
SEARCHING THROUGH SPATIAL RELATIONSHIPS USING THE
2DR-TREE

Wendy Osborn∗

Department of Mathematics
and Computer Science

University of Lethbridge
4401 University Drive W

Lethbridge, Alberta, Canada
email: wendy.osborn@uleth.ca

Ken Barker
Department of Computer Science

University of Calgary
2400 University Drive NW
Calgary, Alberta, Canada

email: barker@cpsc.ucalgary.ca

ABSTRACT
The 2DR-tree is a novel approach for accessing spatial data,
particularly when spatial relationships are defined among
objects. The 2DR-tree uses nodes that are the same di-
mensionality as the data space. Therefore, all relationships
between objects are preserved and different binary search
strategies are supported. This paper presents the 2DR-tree
binary search strategy. A preliminary performance evalua-
tion identifies the advantages of the binary search strategy.

KEY WORDS
spatial access methods, multidimensional, hierarchical.

1 Introduction

Many applications rely on spatial data. Some include ge-
ographical information systems (GIS). For example, the
Geological Survey of Canada [1] maintains a repository
of spatial data for many geoscience applications. These
“non-standard” databases contain objects that exist in mul-
tidimensional space. In addition, spatial relationships exist
between objects. For example, resources in a geological
survey are related (explicitly or implicitly) using directions
such as north, northeast, southwest, etc.

An important issue in spatial databases is the effi-
cient retrieval of one or more objects using a spatial access
method (SAM). Existing SAMs extend hierarchical data
structures designed for one-dimensional data. However, no
n-dimensional to one-dimensional mapping of spatial data
that preserves all spatial relationships exists [2]. Therefore,
two objects in a specific spatial relationship may not main-
tain this relationship in the index. This leads to unneces-
sary searching because a linear search of an entire node is
the only option.

A new hierarchical SAM called the 2DR-tree is pro-
posed that fits the existing object space by using nodes
of the same dimensionality. The 2DR-tree uses two-
dimensional nodes for a two-dimensional object space. The
minimum bounding rectangles (MBRs) in each node are or-

∗Research funded by an NSERC Discovery Grant.

ganized using a validity rule that preserves all spatial rela-
tionships. Therefore, the 2DR-tree can exploit other search
strategies, including a two-dimensional binary search. The
2DR-tree supports the region, point, containment, enclo-
sure, and equality searches. It also has the potential to sup-
port spatial network data [3] and spatial reasoning strate-
gies for direction relations [4].

We present the 2DR-tree binary search strategy. The
remainder of the paper proceeds as follows. Section 2
presents related work. Section 3 presents the 2DR-tree and
some key concepts. Section 4 defines a two-dimensional
binary search and presents the search strategy. Section
5 presents an example search. Section 6 presents perfor-
mance evaluations for region and point searches. Section 7
presents conclusions and future research directions.

2 Related Work

Many SAMs are proposed in the literature [5, 6, 7, 8, 9, 10,
11, 12]. An excellent survey on SAMs is presented in [2].
SAMs are based on the B+-tree [13]. Therefore, SAMs
remain height-balanced after insertions and deletions, and
guarantee a minimum spatial utilization in its nodes.

The R-tree [5], R∗-tree [6], R+-tree [7], and X-tree
[8] maintain a hierarchy of approximations using MBRs.
At the leaf level, an MBR defines the extent of an object in
space. At each non-leaf level, an MBR contains all MBRs
in the subtree that it references. A region search is per-
formed by testing all MBRs in a node for overlap with the
search region. For each MBR that overlaps, the search con-
tinues in the corresponding subtree. For each leaf node
reached, all of its MBRs are tested for overlap with the
search region. Point queries are performed similarly.

The Hilbert R-tree [9], Z-ordering [10], Universal B-
tree [11], and Filter tree [12] map objects in n-dimensional
space to a one-dimensional sequence of numbers and store
them in a B+-tree [13]. Region searches are performed by
identifying the range of numbers that correspond to a re-
gion and locating all numbers in the index that fall within
this range. An exception is the Hilbert R-tree, which stores
MBRs and supports the searching strategy for approxima-
tion hierarchies.

