et al.

• _depositorbar_ is defined by the runtime system (the depositor action). It is
formed by composing the information represented in _numsteps_ with
step1text, _step2text_ and so on. _laststep_ specifies which of the predefined
endings terminates the submission process (e.g. _contentbuild_ and _textbuild_).
Since these two are stored in the macro files they can be refined and extended as
needed.

5 Extended Example: Emulating DSpace

To demonstrate the versatility of the design, a submission workflow in Greenstone
was developed that closely emulates DSpace’s [1]. Since both are open source
systems, much of the HTML was transferred directly. The functionality is very
similar, the difference being in how a submission involving multiple files is
handled—as when submitting a web page including external resources such as

package depositor

numsteps {1}

textstep1 {_textmeta_}
laststep {build}
textlaststep {_textbuild_}

step1content {

<form name="depositorform" method=post action="_gwcgi_"
 enctype="multipart/form-data">
<input type=hidden name="p" value="_cgiargp_">

<center><h2>_textstep1_</h2></center>
<p>_textimagesimpledesc_</p>

<p><table>
<tr>
 <td>Filename:</td>
 <td> <input type=file name=dauserfile value="_userfile_" size=61></td>
</tr>

<tr>
 <td>Title:</td>
 <td> <input type=text name=damd.dc.Title value="_damd.dc.Title_"
 size=74></td>
</tr>
<!-- and so on … -->
</table></p>

<!-- … -->
<p>_depositorbar_</p>
</form>
}

textmeta [l=en] {Specify Metadata}

Fig. 3. Excerpt of macro file for producing the first step of the submission process for the
Fine Arts Repository example

 Extending Greenstone for Institutional Repositories 309

images. In DSpace each file must be individually specified from within the form-
based submission process. Since Greenstone can already handle archive formats such
as Zip and Tar, we decided to ask the user to submit multiple-file works in this form.
All files that make up the work must still be identified, but this happens outside the
form-based submission, and is usually easier since the files can be multiply selected
in one go.

In DSpace, runtime functionality for the submission process is handled by the
server. If Title metadata is compulsory this is checked when the user proceeds to the
next step of the submission process. In Greenstone the analogous functionality was
embedded into each web page using JavaScript. This offers more flexibility to
customize the workflow and more immediate feedback to the user.

Figure 4 shows snapshots of a faculty member working their way through the
Greenstone adaptation of the DSpace submission procedure. To submit an item of
work the user starts by logging in, and then selects the DSpace repository clone
collection. Using Greenstone’s collection macro override facility, this repository
provides its own tailored workflow—eight steps in all, visible at the top of the
snapshots. In the simple example of Figure 1 the progress bar was located at the
bottom of the page, but it is easy to move the position of the macro _depositorbar_
within the structured HTML to move it to at the top. In DSpace the progress bar is
implemented as a series of images, and although we could have emulated this we
chose not to because there is an existing Greenstone facility with the same function—
furthermore it makes it easier to change the color scheme, fonts and wording used.
(We tend to avoid textual images in Greenstone to facilitate multilingual operation.)

The scenario here is a university that uses DSpace-style submission to manage its
staff’s digital outputs. In Figure 4a the instructor for a Machine Learning course is at
the first page of submitting a lecture on Bayesian networks. He has entered his and a
colleague’s name, the title of the talk and its type (a presentation). Other fields such as
series, report number, and ISBN are not relevant and so he leaves them blank.

In Figure 4b the instructor has moved to the second step, which prompts for
descriptive metadata: keywords, abstract, sponsors, and description. Again not every
field is relevant. For each part of the form contextual help is available that describes
the purpose of the field. In Figure 4c he has moved to the point where the file (in this
case PowerPoint) is requested. Next (Figure 4d) information is displayed about the
file transfer from submitter’s computer to the server. The checksum is shown so he
can check that no transmission errors occurred. This is accomplished using AJAX
technology [7] to retrieve the information from the server in an extensible manner.

The fifth step (Figure 4e) provides an opportunity to review and edit all
information entered so far. It is also possible to return to any previous stage by
clicking the progress bar. Making the system remember existing fields—even when
they support an arbitrary number of values, as with authors—is tricky in JavaScript
but possible. Figure 4f shows the final user input page, where the user decides
whether to grant the distribution license. If he does, the PowerPoint presentation,
along with its metadata, is time-stamped and deposited into the collection area. The
collection’s editor will be notified by email, and/or the collection will be
incrementally rebuilt, depending on the settings in the collection’s configuration file.

