Strategies for Continuous Region Query Processing
in Moving Point Sets

Shauli Sarmin Sumi
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
shauli.sumi@uleth.ca

Abstract—Nowadays, many mobile applications provide
location-based services that allow users to access location-related
information from anywhere, whenever they desire. A moving user
can issue queries to access information about moving or static
objects. Continuous spatial query processing systems are used
for this type of application. We propose two continuous query
processing strategies moving point sets. The objectives of our
strategies are to reduce: (1) the server workload, (2) the data
transmission cost and (3) the query response time, for location-
based services while providing an answer for a continuous region
query. We compare our strategies with a brute-force strategy.
Results show that our strategies can significantly reduce the
server workload, data transmission cost, and response time over
the brute-force method in many cases.

Index Terms—location based services, continuous region
queries, spatial access methods, performance

I. INTRODUCTION

Many mobile applications provide location-based services
[1] that make location-related information highly accessible
anywhere. One such location-based service handles a contin-
uous region query where both the query issuer and the target
objects are moving. For example, a taxi driver asks for the
locations of customers within a radius of 2 miles who are
looking for a taxi. The result of such a query changes with
the movement of objects and requires continuous updates. The
challenges of location-based services that handle continuous
queries are [2]: (1) processing and sending the query results to
the issuer requires a chain of server processes since the query
issuer object is moving, and (2) the region of interest for the
query is also changing due to the object(s) movement which
adds more complexity to processing.

For a successful location-based service, the server workload,
data transmission cost, and response time should be mini-
mized. An increased server workload may affect and delay
the overall query processing task. Also, any delay in query
processing can make the query result outdated or useless
since the objects are continuously changing their location.
To address these issues, we propose two efficient processing
strategies for continuous region queries over moving point
sets where both the query issuer object (i.e., client) and the
target objects are moving. Our goal is to reduce the server

978-1-5386-7266-2/18/$31.00 ©2018 IEEE

Wendy Osborn
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
wendy.osborn@uleth.ca

workload, data transmission cost and query response time.
In our environment, a moving user issue a query to request
information from a central server through a wireless network.
The server processes the spatial queries and sends the answer
to the user. Since the result of a continuous query changes with
the movement of the user and the objects, continuous updates
are required. Therefore, the server will use a spatial index to
assist in query processing. The server will also monitor any
changes to the location of object(s) so that the server workload,
response time, and data transmission cost are all minimized.
The rest of this paper is organized as follows. Section 2
provides related work for continuous spatial query processing
in mobile information systems. Section 3 presents our pro-
posed original strategy and the improved strategy. In Section
4, we present the experimental results of our strategies over
the brute-force (BF) method. Finally, Section 5 presents the
conclusion and also provides future research directions.

II. RELATED WORK

For processing continuous queries, such as region queries,
over moving objects, various research has been undertaken.
Some proposed strategies are proposed solely for region
queries while others also work for additional query types.
Marri et al. [3] propose a system that supports distributed
processing of continuous location dependent queries in a
mobile environment, using mobile agents to carry out the
necessary processing tasks. Their work dividies significantly
large areas into proxies and utilizes a query monitor to track
query movement between the areas. Liu and Hua [4] propose a
distributed framework to process moving queries, such as the
moving range query and the moving kNN query, over moving
objects in a spatial network environment. Using partitioning
of a road network, objects only update their location when
moving to a new area. Lin and Wu [5] propose a system
architecture for a road network so that direction of travel is
considered when processing a query. They also provide an
approach to determine the safe period for updating the query
result for both the centralized and distributed processing of
directional continuous range queries. Gupta ef al. [6] propose
a hierarchical database framework and algorithm based on a
tree architecture, which can be applied to both single-zone and
multiple-zone queries. Wang and Zimmermann [7] propose

176

Marl

Mqr2

Maqr6é

o
o

>

‘é’_ Mqr3

5 p2®
c

S

W || ermmm——a-

: a1

- i M5
s | !

5] SEE—

Q

S

@ Mqra

2

£

o—1——>p1

....................................