535-039 71

kirk




Limitations of SAMs include the following. First,
overlap and overcoverage of MBRs in approximation
strategies lead to multiple path searching, including paths
that lead to no objects that overlap the search region.
Second, n-dimensional objects are indexed using tradi-
tional one-dimensional data structures. However, no n-
dimensional to one-dimensional mapping of objects exists
that preserves all spatial relationships between objects [2].
Therefore, two objects that have a specific spatial relation-
ship may not maintain this relationship in the index. In ap-
proximation strategies, a linear search of an entire node is
the only option. In mapping strategies all leaf nodes that are
retrieved must be searched in their entirety to identify qual-
ifying objects. This leads to inefficient searching within
each node and in the structure overall.

3 The 2DR-tree

The 2DR-tree is a height-balanced, hierarchical spatial data
structure that uses two-dimensional nodes. An MBR is
stored in an appropriate location with respect to all other
MBRs in the node. Using two-dimensional nodes allows
spatial relationships to be preserved.

The spatial relationships supported in the 2DR-tree
are north, northeast, east, southeast, south, southwest, west
and northwest. A spatial relationship is defined between
two objects using the centroids of their MBRs. The cen-
troid of an MBR are the co-ordinates (i, j) of its centre.
For example, MBR 1 is northeast of MBR 2 if the centroid
of MBR 1 is northeast of the centroid of MBR 2. Relat-
ing objects using centroids instead of relating the objects
themselves [4] significantly reduces the number of spatial
relationships that must be handled in the 2DR-tree, but still
provides sufficient support for spatial relationships.

For each node N , X is the number of index values
along the x-axis, and Y is the number of index values along
the y-axis. The order of N - the total number of locations
in N to store an MBR - is defined as O = X ∗ Y . All
nodes in a 2DR-tree have the same order. The order of a
2DR-tree is the order of its nodes. N(i,j) denotes location
(i, j) in node N . Each location stores:

(MBR(i,j), ptr(i,j))

where MBR(i,j) is an MBR and ptr(i,j) is a pointer. In a
leaf node, MBR(i,j) encloses an object and ptr(i,j) refer-
ences the object on secondary storage. In a non-leaf node,
MBR(i,j) encloses all MBRs in the subtree referenced by
ptr(i,j).

A node region (lx, hx, ly, hy) is a two-dimensional
subset of (x, y) locations in a node. The index values lx
and hx are the lower and upper bounds of the node region
along the x-axis. The index values ly and hy are the lower
and upper bounds of the node region along the y-axis. A
node object set is the set of objects in a node. A node space
is the region occupied by a node object set. This is equal to
the MBR that encloses a node object set.

m9

m8

m5m3

m1

m2

m4

p9

p5

m3

m2

p9

m7

m4 m5

m8

m9m1

p5

m7

Figure 1. Order 2*2 2DR-tree

Figure 1 shows an order 2*2 2DR-tree that preserves
all spatial relationships for the given objects (taken from
[2]). In the leaf node (m4,m3), the centroid of m3 is lo-
cated southeast from the centroid of m4, so m3 is located
east of m4 in the node. In node (m5,p5,p8), p5 is located
southeast of the centroid for m5, and the centroid for m8 is
located northeast of the centroid for m5 and northwest of
p5. Therefore, p5 is stored east of m5 while m8 is stored
northeast of m5 and north of p5. The remaining two leaf
nodes, (m7,m9) and (m2,m1,p9) preserve the spatial rela-
tionships between their objects. Spatial relationships be-
tween MBRs in the root are also preserved.

3.1 Node Validity

To employ different binary searching strategies, the spa-
tial relationships between MBRs in each node must be pre-
served. For each location N(i,j), i = 0 . . . (X − 1), j =
0 . . . (Y − 1) in node N , if N(i,j) contains an MBR
MBR(i,j),

• Location N(k,l), k = (i + 1) . . . (X − 1), l = 0 . . . j
contains MBR(k,l) whose centroid is south, east or
southeast of the centroid for MBR(i,j),

• Location N(k,l), k = (i + 1) . . . (X − 1), l = (j +
1) . . . (Y − 1) contains MBR(k,l) whose centroid is
northeast of the centroid for MBR(i,j), and

• Location N(k,l), k = 0 . . . i, l = (j + 1) . . . (Y − 1)
contains MBR(k,l) whose centroid is north, west or
northwest of the centroid for MBR(i,j).

