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Abstract

In this paper, we propose and evaluate a strategy for
approximate k-nearest neighbor searching using the Area Code
tree. The Area Code tree is a trie-type structure that manages
area code representations of each point of interest (POI) in a
data set. It provides a fast method for locating an approximate
nearest neighbor for a query point. We first summarize the area
code generation, insertion (used in overall construction) and
searching approaches. Then, we evaluate the construction via
repeated insertion, k-nearest neighbor searching, and accuracy
of the Area Code tree, with some of the evaluation involving
the comparison versus a basic benchmark brute force approach.
We find that when the Area Code tree is used for locating
approximate nearest neighbors, that low constant-time search is
achieved. Also, in denser POI sets, higher accuracy is achieved
for locating one-nearest neighbor. This ultimately makes the
Area Code tree a strong candidate for approximate continuous
nearest neighbor processing for location-based services.

Key Words: Nearest neighbor queries, spatial access
methods, location-based services.

1 Introduction

A location-based service provides results to a user of a mobile
device (e.g. smartphone, tablet) based on their location, interests
and the type of query being performed [11]. One example
of such a query is a k-nearest neighbor query [10, 12], which
returns the nearest k points of interest (POI) to them. For
example, a user may want to know the location of some of the
nearest restaurants to them. The user may want to know the
exactly closest restaurants to them. However, the user may also
be happy with suggestions that, although not guaranteed to be
the closest, may be close enough to satisfy them. This is an
example of an approximate k-nearest neighbor, where a trade-
off is being made between accuracy and efficiency.

Efficient nearest neighbor processing, exact or approximate,
is important, but is especially important when it is initiated
from a mobile device [11]. Many strategies have been proposed
for nearest k-neighbor processing for location-based services.
Several utilize spatial access methods [1], including [3, 4, 5, 6,
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7, 13, 14]. Although all of these strategies return exact nearest
neighbors, limitations of these approaches include repeated
searching, the need to cache a significant amount of data on
the mobile device, the requirement to know the query trajectory
in advance, and maintaining a sparse index which leads to
inefficient searches.

Repeated searching is not desirable, but may be the only
option when storage on a mobile device is limited. A recently
proposed data structure, the Area Code tree [8] manages POIs
in a trie-type structure using an area code representation for
each POI. Although it can be used to locate POIs efficiently, it
cannot be used for exact nearest neighbor matching. However,
given a preliminary evaluation on its efficiency, it is an
excellent candidate for approximate k-nearest neighbor search
for situations where a guaranteed exact answer is not required,
for example, in the restaurant scenario given above.

Therefore, in this paper, we extend this approximate nearest
neighbor strategy and propose one for locating k-nearest
neighbors. We also evaluate the Area Code tree for k-nearest
neighbor search accuracy, tree construction time, and also
comparatively evaluate its search time against another strategy.
We find that approximate k-nearest neighbor searching can be
accomplished in very low and constant time, regardless of the
number of POIs being indexed. With respect to accuracy,
up to 60% accuracy is achieved when the Area Code tree is
used for locating one-nearest neighbor in a dense POI set.
This makes the Area Code tree a significant candidate for
continuous approximate nearest neighbor search for location-
based services. The remainder of the paper proceeds as follows.
Section 2 summarizes related work in the area of continuous
nearest neighbor processing for mobile devices. Section 3
summarizes the area code mapping, insertion and 1-nearest
neighbor search algorithm for the Area Code tree. Given this,
we propose a k-nearest neighbor search strategy for the Area
Code tree. Section 4 presents the methodology and results of
our performance evaluation. Finally, Section 5 concludes the
paper and provides some directions of future research.

2 Related Work

In this section, we summarize related work in nearest
neighbor searching for location-based services. Although
nearest neighbor strategies have been proposed in other
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contexts, they are considered outside of the scope of this
work. Many strategies have been proposed in the literature
[3, 4, 5, 6, 7, 13, 14].

A continuous nearest neighbor strategy proposed by Song and
Roussopoulos [13] obtains a superset m of nearest neighbors,
which attempts to keep the result current while the query
point moves around, and a new query call to the server is not
necessary. Their strategy utilizes existing stationery nearest
neighbor strategies. A limitation of their strategy is in choosing
the value of m so that fewer query calls are needed but not too
much data needs to be stored on the mobile device.

Tao et al. [14] utilizes the R-tree [2] to speed up the repeated
searching needed for their continuous query strategy. Lee et al.
[5] improves upon this strategy by fetching both the required
and some additional objects in order to reduce the number of
repeated searches that are needed. Park et al. [7] also improves
upon this strategy by locating all nearest neighbors along a
trajectory by using the R-tree. A limitation exists in that the
trajectory needs to be known in advance.