310 D. Bainbridge et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Emulating the submission workflow for DSpace (a) primary metadata (b) secondary
metadata (c) select file (d) check file (e) review metadata (f) choose license

 Extending Greenstone for Institutional Repositories 311

6 Discussion

We now discuss the context into which this work fits by summarizing the key points
to software solutions being used as institutional repositories.

DSpace is specifically designed as an institutional repository. It is a popular choice
by organizations to provide a digital repository that harnesses the output of their
institution. It requires an IT specialist to install, which is commensurate with the
typical organizational environment in which it is used. Some customization is
possible but because runtime functionality is locked up in the server it is ostensibly a
fixed workflow from a librarian’s perspective. Full text indexing is possible, but only
limited to a small number of native file formats.

GNU EPrints [8 is another popular choice with over 200 known installations
worldwide. Rather than spanning an entire organization, many EPrints installations
are deployed in a niche role by an entity within the organization, although it can and
is deployed in a wider context. It is easy to install and it includes configuration files
that control the metadata in use and the document types supported. Ironically enough,
it has been the use by niche disciplines that has driven the need to support different
metadata sets rather than the unified “one shoe fits all” approach seen in DSpace;
however, it lacks the notation of communities and collections, which enables a
repository to be used in different ways across an organization. EPrints supports full
text indexing.

Fez [3] is an emerging software solution for institutional repository use. In beta
form at the time of writing, its notion of generality and configurability is more
ambitious than the above two systems. It is built on top of Fedora, and is exactly the
sort of development the framework is aimed at. Fez utilizes the rich complexity of the
Fedora framework to deliver a system tailored for institutional repository use. It
includes the concept of communities and collections, configurable workflow and
metadata. While Fedora can handle full text indexing, this ability is not exposed
through Fez, and there are some compatibility issues with connecting Fez with a
framework that is still itself under development.

7 Conclusion

We believe that Greenstone provides the following advantages for institutional
repositories: trivial to install; configurable workflow that works with any metadata set
and document type; variable number of steps; collection based with support for
customization; incremental building that with full text indexing across a wide range of
formats include HTML, PDF, Word, PPT, email, as well as automatic metadata
extraction; and language independence.

All systems we have mentioned are open source, which means that anyone wishing
to evaluate them can do so freely. In practice, however, considerable effort may be
needed to do a trial—installation alone is often a major stumbling block [9]. (On more
than one occasion we have met library staff who have spent months trying to get a
trial installation up and running.) This would be easier if developers provided a
sandbox for others to try their system out (one exists for GNU Eprints). Ours is at
www.greenstone.org/ir-sandbox/

312 D. Bainbridge et al.

References

1. Tansley, R., Bass, M. and Smith, M. (2003) DSpace as an Open Archival Information
System: Status and Future Directions. Proc ECDL pp. 446-460.

2. Lagoze, C., Payette, S., Shin, E. and Wilper, C. (2006) Fedora: an architecture for complex
objects and their relationships. Int J on Digital Libraries 6(2) 124-138.

3. Fez. http://sourceforge.net/projects/fez [accessed 30 June 2006]
4. Witten, I.H. and Bainbridge, D. (2003) How to build a digital library. Morgan Kaufmann.
5. Witten, I.H., Bainbridge, D. and Boddie, S.J. (2001) Power to the people: end-user building

of digital library collections. Proc Joint Conf Digital Libraries, pp. 94-103.
6. Lucene. Apache Lucene. http://lucene.apache.org/ [accessed 30 June 2006]
7. Crane, D., Pascarello E. and James, D. (2005) Ajax in Action. Manning.
8. Eprints, http://www.eprints.org/ [accessed 30 June 2006]
9. Nixon, W. DAEDALUS: Initial experiences with EPrints and DSpace at the Univ. of

Glasgow, Ariadne 37, Oct 2003. http://www.ariadne.ac.uk/issue37/nixon/ [accessed 30
June 2006].

	Introduction
	Background
	Example of Operation
	Implementation
	Macros
	Controlling the Workflow

	Extended Example: Emulating DSpace
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