A southwest test is not required because it is the inverse of
the northeast test.

Figure 2 depicts the node validity for the set of MBRs
in Figure 2(a). The node in Figure 2(b) is valid for the set

72



1

4

2

3

(a) Set of MBRs

1

4

2

3

(b) Valid

1

4

2

3

(c) Invalid

Figure 2. Node Validity

of MBRs. MBR 1 is in location (0,0). For MBR 2 to be in
location (1,0), its centroid must be, and is, southwest of the
centroid for MBR 1. Similarly, for MBR 3 to be in location
(0,1), its centroid must be located northwest of the centroid
for MBR 1. For MBR 4 to be in location (1,2), its centroid
must be northeast of both MBRs 1 and 3, and northwest of
MBR 4. All conditions are satisfied, so the node is valid.
The node in Figure 2(c) is invalid. In this case, MBR 4 is
in location (1,1), which means that its centroid is southeast
of the centroid for MBR 3. However, MBR 4 is northeast
of MBR 3. Therefore, the node is invalid.

4 Search Strategy

This section defines a binary search in two dimensions,
then presents the 2DR-tree binary search strategy. The
strategy works for region, point, containment, enclosure,
and equality searches. We present the strategy for the re-
gion search.

The 2DR-tree binary search strategy extends the tra-
ditional one-dimensional binary search for arrays to work
in a 2-dimensional node that stores MBRs. In a one-
dimensional binary search, a search value is compared with
the value at the midpoint in the array. The search con-
tinues with the values in the left-half of the array if the
search value is less than the midpoint value, and in the
right half if the search value is greater than the midpoint
value. The 2DR-tree uses a similar strategy. A search re-
gion is compared for overlap with each half of a node re-
gion. The difference is in how each half is formed - the
node region is partitioned through the x-axis (X-partition)
or the y-axis (Y-partition). The term “binary search” will
be used throughout the rest of this paper to indicate the 2-
dimensional definition.

The search first performs a recursive binary parti-
tion of the node region in the root. The node region
(lxrt, hxrt, lyrt, hyrt), which contains all locations in the

1

4

2

3

1

4

2

3

(a) Node and Data

1

4

2

3

1

4

2

3

(b) X-Partition

1

4

2

3

1

4

2

3

(c) Y-Partition

Figure 3. Recursive Binary Partitioning

root, is partitioned through the dimension with the longest
range of index values. A partition through the x-axis
at midpoint cxrt produces (lxrt, cxrt − 1, lyrt, hyrt) and
(cxrt, hxrt, lyrt, hyrt). A partition through the y-axis at
the midpoint cyrt produces (lxrt, hxrt, lyrt, cyrt − 1) and
(lxrt, hxrt, cyrt, hyrt). If both dimensions have the same
range of index values, then the x-axis is chosen by default.
For each subregion, an MBR is created.

Each MBR is then tested for overlap with the search
region. If overlap occurs, the node region undergoes further
binary partitioning until no more overlap occurs, the node
region contains no MBRs, or the node region contains one
location with an MBR. If one MBR is reached, it is tested
for overlap with the search region. If overlap occurs, the
search continues in the corresponding subtree.

If a leaf node is reached, the same binary partition
is performed. If a node region containing one object is
reached, it is tested for overlap with the search region and
inclusion in the final result.

Figure 3 shows the recursive binary partition of a
node. In Figure 3(a) the node region that contains all lo-
cations is (0, 1, 0, 1). Figure 3(b) shows an X-partition of
the node region and subsequent MBR creation. The query
region, indicated with a light grey rectangle, overlaps the
MBR corresponding to the first node subregion but does not

73



m9

m8

m5m3

m1

m2

m4

p9

p5

m3

m2

p9

m7

m4 m5

m8

m9m1

p5

m7

Figure 4. Region Query

overlap the MBR corresponding to the second node subre-
gion. Figure 3(c) shows a Y-partition of this node subre-
gion that leads to two more subregions, each with one MBR
that overlap the query region. If the node is a non-leaf, the
search continues in the corresponding subtree. If the node
is a leaf, the objects are returned for the final result.