Hu et al. [3] proposes a proactive caching strategy, which
caches previous results and the R-tree nodes required to obtain
them on the mobile device. The cache is always searched
first for a new query, with additional results fetched from the
server. Limitations include the significant overhead of caching
and local processing on the mobile device.

Jung et al. [4] utilize a grid index for continuous nearest
neighbor searching. The grid index allows for quick elimination
of regions of space from consideration if they do not overlap the
query point. A limitation with this strategy is that the grid index
can be sparse due to wasted space.

In summary, some general limitations of these approaches
include caching a significant amount of data on the mobile
device, repeated searching, using a sparse index which leads
to inefficient searches, and requiring knowledge of the query
path in advance. Repeated searching, however, may be the

only option if storage is limited on a mobile device. The Area
Code tree [8] attempts to provide the ability to perform repeated
searching that is efficient, but at the cost of accuracy. It is
also more compact that existing spatial access methods, given
that only POIs are stored, and not many co-ordinates for many
bounding rectangles. The Area Code tree is summarized in the
next section.

3 Area Code Tree

The Area Code Tree [8] is a trie-type structure for
approximate nearest neighbor searching. It stores points of
interest (POIs) that are represented in an area code format.
In this section, we summarize the mapping, construction and
nearest neighbor search for the Area Code tree.

3.1 Mapping

An area code is a sequence of digits that indicate the relative
location of a POI in space. It is obtained by recursively
partitioning the space containing points into quadrants. For a
particular POI, the space is partitioned until the POI is equal
to the middle of a quadrant. At each level of partitioning, the
quadrants are numbered as follows: SW (1) SE (2) NW (3) and
NE (4). Beginning with the top-most partition, a POI obtains a
digit at each level, depending on which quadrant it resides in.
Figure 1 depicts an example of space partitioning and mapping.
The POI maps to the area code 4132, since the POI resides in
the top-most NE quadrant, followed at the next level by the SW
quadrant, then the NW quadrant, and finally the SE quadrant.

3.2 Tree Construction

Once the area code for a POI is determined, is it inserted into
the Area Code Tree, beginning with the most significant area
code digit. To construct a tree, each area code is inserted one at

Figure 1: Area code mapping (from [8])
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a time, using the existing strategy for any trie structure. Figures
2 and 3 depict the construction of a small Area Code Tree,
containing the POIs A,B,C,D and E, and each with area codes
12134, 32321, 12141, 32114, and 21324 respectively. POI A is
inserted first. When POI B is inserted, a new node is created for
it, since the existing node contains area codes that start with 1,
and the area code for B starts with 3. When POI C is inserted,
additional nodes are created for the common prefix strings (12,
121) contained by both A and C. A similar case occurs when
inserting POI D, with common prefix string 32. Finally, when
POI E is inserted, a new path is started since its leading digit, 2,

is not contained by any other existing path.

3.3 K-Nearest Neighbor Searching

Given that every POI is mapped to a string of digits, this
provides a method for quickly identifying approximate k-nearest
neighbors to the query point. We first describe the 1-nearest
neighbor case, and then describe the extensions to k nearest
neighbors.

Any search will begin by first mapping the query point to an
area code using the same strategy that is mentioned above for

(a) After Insertion of POI A (b) After Insertion of POI B (c) During Insertion of POI C

(d) After Insertion of POI C (e) After Insertion of POI D

Figure 2: Index construction - part 1
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(a) After Insertion of POI E

Figure 3: Index construction - part 2

mapping POIs. Then, beginning with the most significant digit
of the query point area code, a path is followed down the Area
Code tree while digits in the query match digits in the tree nodes.
If a match does not exist at a particular level, the closest match
is taken. For example, suppose we have the query area code of
12144. Referring back to Figure 3, the closest match is the POI
C with area code 12141, since a path exists that matches the first
4 digits of the query area code, with the closest node to the last
digit in the query area code containing the value of 1.

Using this basis, the 1-nearest neighbor search can be
extended to locate k nearest neighbors. Figure 4 depicts a sketch
of our k-nearest neighbor strategy for the Area Code tree. It
consists of three stages, which we describe below:

1. Finding nearest neighbors. This stage uses a slight
modification of the 1-nearest neighbor approach. A search
is initiated for the area code that is the closest to the query.
However, if k nearest neighbors are sought, then area codes
for other POIs that exist along the immediate search path
are also obtained and added to the result set, until k is

reached, or until the leaf node for the original search is
reached.