Fig. 1. An example mqr-tree and superMBR for a query

an index structure for tracking distances of moving objects,
and related algorithms that exploit the index structure for
processing a continuous range query in road networks. Ku et
al. [8] proposal a peer-to-peer approach where cached results
are shared among neighbouring mobile peers. Tracking is
used to ensure that the shared results are valid. Mouratidis
et al. [9] proposed a compact grid-style index for continuous
query processing in broadcast environments, and associated
algorithms for handling updates submitted by clients. Park
[10] also propose a hierarchical structure for continuous query
processing in broadcast systems.

Most existing work on continuous queries over moving
point data do not use a spatial access method. Some existing
works use spatial access method which contain overlapping.
However, the existence of overlapping can affect the query pro-
cessing ad response time due to the unnecessary searching in
the overlapped region. Moreover, validity regions for a query
are not obtained directly from those spatial indices which
adds extra computational cost since they must be computing
on-the-fly every time a new one is needed. Other existing
works, especially in broadcast networks, use monitoring for
continuous location updates, but this monitoring is performed
by the client and not the server, and therefore can affect the
response time of a query. Therefore, using both a spatial index
for obtaining validity regions, and server-side monitoring of
point movement will lead to improvements in server workload,
data transmission cost and response time.

A. mgr-tree

The mqr-tree [11] [12] is a two-dimensional index structure
that organizes spatial objects in two-dimensional nodes based
on different spatial relationships, and helps make the search
process and data retrieval more efficient. An object, or sub-
region of space that contains objects, is represented using a
minimum bounding rectangle (MBR), which is the minimum
two-dimensional rectangular range that contains objects or
subregions. A performance comparison with other strategies

shows that the mqr-tree achieves a lower average number of
node accesses, which can reduce the query execution time
for the region search. In addition, for point data, the mqr-tree
has no overlap of subregions and therefore the point search
will only proceed along one path and a region search will
proceed along significantly fewer paths that may contain no
points for the result. We can also modify the region search
to also follow only one path. For these advantages, in our
strategies, the server uses the mgqr-tree spatial index and a
modified mqr-tree region search process in order to perform
the query processing task. An example of a mqr-tree for a
point set is shown in Figure 1. In the figure, the root node
MBR, Mqrl which is highlighted in bold lines, represents a
region that encompasses the whole set of point MBRs as well
as the subtree MBRs.

B. Identification of superMBR

We define a superMBR (Super Minimum Bounding Rect-
angle) as the last nodeMBR along a query path which fully
encloses the query. This superMBR will serve as the validity
region mentioned above. In the Figure 1, suppose, a client
issues a region query Q1 (a shaded rectangle). For this query,
the Mqr3 MBR is the superMBR because this is the last node
MBR along the query path in the tree that wholly contains
the query region Q1. Also note that Mqr4 overlaps the query
region QI but does not fully contain it and so it can not be
the superMBR for Q1. If we consider another region query Q2
in Figure 1, the superMBR is the root MBR, which is Mqrl.
This is because only Mqrl fully contains the query region Q2.

Figure 2 shows the process for identifying the superMBR
for a query region. If the query region is fully contained in the
root node, then it is tested to see if it is fully contained in one
of the NW, NE, SW and SE child nodes of the root node. If
the query region is not fully contained in any of the four child
nodes (NW, NE, SW and SE) of the root node, then the search
process identifies the MBR of the root node as the superMBR.
If the query region is fully contained in the MBR of one of the

177

Root Node MBR

Query region
fully contained
in NW node

No

Query region
fully contained

in NF node
Yes

Yes

Query region
fully contained
in SW node

No

Query region
fully contained
in SE node

No

Proceed to Child Node MBR

A

Node MBR is superMBR

Fig. 2. superMBR Identification Process

child nodes of the root node, then the search process continues
in the chosen subtree. This process is repeated until the region
query is not fully contained in any child node MBRs. After
identifying the superMBR, the residing point set is generated
by traversing the subtree pointed to by the superMBR node.
An example is shown in Figure 1, where the Mqr3 MBR is the
superMBR for region query Q1. In that figure, the three nodes
inside the dashed rectangle are within the superMBR region.
The server fetches all of the pointMBRs that are contained
within these three nodes as a result of query Q1.