5 Example

This section demonstrates a 2DR-tree region binary search
using the 2DR-tree in Figure 4. In the example, a sub-
tree is displayed using the objects it contains, and one
or more levels of parentheses to indicate its height. For
example, (m4,m3) represents a leaf node (i.e.: height
0), while ((m4,m3),(m2,m1,p9)) represents a subtree of
height 1, containing two MBRs that reference (m4,m3) and
(m2,m1,p9), respectively.

The search first performs an X-partition of the node
region (0, 1, 0, 1) in the root. The X-partition is chosen
because the node region has the same range of index val-
ues along the x-axis (X) and y-axis (Y). The X-partition
produces (0, 0, 0, 1) and (1, 1, 0, 1). The node subregion
(0, 0, 0, 1) contains ((m4,m3),(m2,m1,p9)) and (1, 1, 0, 1)
contains ((m5,p5,m8),(m7,m9)). MBRs are created for
each subregion. Both overlap the query region, so partition-
ing continues first with (0, 0, 0, 1). Since Y is now greater
than X, a Y-partition is performed to produce (0, 0, 0, 0)
and (0, 0, 1, 1). The subregion (0, 0, 0, 0) contains one
MBR which overlaps the query region. The search con-
tinues in the subtree (m4,m3).

An X-partition is performed to create (0, 0, 0, 1) and
(1, 1, 0, 1). The subregion (0, 0, 0, 1) contains (m4) and
(1, 1, 0, 1) contains (m3). Although both subregions con-
tain one MBR each, they both contain two locations, so
the MBRs are created. The MBR for (0, 0, 0, 1) does not

overlap the query region, so it is not partitioned further.
The MBR for (1, 1, 0, 1) overlaps the query region. A Y-
partition is performed to create (1, 1, 0, 0) and (1, 1, 1, 1).
The subregion (1, 1, 0, 0) contains one MBR (m3) that
overlaps the query region and is returned as part of the re-
sult. The subregion (1, 1, 1, 1) contains no MBRs.

The search has finished with node (m4,m3) so it back-
tracks to subregion (0, 0, 1, 1) in the root. It contains one
MBR, ((m2,m1,p9)) that does not overlap the query region.
The search moves to the MBR for (1, 1, 0, 1), which over-
laps the query region. A Y-partition produces (1, 1, 0, 0)
and (1, 1, 1, 1). Each contains an MBR that overlaps the
query region. The search continues first in the subtree cor-
responding to (1, 1, 0, 0), and through a recursive binary
partition of (m5,p5,m8) locates m5 that overlaps the query
region. Backtracking to the root, the search continues in
the node (m7,m9) and performs a binary partition to locate
m7 as the final qualifying object.

6 Evaluation

This section presents the methodology and results for
the 2DR-tree binary search performance evaluation. The
methodology is presented first followed by a discussion of
the results.

6.1 Methodology

The rationale for the binary search performance evaluation
is to observe its behaviour on trees that vary in the number
of objects and data distributions.

The performance evaluation uses several object sets to
create the search trees. Each object set contains 100, 500,
1000, and 10000 squares respectively. Each square covers
approximately 1% of the object space. All objects sets are
uniformly distributed except one, which has an exponen-
tial distribution. Each set covers approximately 67-75% of
the space with between 51-53% overlap. The binary search
performance evaluation also uses several query sets, with
each containing 1000 uniformly distributed rectangles or
points. Each rectangle covers 5-10% of the space, where
the extent of the space for each set matches the extent from
a uniform data set. Although each set contains 1000 rec-
tangles or points, only the first 100 are used in a test run.
Having more objects in the query sets allows for future tests
with more queries.

For each test run, 100 queries are executed on 1000
2DR-trees. Each tree is generated using a random sort of an
object set. The binary search performance is evaluated for
both region and point queries. Each are evaluated using two
sets of test runs. The first set of test runs execute queries
on trees that vary in the number of objects. The second
executes queries on trees that vary in the data distribution.

