
Automated and Scheduled Maintenance of Digital Library Collections

Wendy Osborn and Steve Fox
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta

T1K 3M4
Canada

Email: wendy.osborn@uleth.ca

Abstract

In this paper, we propose a strategy for the automated
and scheduled maintenance of a digital library collection.
Existing systems require the user either to add new data
manually to a collection, or to have programming knowl-
edge in order to use existing application programming in-
terfaces (APIs) in order to automate scheduled collection
updates. We incorporate a scheduling module into the
Greenstone digital library software, which allows the user
to set up scheduled and automated building of a collection
at periodic intervals. This module interacts with the task
scheduler on the host platform, such as Linux, Windows and
Mac OS X, thereby making it a simple yet powerful tool for
scheduled collection maintenance.

1. Introduction

Many applications generate multimedia documents on a
daily basis. Different types of multimedia documents that
are generated constantly include images, video clips and au-
dio recordings. For example, the municipal police in many
cities use a photo-radar program to catch vehicle operators
whose vehicles are traveling over the speed limit. This ap-
plication generates many pictures of vehicle license plates
every day. If a collection of license-plate images is orga-
nized into a digital library, this collection needs to be up-
dated regularly to incorporate the recently acquired images
.

In addition, applications exist that modify documents on
a weekly, monthly or yearly basis. For example, many post-
secondary institutions maintain a website of information
on topics such as program information, admission require-
ments and information on faculty members. These websites
are updated periodically to keep this information current.

If a collection of information across several post-secondary
institutions is kept in one central repository such as a digital
library, then the collection must be updated periodically to
maintain consistency with the existing websites.

When managing a collection of documents using digital
library software, new documents must be added manually to
a collection. This is reasonable when documents are added
infrequency. However, when documents are added to a col-
lection on a regular basis, such as hourly or daily, an auto-
mated and scheduled approach is more desirable. Such an
approach will not be time consuming for the user, and will
make that time available for other important tasks.

Existing digital library software such as DSpace [5], Fe-
dora [2] and Greenstone [7] require that the images be
added manually to the collection. In the case of Fedora,
data can be retrieved from a remote location at the time
of viewing. However, this location needs to be manually
configured. Further, although Fedora and Dspace do pro-
vide application programming interfaces (APIs) that could
be used to create an automatic updater that schedules tasks,
programming knowledge is required for using an API and
setting up tools based on it. A tool that is already available
for automatic and scheduled updating is more desirable.

We present a solution for automating and scheduling ad-
ditions and updates to a collection that occur on a regular
basis. We extend the Greenstone digital library software to
include a scheduling module. This module both automates
the construction of a collection, and schedules the construc-
tion to occur at specific intervals, such as every hour, day
or week. The scheduler works with any existing collec-
tion. In addition, the owner of a collection can still per-
form manual updates when the collection is scheduled for
automated building. If the owner needs to remove a docu-
ment that was mistakenly added during scheduled mainte-
nance, he/she can manually remove the document without
affecting the existing scheduled building task. Further, by
interacting with the existing task scheduling mechanism on

1-4244-1476-8/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

the host system, the scheduling module is kept minimal, but
still provides a powerful tool for automatic collection main-
tenance. Experiments are performed to verify the correct-
ness of the scheduling module in different situations.

The remainder of this paper proceeds as follows. In
Section 2, we present some background information on the
Greenstone digital library software. In Section 3 we present
some background information on cron, which is the task
scheduler available on Linux systems, and also available
for Windows and Mac OS X. In Section 4 we present our
proposed scheduler for automating collection building in
Greenstone. In Section 5, we present the results of our per-
formance evaluation on the scheduler. In Section 6, present
an example application that the Greenstone scheduler will
benefit. Finally, Section 7 concludes the paper and presents
some research directions.