C. Original Strategy

For our Original (first) Strategy (OS), no monitoring is
used to identify points that have moved between queries. The
strategy begins when the server receives a query from the
client, which starts the search process. For the first query
from a client, the server locates a superMBR, fetches all of
the points within the superMBR, and sends the superMBR
and resulting point set to the client. The server also saves
this superMBR and point set for future comparison with
subsequent queries.

When this client issues all subsequent queries, the server
locates a new superMBR and corresponding point set to
compare to the previous result. One of two things happens:
only the old and new superMBRs need to be compared, or
both superMBRs as well as the point sets need to be compared.
First, we compare the new and previous superMBRs. If they
are different, the new data set and superMBR are sent to the
client. If they are the same, then the point sets also need to be
compared. This is because although the superMBRs are same,
the residing point set can be different. For example, when

some point moves within or outside of the region identified
by the superMBR but the points on the border region remain
unchanged, then the superMBR remains unchanged but the
point set changes. If the new and previous point sets need to
be compared and are different (e.g. there is at least one point
that has moved), then the new data set and superMBR are sent
to the client. If the point sets are the same, only a message
indicating this needs to be sent to the client.

D. Example

We now give an example that illustrates the proposed
Original Strategy. Each point is represented here as: Ix : Iy : hx
s hy : 0 : ID, where (Ix,ly) is the lower left corner and (hx,hy)
is the upper right corner of the MBR for a data. Since we are
working with point data, the lower and upper corners are the
same for each point MBR. Our sample data is as follows:

Pl — 0.11 68.64 0.11 68.64
P2— 030 3599 030 3599
P3— 137 4797 137 4797
P4— 192 2264 192 2264
P5— 240 3273 240 3273
P6— 3.71 18536 3.71 185.36
P7— 377 139.74 3777 139.74
P8 — 4.08 11577 4.08 115.77
P9— 426 2097 426 2097
P10— 497 19634 497 196.34

E. mgqr-tree for the Sample Data

The mgqr-tree for the sample data is shown in Figure 3.
Here Mqrl is the root node which points to two nodeMBRs

178

Y Marl

Mar2

P7

Mar3

P9

Maqr2
P6 «—1—@ o> P10
Marl / f
/ Maqra
r P74 1—@
Mar3 :9 o—»>ps
P2e——@ —1—>p3
P2 <T@
Mar5
@——>P5
P4+—T—@

Fig. 3. The mgqr-tree and a query Q1 for sample data

Mqr2
P6 @ @— > P10 Query Q1
112 3456 195 5146
Maqrl / f
/ Maqréd
Result of Q1
P7+—®
? 0.11 22.64 2.40 68.64 —— superMBR
v
L S A V. o——>p8 137 47.97 137 47.97
EPZ‘__’ &——>p3 E 240 3273 2.40 32.73
g iPz e i 1.92 22.64 192 22.64 »——» Point set within the
“E g ' supeMBR region
5 Mars ' 030 3599 030 3599
o ! :
é i o——>Ps 011 68.64 011 68.64
= i
[1 1
5,'1- ' P4 +——@ \
Fig. 4. Result of the Region Query Q1
with their associated subtree: Mqr2 in its NE region and Mqr3 — 0.11 22.64 240 68.64
Mgqr3 in its SW region. Mqrl also references a point P9 in Mqrd — 3.77 11577 4.08 139.74
its SE location. Mqr2 references a nodeMBR and subtree Mqr5 — 1.92 22.64 240 32.73

Mgqr4 in its SW region. It also contains two points: P6 and
P10 in the NW and NE locations respectively. Mqr3 points
to a subtree (and nodeMBR) Mqr5 in its SE region. It also
references three points P1, P3 and P2 in the NW, NE and
SW locations respectively. Mqr4 references two points: P7
in the NW and P8 in the SE locations. Mqr5 references two
points P5 and P4 in the NE and SW locations respectively.
Therefore, the coordinates (Ix ly hx hy) of each node MBR
are as follows:
Mqgrl — 0.11
Mqr2 — 3.71