The following averages are recorded for each test run:
the tree height, the number of seeks per search, the number
of objects retrieved per search, and a ratio of the number of

74



seeks per search over the number of objects retrieved per
search. The latter determines the number of seeks required
to locate an object. The metric used to judge performance
is the number of seeks required to locate an object vs. the
tree height. SAMs support retrieval of multiple objects and
cannot guarantee a one-path search for region queries, point
queries, and locating an individual object because many
MBRs can overlap at a single point or region. Therefore
the search may need to backtrack and check several paths
to locate all qualifying objects. Ideally, the search locates
an object and backtracks one level to locate another object.
Pessimistically, the search must traverse several different
paths - all of which originate at the root - to locate one ob-
ject. If the average number of seeks per object is less than
the height, this shows that searches perform well because
the search does not have to locate each object starting from
the root. Search performance deteriorates when the aver-
age number of seeks per object is greater than the height of
the tree because multiple paths are searched to locate each
object.

6.2 Results and Discussion

The results of the performance evaluation are considered in
this section. The results for the region queries are presented
first, followed by the results for the point queries.

6.2.1 Region Binary Search

Figure 5 and Table 1 show the results for the first set of test
runs. Results in Figure 5 show that although the height of
the 2DR-tree increases as the number of objects increases,
the number of seeks required per object decreases. The
more objects inserted, the better the 2DR-tree is able to
cluster them so that fewer paths are searched to identify
candidate objects. Therefore, the search is not required to
backtrack all the way to the root to locate each object.

In Table 1, row 1 shows the average height for 1000
trees that each contains 100 objects. Also displayed are
the average number of seeks per search, average number of
objects found per search and the average number of seeks
required to locate an object over all 100 queries on all 1000

#Objects Height #Seek/Sch #Found/Sch #Seek/#Found

100 8.10 16.38 2.56 6.40

500 12.31 40.94 6.90 5.93

1000 14.19 60.98 10.97 5.56
10000 21.00 268.27 73.27 3.66

Table 1. Region Search with Varying Object Set Size

Dist’n Height #Seek/Sch #Found/Sch #Seek/#Found
Unif 12.31 40.94 6.90 5.93

Exp 12.31 29.11 8.28 3.52

Table 2. Region Search with Varying Distribution

1000

10000

100

500

100
500

100001000

0

5

10

15

20

25

#Objects

Height #Seeks/#Found

Figure 5. #Objects vs. Height and #Seeks/Object

trees. The average number of seeks required to locate an
object is 6.40, which is 80% of the tree height of 8.10. For
row 4, where the trees contain 10000 the average number
of seeks per object is 3.66, which is only 17% of the tree
height of 21.

Table 2 shows the results for the second set of test
runs. Once again the results show that the number of seeks
required per object is less than the tree height. It is lower
for the exponential distribution because the actual search
results vary widely - many queries retrieve nothing while
some retrieve many objects. Therefore, it appears that few
nodes are accessed when nothing is retrieved. For uniform
distribution, the range of the number of objects retrieved is
very narrow in comparison to exponential distribution, with
many queries returning objects.

6.2.2 Point Binary Search

Table 3 shows the results for the first set of test runs. Re-
sults show that the number of seeks per object is greater
than the height of the tree. The point queries are finding
the wasted space in addition to any objects it overlaps be-
cause of the uniform distribution of the data.

In Row 1, the average number of seeks per object is
12.23, which is 150% of the tree height of 8.1 and shows
that multiple paths are searched to locate one object. This
deteriorates as the number of objects increases. In Row 4,
the average number of seeks per object is 72.76, which is
over 300% of the tree height. In this case, three paths that
originate at the root are required to locate an object.

Table 4 shows the results for the second set of test
runs. Results show that point searching improves signif-
icantly for exponential distribution, which requires fewer
seeks than the height of the tree to locate an object. Since
the data is clustered more, a point is searching in less
wasted space than in uniformly distributed data, and more

75



#Objects Height #Seek/Sch #Found/Sch #Seek/#Found

100 8.10 12.96 1.06 12.23

500 12.31 26.12 1.12 23.32
1000 14.19 34.51 1.10 31.37

10000 21.00 96.04 1.32 72.76

Table 3. Point Search with Varying Object Set Size

Dist’n Height #Seek/Sch #Found/Sch #Seek/#Found

Unif 12.31 26.12 1.12 23.32

Exp 12.31 15.15 1.40 10.82

Table 4. Point Search with Varying Distribution

importantly, search very little in areas not occupied by ob-
jects at all. Therefore, the 2DR-tree is not suited to point
queries unless the data is clustered in some way.