2. Finding nearby neighbors. It is possible that the number of
POIs obtained in the first step is not enough to satisfy the
query. Therefore, using the area code for each POI in the
initial result set, a search for other POIs is performed, with
any added to the updated result set. This continues until
either k is reached, or all POIs in the initial result set have
been exhausted.

3. Finding further neighbors. This step is similar to the
second step, except that the POIs obtained in the second
step are the basis for locating additional nearby POIs.

Referring back to our original example, suppose we have the
query area code of 12144. In Figure 3, the closest match is
the POI with area code C (12141). However, in the first step
of our k-nearest neighbor strategy, the POI A is also retrieved
for our result. If k=2, then the search is completed. Otherwise,
the result set containing (C,A) is processed using the second
step of our strategy to obtain any more required points from the
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knn = n; //provided by User
query = xxxxx; //converted from (x,y)

//provided by User
result = list();

tree_ptr = AC_root;

//first, find "matching" area code for query,
//and all others along same path
result

= find_nearest_neighbors(tree_ptr,
query,knn);

//if we need more POIs to make inn
if(size(result) < knn)

result
= find_nearby_neighbors(tree_ptr,

query, knn, result)

//if we still need more POIs,
//we look even further from query
if(size(result) < knn)

result
= find_further_neighbors(tree_ptr,

query, knn, result)

return result;

Figure 4: k-nearest neighbor searching sketch

remaining part of the tree.

4 Evaluation

In this section, we present the methodology and results
of our performance evaluation of the Area Code tree. We
compare its search performance with the Brute Force method,
which consists of searching the entire set of POIs to find
the k-nearest neighbors. We chose this comparison for our
preliminary evaluation due to the Brute Force method being a
basic benchmark for processing nearest neighbor queries. In
addition, we evaluate the construction time and the accuracy of
our proposed structure. Construction is performed by inserting
one POI area code at a time, while accuracy is measured by
determining the percentage of times overall that accurate k-
nearest neighbors are found when the Area Code tree is used
to locate them.

4.1 Methodology

For our evaluation, we use twenty-one synthetically
generated data sets that represent collections of different POIs
across New Zealand. Ten data sets consist of POIs drawn

from across the North Island of New Zealand, with each set
containing 1000, 2000, 3000,..., up to 10,000 POIs respectively.
An additional ten data sets contain POIs from across the
Waikato Region of New Zealand (part of the North Island),
again with each file containing 1000, 2000, 3000,..., up to
10,000 POIs respectively. The Waikato data sets are denser,
which allows us to evaluate the Area Code Tree in denser
POI data. The remaining data set contains 10 User locations
along their trajectory, which will serve as the k-nearest neighbor
queries for our evaluation.

First, for each POI set mentioned above, an Area Code Tree
is created, to give a total of 20 area code trees. Then, using
these trees and the User location set, the following tests are
performed:

• For all 20 area code trees, we perform a 1-nearest neighbor
search for each of the 10 points in the User location set.

• For the North Island 10,000 and Waikato 10,000 POI sets
only, we also perform a k-nearest neighbor search for each
point in the User location set. We perform the search for
k=2,3,4,...10.

Every search is also performed on the same data sets using
the Brute Force method. Therefore, a total of 400 k-nearest
neighbor comparisons are performed.

The performance criteria that are measured are as follows:

• For each tree construction, the overall construction time
(in seconds), where the construction time includes the time
required to calculate the area codes and to insert each area
code into the tree.

• For every k-nearest neighbor search, the average search
time (in milliseconds).

• The accuracy of the Area Code tree, which is measured by
recording for each search, the percentage of POIs found
by Area Code Tree that matched those found by the Brute
Force search.

4.2 Results

We first present the results of the search and accuracy
experiments, followed by the tree construction results. First,
Figures 5 and 6 depict the results of the 1-nearest neighbor
comparison using all of the the Waikato and North Island POI
sets, respectively. For both figures, the x-axis contains values
that represent 1000s of POIs (i.e. 1 is 1000 POIs, up to 10 for
10,000 POIs), while the y-axis contains the average search time
in seconds.

We find that for both the Waikato and North Island POI sets,
searching using the Area Code Tree achieves significantly better
search times over the Brute Force method. The average search
time for the Area Code tree is less than 0.005 seconds (i.e.
5ms), and is regardless of both the density of the dataset and
the number of POI area codes in the area code tree. For the
Brute Force method, the average search time increases linearly,
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Figure 5: 1-nearest neighbor - Waikato POIs
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Figure 6: 1-nearest neighbor - North Island POIs
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Figure 7: 1-nearest neighbor - accuracy
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Figure 8: k-nearest neighbor - Waikato POIs
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Figure 9: k-nearest neighbor - North Island POIs
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Figure 10: k-nearest neighbor - accuracy
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between approximately 0.007 seconds (i.e. 7ms) up to almost
0.035 seconds (i.e. 35ms) for searching in 10,000 area codes.