20.97 4.97
11577 497

196.34
196.34

F. Query Processing

A client sends a region query, suppose Q1 (as shown in the
shaded rectangle in Figure 3) to the server. The coordinate (Ix
ly hx hy) of Q1 is: Q1 — (1.12, 34.56,1.95, 51.46)

After receiving the query QI, the server starts the search
process. Starting from the root node Mqrl, it checks to see
whether Q1 exists in the NW, NE, SW or SE region of Mqrl.
It is seen that Q1 exists in the SW region of Mqr! as in Figure
3. So, the search process proceeds along the subtree Mqr3. It is

179

Y Marl Mar2
@——» P10
Mar2
© Marl /
s \ Mard
Pl
Mar3 v T Mqré / ?
P! ‘ ¢
Ple|—@ o——»p3 P8
Mar3
p2 <@ —>p7
Mar5
> P5
P9 1
[]
Pi+—T@
X
Fig. 5. The mqr-tree and the second query Q2
Y Marl Mar2
qr.
P6
® P “T°
Mar2 1 o—|— P10
Maqrl f
Mar4
P7
P10 Mar4
()
L ? P7<+—@
v
Mar3 / P9 @—>P8
P2«——@ &——>p3
Mar3
P2+ —®
Maqr5
P9 > P5
(]
PAe—T@
X

Fig. 6. The mqr-tree and the third query Q3

found that Mqr3 is the last node which fully contains Q1. So,
Mgqr3 is identified as the superMBR for Q1. Now the server
traverses the subtree Mqr3 to generate the set of points that
are residing within the superMBR region. The server fetches
all of the pointMBRs within Mqr3, as well as fetches all of
the pointMBRs within Mqr5, which is a subtree also pointed
to by the Mqr3. The server now sends the superMBR Mqr3
and the generated point set to the client as the result of query
Q1. The result of the region query Q1 is shown in Figure 4.

The client sends a second query Q2 as shown in Figure
5. The coordinate (Ix ly hx hy) of Q2 is: (0.45, 39.61, 1.94,

64.22). The server then identifies Mqr3 as the superMBR for
Q2, and fetches all of the pointMBRs within this Mqr3 region.
The server now compares the new superMBR (i.e., Mqr3) with
the previous superMBR, which is the superMBR for Q1, and
finds that they are same. So, the server now compares the new
point set with the previous point set of QI. It is found that
the point sets are also the same. In Figure 5, we can see that
the point P6 has moved (as shown by a dashed arrow) to a
new location of coordinate (3.71, 153.36, 3.71, 153.36). This
change of P6’s location also changes the tree structure which
we can see in Figure 5 (i.e., Mqr4 is splits into two: Mqr4, and

180

Y Marl

Mar2

Mard
P7

Mar3

P9

Mqr2
P6 «——@ ®&——»P10
Marl / f
/ Maré
? P7 <+ 1—@
Mar3 :9 o—>pP8
P2e—® ®&——»p3
P2 <@
Mar5
> P5
P4+— @

Fig. 7. The mqr-tree and the forth query Q4

Mgqr6). Since the point P6 resides and moves outside of the
superMBR region, it does not affect the new result set. The
superMBR and the point set of Q2 is the same as the previous
result, so the server only sends a message indicating the result
is same as before, instead of sending the entire result file.

The client sends a third query Q3 identified by (1.30, 35.99,
1.97, 63.2) is shown in Figure 6. The server again identify the
Mgqr3 as the superMBR of Q3, and fetches all the pointMBRs
within this region. After finding the same superMBR, the
server compares the new point set with the point set of the
previous query Q2. The server finds that the new point set is
different. From Figure 6, we see that point P2 has moved to
a new location (0.60, 35.99, 0.60, 35.99), and also that point
P6 has moved back to its first location. The point P2 is inside
the superMBR region and has changed the result set. So, the
server sends the new point set with the superMBR to the client.

Figure 7 shows a fourth query Q4 identified by (1.98,
22.00, 2.37, 31.80), sent by the client. The server identifies
Mgqr5 as the superMBR for Q4 (because Q4 is fully contained
in the Mqr5 region), and then fetches all the pointMBRs
within Mqr5. The server now compares the new superMBR
with the superMBR of previous query Q3 and finds that they
are different. So the server sends the new point set with its
superMBR to the client without comparing the new point set
with the point set of Q3.