2. Greenstone

Greenstone [7] is a suite of software for creating digital
library collections and making them available locally or via
the Internet. A collection can contain documents of differ-
ent formats, including images, postscript and PDF files, au-
dio, and formatted and unformatted text. A collection built
with Greenstone can be customized in many ways. For ex-
ample, a collection owner can customize the types of doc-
uments that can appear in the collection, the appearance of
the interface of the collection, and how the collection will
be accessed by other users. In addition, Greenstone is ex-
tensible. For example, functionality to support other data
formats that are not provided with Greenstone can easily be
added to a collection.

import

index

building

archive

pics

There are two types of accessors in Greenstone. The first
is an index that provides support for searching. The second
is a classifier that support for browsing.

Figures 1 and 2 depict a Greenstone collection called
pics. Figure 3 depicts the internal representation of the pics
collection. Here, the four main directories of a collection –
import, archive, building, and index – are displayed. The
purpose of each is described below:

• import. The import directory contains all documents
that are to be added to the collection.

• archive. The archive directory stores all documents
that have been processed from the import folder and
added to the collection.

• building. The building directory contains all indices
and classifiers during the creation process.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

• index. The index directory contains the indices and
classifiers after they are created.

A Greenstone collection is created or modified by fol-
lowing four steps [7]: document addition, document impor-
tation, accessor creation, and collection activation. Each
step is described in detail below:

1. document addition. New documents that will become
part of a collection are copied into the import directory
for the collection.

2. document importation. The documents in the import
folder are now processed for the collection by specify-
ing an import command. Different importing options
can be specified by the user. For example, documents
in the import folder can be added to an existing col-
lection by using a -keepold option. Alternatively, all
documents in the import folder - new and existing -
can be used to create a new instance of the collection
by using a -removeold option. All imported documents
are located in the archive directory.

3. accessor creation. After the documents in the import
folder are processed, indices and classifiers are set up
by using a build command. New indices and classifiers
can be built by specifying a -removeold option. Alter-
natively, existing indices and classifiers can be modi-
fied by specifying a -keepold or -incremental option.
The resulting indices and classifiers are located in the
build directory.

4. collection activation. Finally, the collection is acti-
vated by copying the indices and classifiers from the
building directory to the index directory. The collec-
tion is now viewable online.

The command for each step can be executed in a termi-
nal or command window. Alternatively, a graphical user
interface called the Greenstone Librarian Interface (GLI) is
available that incorporates the above steps in a user-friendly
manner. In this case, the only steps that are required by the
user are to add documents to the import folder via an import
panel, and to provide customizations for each command.

3. Cron

Cron [3] is a program for users to schedule tasks that
will run automatically at a specified time. A task can be
one command, or a script containing several commands that
are executed in sequence. Initially, cron was implemented
for Unix and Linux platforms, with most systems running
Vixie cron [6]. Mac OS X also runs Vixie cron. In addition,
versions of cron now exist for Windows platforms, such as
Pycron [1]. We summarize the general ideas behind all im-
plementations of cron that are applicable to our work.

30 * * * * /collect/pics/gsdl.pl
59 23 * * * /usr/bin/cleanup.bash
00 6 * * 7 /home/someuser/alarm
00 0 1 1 * echo "Happy New Year!"

Cron runs continuously in the background of the operat-
ing system. Every minute, cron reads several task configu-
ration files. Each such file is called a crontab file. A crontab
file contains a record for every task that is scheduled for ex-
ecution. Cron locates and runs all tasks that are scheduled
at the current time.

The format of a crontab record is (min hr dom moy
dow user task), where min, hr, dom, moy, and dow are
the minute, hour, day of month, month of year and day of
week, respectively, user is the username that the command
will run under, and task is the command or script that is
executed at the specified time. A task can be scheduled to
run hourly, daily, weekly, monthly, or yearly:

• hourly. An hourly scheduled task executes at a speci-
fied minute.

• daily. A task that is scheduled daily executes at a spe-
cific hour, which is required, and a specific minute. If
no minute is specified, execution is assumed to take
place at the beginning of the specified hour.

• weekly. A weekly scheduled task runs on a specified
day, which is required, and at a specified hour and
minute. If no hour or minute is specified, execution
is assumed to take place at midnight.