Figures 8 and 9 depict the results of the k-nearest neighbor
comparison for the 10,000 Waikato and 10,000 North Island
POI sets, respectively. For both figures, that x-axis contains
the k values used, while the y-axis contains the average search
time in seconds. We again find in both cases a significant
improvement in running time when the Area Code tree is
used for k-nearest neighbor searching. We also find that for
both Area Code tree searching and the Brute Force approach,
similar results are achieved, regardless of the number of nearest
neighbors being sought or the density of the POI set. The
average search time using the Area Code tree is under 0.005
seconds (i.e. 5ms), while for the Brute Force approach it is
between 0.03 and 0.04 seconds (i.e. 30 and 40ms).

Figures 7 and 10 depict the accuracy of the Area Code
tree in locating 1-nearest neighbor and k-nearest neighbors,
respectively. Here, we can see that the North Island and Waikato
POI sets differ significantly in their performance.

For 1-nearest neighbor search, we find that for the dense POI
sets (i.e Waikato), the Area Code tree can achieve between
40% and 60% accuracy . For the less dense POI sets (i.e.
North Island) however, the accuracy was lower, around 30%
in most cases. Therefore, for the 1-nearest neighbor case we
conclude that the Area Code Tree provides fast nearest neighbor
searching, that is expected to improve in accuracy as the data set
size increases in density.

However, we find the opposite scenario when the search is
increased to k-nearest neighbors. For the less dense POI sets,
although some modest improvements are found in accuracy, for
most cases, and in particular for higher values of k, we find that
just over 30% accuracy is still being achieved. For the denser
POI sets, we observe a steady decline in the accuracy of the
search results, from 60% for 1-nearest neighbor to just over
20% accuracy for 10-nearest neighbors. In addition, it should
be noted that, although not presented here, the only situations
where 100% accuracy is achieved are for the 1- and 2-nearest
neighbor searches. Therefore, we conclude that in less dense
POI sets, searching in the Area Code tree seems to achieve
consistent accuracy, regardless of the k value, while for the
dense point sets, the best results are for lower values of k only,
with a decline in accuracy as the value of k increases.

Finally, Table 1 depicts the overall construction times (in
seconds) of the Area Code Tree for the various sets of POIs.
We observe that the time it takes to construct an Area code
tree via repeated insertion increases significantly with the size
of the POI set. However, the absolute worst case is still under 3
minutes. For the North Island datasets, the time ranges from just
a few seconds for 1000 POIs, up to 2.5 minutes for 10,000 POIs.
For the Waikato Region datasets, the times range from a few
seconds to over 3 minutes. Although these overall construction
times are high when compared to the search times, two things
must be noted. First, for static data sets, the Area Code tree only
needs to be constructed once in order to be searched many times.
Second, the occasional insertion can still be performed without

Table 1: Tree construction times (in seconds)

Data Sets #POIs O/A Time

North Island

1000 4.04
2000 10.98
3000 19.60
4000 31.46
5000 44.31
6000 61.20
7000 81.80
8000 103.61
9000 127.37

10000 158.24

Waikato

1000 5.02
2000 12.63
3000 23.38
4000 37.45
5000 55.19
6000 75.97
7000 99.50
8000 127.75
9000 159.02

10000 192.71

having to re-construct the entire Area Code tree. Therefore,
given the search performance results above, the construction
time is a small price that must be paid.

5 Conclusion

In this paper, we present a k-nearest neighbor search strategy
for the Area Code tree. We also evaluate the accuracy, tree
construction time, and also comparatively evaluate the search
time against a Brute Force strategy. We find that approximate k-
nearest neighbor searching can be accomplished in very low and
constant time, regardless of the number of POIs being indexed.
With respect to accuracy, up to 60% accuracy is achieved when
the Area Code tree is used for locating 1-nearest neighbor in
dense POI sets. This makes the Area Code tree a significant
candidate for continuous approximate nearest neighbor search
for location-based services. The only significant factor is in
the tree construction time. However, for fairly static data sets,
this is a small price to pay for the savings in search time and
increased accuracy (in some cases) that are achieved. Some
future research directions include the following. First, the Area
Code tree must have its k-nearest neighbor search performance
evaluated further by comparing it with other spatial access
methods. Second, further examination of the Area Code tree for
continuous k-nearest neighbor searching must also take place.
Finally, the Area Code tree needs to be expanded to utilize
other types of “area codes”, such as telephone area codes, and
postal/zip codes. However, the results presented here show that
the Area Code tree has promise for different applications in
continuous query processing.
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