7 Conclusion

The 2DR-tree is a SAM that preserves spatial relationships
between all objects by using nodes of the same dimension
as the object space. We present the 2DR-tree binary search
strategy. It supports region, point, containment, enclosure,
and equality searches. Strategies for insertion, deletion and
node validation, and a time complexity analysis, are avail-
able in [14, 15].

Experimental results show that the 2DR-tree is ideal
for executing region queries where the search region is be-
tween 5-10% of the search space. Region search perfor-
mance improves with the number of objects in the tree. In
addition, the region search performs well in both uniform
and exponential data. Unfortunately, performance is poor
for point queries. Distribution and overcoverage are a fac-
tor in this performance, since point queries still perform
well when the distribution is exponential and overcoverage
is lower. Since point queries are region queries with zero
area, this suggests that as the region query decreases in size,
the search performance decreases.

Future research directions include the following. The
first is to extend the performance evaluation to consider
varying sized region queries. The second is to compare the
search performance of the 2DR-tree against other proposed
SAMs. The third is to develop algorithms for other types
of spatial searches, such as adjacency, nearest neighbour,
and spatial join. A final research direction is to improve
support for both spatial networks [3] and spatial reasoning
strategies for direction relations [4].

References

[1] Geological Survey of Canada, Geoscience Data
Repository, http://gdr.nrcan.gc.ca/index e.php, vis-
ited March 2006.

[2] V. Gaede and O. Günther, Multidimensional Access
Methods, ACM Computing Surveys, 30(2), 1998, 170-
231.

[3] S. Shekhar and S. Chawla, Spatial Databases: A Tour
(New Jersey: Prentice Hall, 2003).

[4] D. Papadias, M. Egenhofer and J. Sharma, Hier-
archical reasoning about direction relations, Pro-
ceedings of the 4th ACM International Workshop
on Advances in Geographical Information Systems,
Rockville, Maryland, USA, 1996, 105-112.

[5] A Guttman, R-trees: a dynamic index structure for
spatial searching, Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Boston, USA, 1984, 47-57.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger, The R∗-tree: an efficient and robust access
method for points and rectangles, Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, Atlantic City, USA, 1990, 322-331.

[7] T. Sellis, N. Roussopoulos and C. Faloutsos, The R+-
tree: a dynamic index for multi-dimensional objects,
Proceedings of the 13th International Conference on
Very Large Data Bases, Brighton, England, 1987,
507-518.

[8] S. Berchtold, D. Keim and H.-P. Kriegel, The X-
tree: an index structure for high-dimensional data,
Proceedings of the 22nd International Conference on
Very Large Data Bases, Bombay, India, 1996, 28-39.

[9] I. Kamel and C. Faloutsos, Hilbert R-tree: an im-
proved R-tree using fractals, Proceedings of the 20th
International Conference on Very Large Data Bases,
Santiago, Chile, 1994, 500-509.

[10] J. Orenstein, Redundancy in spatial databases, Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, Portland, Oregon,
1989, 294-305.

[11] R. Bayer, The universal B-tree for multidimensional
indexing: general concepts, Worldwide Comput-
ing and Its Applications, International Conference,
WWCA ’97, Tsukuba, Japan, 1997, 198-209.

[12] N. Koudas, Indexing support for spatial joins, Data
and Knowledge Engineering, 34(2), 2000, 99-124.

[13] D. Comer, The ubiquitous B-tree, ACM Computing
Surveys, 11(2), 1979, 121-137.

[14] W. Osborn and K. Barker, The 2DR-tree: a 2-
dimensional spatial access method, University of Cal-
gary Technical Report 2004-750-15, 2004.

[15] W. Osborn, The 2DR-tree: a 2-dimensional spatial
access method, (PhD Thesis, University of Calgary,
2005).

76