Unspecified values are replaced with an asterisk.
Systems that use Vixie cron support two types of crontab

files – system crontab and user crontab. The system crontab
files are primarily for system administration and mainte-
nance tasks. Also, even if all tasks have a specified low-
level username, root privileges are required for modifying a
system crontab file. User crontab files, on the other hand,
can be set up by any user on the system to execute tasks un-
der their own username. Assuming the user has permission
to execute the task, no root permissions are required. In ad-
dition, Pycron only supports user crontab files. Therefore,
the Greenstone scheduler uses a user crontab file.

Figure 4 displays a sample user crontab file. It contains
4 tasks that are scheduled for specific times. The first task,
/collect/pics/gsdl.pl, is scheduled to be run at 30 minutes
past every hour. The second task, /usr/bin/cleanup.bash,
is scheduled for execution daily at 11:59pm. The third
task, home/someuser/alarm, is scheduled every Sunday at
6:00am. Finally, the fourth task, which echoes ”Happy
New Year!”, is schedule for execution every January 1st at
12:0am.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

#!/usr/bin/perl

$ENV{’GSDLHOME’}="/home2/gsdl/gsdl";
$ENV{’GSDLOS’}="linux";
$ENV{’GSDLLANG’}="";
$ENV{’PATH’}="/bin:/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/usr/bin:/usr/X11R6/bin/
:.:/usr/local/gsdl/bin/script:/usr/local/gsdl/bin/linux";
system("import.pl -removeold pics");
system("buildcol.pl -removeold pics");
system("\\rm -r /gsdl/collect/pics/index/*");
system("mv /gsdl/collect/pics/building/*

/gsdl/collect/pics/index/");
system("chmod -R 755 /gsdl/collect/pics/index/*");

#!/usr/bin/perl

$ENV{’GSDLHOME’}="C:\\gsdl";
$ENV{’GSDLOS’}="windows";
$ENV{’GSDLLANG’}="en";
$ENV{’PATH’}="C:\\gsdl\\bin\\windows\\perl\\bin;C:\\gsdl\\bin\\windows;C:\\gsdl\\bin
\\script;c:\\program files\\imagemagick-6.3.2-q16;C:\\usr\\bin\\;C:\\Perl\\bin\\;
C:\\WINDOWS\\system32;C:\\WINDOWS;
system("import.pl pics");
system("buildcol.pl pics");
system("rd \/S \/Q \"C:\\gsdl\\collect\\pics\\index\"");
system("md \"C:\\gsdl\\collect\\pics\\index\"");
system("xcopy \/E \/Y \"C:\\gsdl\\collect\\pics\\building*\" \"C:\\gsdl\\collect\\pics
\\index\\\"");

4. Task Scheduling in Greenstone

In this section, we present our design for a scheduler
module for Greenstone. It is written in Perl and runs on
Linux, Windows and Mac OS X. We chose perl because a
perl script can be executed across different platforms with-
out having to recompile it. In addition, we can maintain the
the cross-platform requirement of Greenstone.

The scheduler requires the following parameters from
the user as input: 1) the collection to be rebuilt, 2) the full
import command that is required to import documents into
the collection, 3) the full build command required to con-
struct the indices and classifiers for the collection, and 4) a
specification of either an hourly, daily, or weekly build.

For example, if we want the collection pics to be sched-
uled for construction on a daily basis, the arguments would
look something like this:

schedule.pl pics "import.pl -removeold pics"
"buildcol.pl -removeold pics" daily

where pics is the name of the collection, ”import.pl -
removeold pics” is the Greenstone command line argument

for importing documents into the collection pics, ”build-
col.pl -removeold pics” is the Greenstone command line ar-
gument for creating the required indices and classifiers for
pics, and daily indicates that the collection will be sched-
uled for construction on a daily basis.

Using the arguments provided by the user, the scheduler
performs two main tasks: 1) create a script that automates
the building of a collection, and 2) create a crontab record
that schedules the execution of the script at specified inter-
vals. Each task is described in detail in the next two sec-
tions.