G. Improved Strategy

A SuperMBR can be the same for different queries. In spite
of the same superMBRs, the point sets can be different. For
this reason, the old and new point sets must be compared
when the superMBRs are the same, as we have done in our
first strategy. When the superMBR for a query identifies a
large region, then the residing point set can be large too. In

this case, comparing all points between two large point sets
results in significant overhead for the server. Therefore, we
propose another strategy called our Improved Strategy, in order
to reduce the overhead of comparing large point sets.

Our Improved Strategy (IS) uses monitoring to track any
points that have moved between the transmission of two query
regions. The server keeps track of both the new location and
the old location of any points that have moved. The first part
of this strategy - the generation of the first superMBR and
point set - is identical to that for OS. The differences occur
from the second query and onwards.

After generating the result for the next query, the server
still compares the new superMBR with the previous one, and
sends them to the client if the new and previous superMBRs
are different. If the superMBRs are the same, then the server
checks the monitoring information to see if any points have
moved with respect to the new and previous superMBR. If
any moved point (which is new to the current data set) resides
in the superMBR, then the new point set and superMBR are
sent to the client. If a moved point does not reside in the
superMBR, the server checks the old points (which have been
moved to a new location) to see whether any of these points
resided in the superMBR. If any old point (which has been
moved to a new location) resided in the superMBR, the server
sends the new data set and its superMBR to the client. If no
old point (which has been moved to a new location) resides
in the superMBR, then the server only sends a message to the
client indicating that the result is same as the previous one.

III. EXPERIMENTS AND RESULTS

We compare our Original (OS) and Improved (IS) strategies
with a brute-force (BF) method, which always sends the entire
result back to the client, without comparing the new query

181

TABLE I
AVERAGE DATA TRANSMISSION COST OVER STATIC DATA
Data Data Transmission Cost
Sets 0S BF BF/OS
500 19324 2300.8 16.01182
1000 3801.2 7318.4 48.05969
5000 16975.6 17442.2 2.675121
10000 32477.3 64764.8 49.85347
50000 160428.4 | 320761.6 | 49.98516
100000 | 320489.2 | 320825.6 | 0.104854
TABLE 1T

AVERAGE DATA TRANSMISSION COST OVER MOVING DATA

Data Data transmission cost

Sets oS BF BF/OS

500 2274.3 2304 1.289062

1000 7093.5 7318.4 3.073076
5000 16975.6 17436.8 | 2.644981
10000 64478.2 64619.9 | 0.219282
50000 | 320435.7 | 320787.2 | 0.109574
100000 | 320582.9 | 320822.4 | 0.074652

result with the previous result for changes. Due to space
limitations, we report the result of the data transmission and
response time evaluation here.

We simulate a typical client server application (e.g.,
Location-based service) for our experiments. We evaluated our
query processing strategies in different scenarios: (1) Moving
client issues queries on static data (2) Moving client issues
queries on moving data (3) Moving client issues queries on
moving data, where the number of moving points on the data
set varies. We implemented the server side processing using
the C programming language and the client using Java for
Android programming. All the experiments were carried out
on an Intel(R) Core(TM) i7-5500U CPU@2.40 GHz with 8
GB RAM computer running the Windows 10 Home (Version
1703) operating system.

We use six randomly-generated data sets that contain be-
tween 500 to 100000 points. For the first scenario experiment,
the data sets contain static points, while for the second and
third scenario experiments, the data sets contain randomly
moving points. For each data set size, a user trajectory
consisting of ten region queries of size (10x10) is created,
which are used on both the static and moving point data sets.

A. Data transmission cost results

We recorded the cost of transmitting the result of each query
to the client from the server. We calculate this cost by using
8 bytes per floating point number, 4 bytes per integer, and 1
byte per character. Although we report the results from the
OS strategy, note that the data transmission costs from both
the OS and IS strategies are the same.

Tables I, IT and III shows the average data transmission cost
result for the three scenarios respectively. The result shows
that OS has a lower average data transmission cost in all three
scenarios. This is because the server does not send the entire
result file when the current results are the same as the previous
results, but the BF strategy does.

TABLE III
AVERAGE DATA TRANSMISSION COST OVER VARYING MOVING POINTS

Moving Data transmission cost
Points [0S BF BF/OS
1 7093.5 | 7318.4 | 3.073076
2 7002.1 | 7318.4 | 4.321983
3 7008.5 7328 4.359989
4 7008.5 7328 4.359989
5 7008.5 7328 4.359989
TABLE IV
AVERAGE RESPONSE TIME OVER STATIC DATA
Data Response Time (ms)
Sets OS IS BF BF/OS | BF/IS
500 291300 258900 294700 1.154 | 12.148
1000 1139000 1102800 1167300 2.424 5.526
5000 5402900 5277500 5396900 | -0.111 2.212
10000 | 19693000 | 17140400 | 19950000 1.288 14.083
50000 | 70260500 | 66483400 | 76978700 | 8.727 13.634
100000 | 73084600 | 71379800 | 80552100 9.27 11.387

The data transmission cost depends on the query result. If
the result file contains a large data set, that means that a larger
data transmission cost is incurred. Similarly, if the result set
contains a smaller file then the data transmission cost will be
small. OS does not send the entire result file when the current
results are the same as the previous results, but if those result
files are smaller, it makes a small reduction to the average data
transmission cost from the BF strategy (though BF strategy
sends the entire result files for all queries). Table II shows that
the data transmission cost of OS for moving data is lower than
the BF strategy, but not as low as for the static data set. For the
moving data sets, the results of two queries may be different
even though the superMBRs are the same. In this situation,
the server using our strategy needs to send the entire result
file to the client even though the superMBRs are the same.
So, for some individual queries, the data transmission cost of
our strategy is the same as the BF strategy. Nonetheless, OS
has a lower average data transmission cost in comparison with
BF because there still exist some queries that have the same
superMBRs and no moving points within that region. From the
Table III, we see that the data transmission cost is almost the
same for different numbers of moving points and still lower
than the BF strategy. If any number of points move, it does not
significantly affect the data transmission cost. This is because
once one point causes change in the result, the server must
send the entire result, no matter if other points change or not.

B. Response time results

The query response time measured in microseconds and
it is the time from receiving the query at the server until
identifying and sending the result back to the client. Table
IV, V and VI shows the average query response time results
for the three scenarios respectively. For OS, for each query
the server compares the generated result with the previous
result before sending an outcome to the client. The query
result may contain a large set of points and in those cases

182

TABLE VII
RESULT SENDING WORKLOAD OVER STATIC AND MOVING DATA

Data Result Sending Workload
Sets static data | moving data

500 6 9

1000 6 9

5000 6 6
10000 7 8
50000 6 7
100000 6 7

TABLE V

AVERAGE RESPONSE TIME OVER MOVING DATA

Data Response Time (ms)
Sets [IS BF BF/OS BF/IS
500 626700 535100 566900 -10.549 5.609
1000 1795100 1743700 1946200 7.764 10.405
5000 4952200 4771900 4810900 -2.937 0.811
10000 19566100 | 19159800 19167200 -2.081 0.039
50000 50834800 | 49923800 50467300 -0.728 1.077
100000 | 83817000 | 73528800 | 103953200 19.371 29.267
TABLE VI

AVERAGE RESPONSE TIME OVER DIFFERENT MOVING POINTS

#Moving Response time (ms)
Points oS IS BF/OS BF/IS
1 1677900 | 1631500 | 1711800 1.98 4.691
2 1855100 | 1488100 | 1609300 | -15.274 | 7.531
3 1793600 | 1443500 | 1673000 | -7.209 13.718
4 1730200 | 1616200 | 1658100 | -4.348 2.527
5 1899600 | 1652100 | 1784300 | -6.462 7.409

the comparison time adds additional overhead. On the other
hand, for BF, the server generates the result and then sends
the result to the client. In this way, sometimes the BF strategy
shows lower response times because it sends the result while
OS must compare the result first. IS significantly reduces the
file comparison overhead, which can reduce the response time.
The experiment results show that the query response time of
IS is lower than the other two strategies. This is because IS
compares only the changed points in order to identify any
changes between two result files which is generally much less
than the entire result file.