4.1. Automation Script Generation

The scheduler works for import and build commands that
contain any number of parameters. It contains all instruc-
tions that are required for building the specified collection
on any of the supported platforms. The commands include
those for setting the Greenstone environment variables re-
quired for the collection building process, the import com-
mand, the build command, and the commands required for

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

00 0 * * * /gsdl/collect/pics/gsdl.pl

00 0 * * * c:\gsdl\collect\pics\gsdl.pl

activating the new indices and classifiers.
Figure 5 shows a sample automation script for Linux that

contains all of the instructions for building the collection
pics. Figure 6 shows an automation script for the same col-
lection that is set up for Windows. Both scripts are created
based on the arguments given above in the schedule.pl ex-
ample. In addition, both are set up in a similar way. The
first four instructions set the Greenstone environment vari-
able that are required for the import.pl and buildcol.pl com-
mands. The next two instructions are the import.pl and
buildcol.pl commands that are provided to the scheduler.
Finally, the remaining instructions handle the copying of
indices and classifiers in order to activate the collection. It
should be noted that the automation script for Mac OS X is
almost identical to the one for Linux.

4.2. Crontab Generation

When scheduling the construction of a collection, the
user can specify an hourly, daily or weekly build. Currently,
an hourly build is scheduled for the beginning of the hour,
a daily build is scheduled for midnight, and a weekly build
is scheduled for Sunday morning at midnight. Although
monthly and yearly builds can be easily added, we opted to
only support the first three so that the code required for the
scheduler is kept to a minimum.

First, a crontab record is created to execute the automa-
tion script at the specified interval. Figure 7 depicts the
daily crontab record for the automation script on Figure 5,
while Figure 8 depicts the crontab record corresponding to
Figure 6.

After creating the crontab record, it is added to the
crontab file if no crontab record exists for the same collec-
tion. Otherwise, it will replace an existing crontab record.
How this takes place depends on the system:

• Windows. Pycron maintains one crontab file only.
Therefore, the file is opened, and the new crontab
record will either replace the existing record, or is ap-
pended to the end of the file. This activates the records.

• Linux and Mac OS X. Activating the crontab record
requires running a system crontab command with a
crontab file as a parameter. This will delete any other
scheduled tasks. Therefore, any crontab records are

obtained first and placed in a temporary file. Then,
the new crontab record is added to the temporary file
(or used to replace an existing record for the same col-
lection). Finally, the system crontab command is acti-
vated using the temporary file.

Once the scheduler is finished, cron constructs the collec-
tion repeatedly at the interval specified by the user.

5. Evaluation

In this section, we discuss the performance of the Green-
stone scheduling module. The focus of our experiments is
to evaluate the scheduler for correct execution in specific
situations. For correct execution, we looked at the follow-
ing:

• Crontab. Does the scheduler generate a correct crontab
record? A crontab record is correct if: 1) it is accepted
by the crontab program (Linux and Mac OS X only),
and it causes cron to execute the automation script at
the proper time.

• Automation Script. In addition, does the scheduler
generate the correct automation script to build a col-
lection. An automation script is generated correctly if
the collection it is created for is rebuilt correctly given
the parameters that are specified when the script is cre-
ated.

We conducted three experiments. The first is an hourly
build of one collection. The second is an hourly build
of two collections. The third is a daily build of one col-
lection. All three experiments were performed on both
Linux and Windows. These tests were not performed
extensively on Mac OS X. However, the scheduler was
executed many times on this platform to ensure that it
does work.

5.1. Hourly Build of One Collection

The focus of this experiment is to ensure that schedule.pl
produced a correct crontab record and automation script to
re-build a collection of images every hour for 24 hours. To
determine that each execution of the automation script was
successful, we looked at the following. For Linux, cron was
configured to send an email message containing the out-
put of the automation script. The email message for each
of the 24 builds contains an output for a successful Green-
stone build. For Windows, pycron maintains a log that con-
tains two records for each automation script execution – one
record indicating the start of execution, and one record in-
dicating the end of execution and a return code. The termi-
nating records for all 24 builds have a return code of zero,

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

which indicates a successful execution of the automation
script.

In both cases, a visual inspection of the collection was
also performed periodically to verify the success of the
scheduler.

5.2. Hourly Build of Two Collections

The focus of this experiment is to ensure that if multi-
ple collections are scheduled to be rebuilt at the same time,
they are successfully rebuilt. We scheduled the building of
two collections on hourly intervals for 24 hours. A perusal
of email messages (for Linux) and the log (for Windows)
verify that both collections were rebuilt successfully.

5.3. Daily Build of One Collection

The focus of this experiment is twofold. The first is to
ensure correct daily execution of an automation script gen-
erated by the scheduler. The second is to simulate a situ-
ation of a collection that has images added to it on a daily
basis. We schedule one collection to be built daily for seven
days. The collection starts with 10 images, and 10 images
are added daily. In addition to the successful daily build,
the collection did reflect the addition of the new images that
arrived daily.

6. Scenario

In this section, we present an overview of an application
that has the requirement of incremental insertions and up-
dates. Such an application can and will make use of the
Greenstone scheduler.

The application in question is a prototype for a post-
secondary information resource [4]. This information re-
source is constructed from existing websites from partic-
ipating institutions. Information is collected and unified
on the different degree and diploma programs offered by
all post-secondary institutions across a specific geograph-
ical region. This region can be local, provincial, national
or even global. The purpose of the information resource
is to provide a one-stop-shop for students to browse and
search for information on programs that they may consider
pursuing at the post-secondary level. Also, placing all post-
secondary program information in one location allows stu-
dents to compare programs across different institutions eas-
ily.

An important feature of a post-secondary resource is its
ability to be kept current. Therefore, its contents must be
updated on a regular basis, whether it is daily, weekly or
monthly. Any changes to existing programs at a partici-
pating post-secondary institution must be updated in the re-
source, any new programs must be added, and any programs

that not longer exist must be removed. Any changes must
take place in a timely manner.

The Greenstone scheduler can perform the insertion,
deletion and updates required by a post-secondary infor-
mation resource. The scheduler works in conjunction with
other modules in Greenstone to retrieve and process the nec-
essary information from the World Wide Web. Then, the
scheduler generates the appropriate scheduled task to build
the collection so that it is kept current with the existing web-
sites.

7. Conclusions

We proposed and implemented a scheduler for Green-
stone. It allows users to automate the maintenance of their
collections by providing a few simple parameters. The
scheduler interacts with a resident task scheduler on the lo-
cal operating system, which results in a minimal but power-
ful tool. Several experiments are performed to show the cor-
rect execution of the the scheduler for different build times
and for different numbers of collections.

Currently, we are working on functionality to remove ex-
isting tasks from the crontab file that are no longer required.
Other future directions of work include the following.

First, we will modify the scheduler to accept specific
time and day values for an hourly, daily, or weekly sched-
uled build of a collection. Second, we want to extend
the Greenstone Librarian Interface (GLI) so that users can
choose a scheduled build option, and also specify the time
and day of the week for the maintenance of their collection.
The GLI already creates the appropriate import and build
commands given the options that the user selects, and these
can provided as parameters to the scheduler.

References

[1] G. Kalab. Pycron. Website, visited July 2007. http://
www.kalab.com/freeware/pycron/pycron.htm.

[2] C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora: an
architecture for complex objects and their relationships. In-
ternational Journal on Digital Libraries, 6(2):124–138, 2006.

[3] E. Nemeth, G. Snyder, and T. R. Hein. Linux Administration
Handbook. Prentice-Hall, 2007.

[4] W. Osborn, S. Fox, and S. O’Shea. A unified resource for
post-secondary program information. Working Paper, 2007.

[5] R. Tansley, M. Bass, and M. Smith. Dspace as an open
archival information system: Status and future directions. In
Proceedings of the 10th European Conference on Digital Li-
braries (ECDL 2006), September 2006.

[6] P. Vixie. Vixie cron for FreeBSD. Website, last vis-
ited August 2007. http://www.freebsd.org/cgi/
cvsweb.cgi/src/usr.sbin/cron/.

[7] I. Witten and D. Bainbridge. How to Build a Digital Library.
Morgan Kaufmann, 2002.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 14, 2009 at 17:10 from IEEE Xplore. Restrictions apply.