C. Result sending workload results

We measure the result sending workload by the number of
times the entire result set is sent to the client over the entire
trajectory. This is recorded for both the static and moving 1000
point sets. Table VII shows the result sending workload of OS
over static and moving data scenarios. OS has lower result
sending workload than the BF method. The BF method sends
the entire result every time that is the result sending workload
is 10 for all three scenario, though in some cases different
queries can have the same result. In case of the third scenario
experiment where we vary the number of moving points in
1000 points data sets, the result shows that the result sending
workload does not significantly increase with the increasing

number of moving points. Because once one point causes a
change in the result, the server has to send the entire result,
it does not matter if other points change or not.

IV. CONCLUSION

We propose two query processing strategies for location-
based services. Both strategies are for continuous region query
processing over moving point sets, where the query issuer
object or client is also moving. The experimental results show
that our strategies achieve significant improvements over the
brute-force strategy. Our Original Strategy achieves up to

49.98% of data transmission cost performance improvement
for static data and up to 3.07% improvements for moving data,

over the Brute-Force strategy. Our Improved Strategy achieves
up to 14.08% of response time performance improvement for
static data and up to 29.26% improvement for moving data,
as compared to the brute-force strategy. Finally, our strategies
achieve a server workload reduction of between 10% and 40%.

In the future, we will compare our strategies with other
query processing strategies which use other spatial index
method instead of the mgqr-tree. We are also planning to
propose a client side processing strategy so that the client can
locally process a query while moving within the superMBR
region.

REFERENCES

[1] S. Harri, E. Mena, and A. Illarramendi, “Location-dependent query
processing: Where we are and where we are heading,” ACM Computing
Surveys (CSUR), vol. 42, no. 3, p. 12, 2010.

[2] F. Liu, “Query processing in location-based services,” Master’s thesis,
University of Central Florida, 2010.

[3] S. Harri, E. Mena, and A. Illarramendi, “Location-dependent queries in
mobile contexts: Distributed processing using mobile agents,” Mobile
Computing, IEEE Transactions on, vol. 5, no. 8, pp. 1029-1043, 2006.

[4] F. Liu and K. A. Hua, “Moving query monitoring in spatial network
environments,” Mobile Networks and Applications, vol. 17, no. 2, pp.
234-254, 2012.

[5] C.-S. Lin and S.-Y. Wu, “Processing directional continuous range
queries for mobile objects on road networks,” in Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th
Annual International Conference on. 1EEE, 2014, pp. 330-335.

[6] M. Gupta, M. Tu, L. Khan, F. Bastani, and I.-L. Yen, “A study of
the model and algorithms for handling location-dependent continuous
queries,” Knowledge and information systems, vol. 8, no. 4, pp. 414—
437, 2005.

[71 H. Wang and R. Zimmermann, “Processing of continuous location-based
range queries on moving objects in road networks,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 23, no. 7, pp. 1065-1078, 2011.

[8] W.-S. Ku, R. Zimmermann, and H. Wang, “Location-based spatial
query processing with data sharing in wireless broadcast environments,”
Mobile Computing, IEEE Transactions on, vol. 7, no. 6, pp. 778-791,
2008.

[9]1 K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of

spatial queries in wireless broadcast environments,” Mobile Computing,

IEEE Transactions on, vol. 8, no. 10, pp. 1297-1311, 2009.

K. Park, “Efficient data access for location-dependent spatial queries,”

Journal of Computer Science and Technology, vol. 29, no. 3, pp. 449—

469, 2014.

M. Moreau and W. Osborn, “mqr-tree: A 2-dimensional spatial access

method,” arXiv preprint arXiv:1212.1469, 2012.

W. Osborn and A. Hinze, “Tip-tree: A spatial index for traversing

locations in context-aware mobile access to digital libraries,” Pervasive

and Mobile Computing, vol. 15, pp. 2647, 2014.

[10]

(1]

[12]

183

