
7

Automating the Maintenance of
Greenstone Collections

Wendy Osborn1, Steve Fox1, David Bainbridge2 and Ian H.Witten2
1University of Lethbridge

2University of Waikato
1Canada

2New Zealand

1. Introduction
Many applications generate multimedia documents, such as images and video, on a daily
basis. For example, many municipalities have a photo-radar system to catch vehicles that
violate traffic laws such as speeding or ignoring red lights. Many pictures of vehicle license
plates are created every day. If these images are organized into a digital library, the
collection would need to be updated regularly to incorporate new images. Another example
is a traveller who wants to update a digital library of trip photos with new pictures of her
travels while traveling around the world.
When documents and metadata are added to a digital library collection on a regular basis,
such as hourly, daily or weekly, an automated and scheduled approach to collection
maintenance is preferred over having to manually update the collection. In addition, an
automated approach should be simple to use, therefore making time available for other
important tasks.
Digital library software such as Greenstone (Witten et al., 2009), DSpace (Tansley et al., 2006)
and Fedora (Lagoze et al., 2006) require that items be added manually to the collection. In
Fedora, data is retrieved at the time of viewing. However, a location needs to be manually
configured. Further, although Fedora and DSpace do provide application programming
interfaces (APIs) to extend functionality, programming knowledge is required for using an
API and for setting up tools based on it.
We present a solution for automating and scheduling updates that occur on a regular basis.
Our solution is implemented in the Greenstone digital library software system (Witten et al.,
2009), and comes in two parts. The first part of our approach is a command-line scheduling
module. The Scheduler both automates the construction and modification of a collection,
and schedules the construction to occur at specific intervals, such as hourly, daily or weekly.
In addition, the owner of a collection can update the collection manually, without affecting
the scheduled collection builds. Further, the Scheduler interacts with the existing task
scheduling mechanism on the host system, which keeps the Scheduler minimal, yet
powerful. The second part of our approach involves incorporating the Scheduler into the
Greenstone Librarian Interface (GLI) (Witten, 2004). This will allow users who are more
comfortable with managing collections through a graphical user interface to take advantage

 Digital Libraries - Methods and Applications

138

 (a) Front Page of pics Collection (b) Viewing pics Collection

Fig. 1. pics Collection in Greenstone

of the functionality of the Scheduler. In addition, this allows us to handle certain tasks
associated with scheduling in a uniform and flexible manner.
This chapter proceeds as follows. Sections 2, 3 and 4 present background information on
Greenstone, the Librarian Interface, and Cron. Section 5 presents the Scheduler, the
command-line tool for scheduling automatic builds of Greenstone collections. Section 6
presents an evaluation of the Scheduler. Section 7 presents the extensions to the Librarian
Interface required to support the Scheduler. Section 8 presents a scenario that overviews the
use of the Scheduler from the Librarian Interface. Finally, Section 9 concludes the chapter
and provides some future directions of research.

2. Greenstone
Greenstone (Witten et al., 2009) is a suite of software for creating digital library collections
and making them available locally or via the Internet. A collection can contain documents of
different formats, including images, PostScript and PDF files, audio, formatted and
unformatted text, and many others. A collection built using Greenstone can be customized
in many ways. For example, a collection owner can customize the types of documents that
can appear in the collection, the appearance of the interface to the collection, and how the
collection will be accessed by other users. In addition, Greenstone is extensible. For example,
functionality to support other data formats that are not provided with Greenstone can easily
be added to a collection.
There are two types of accessors in Greenstone. The first is an index that provides support
for searching. The second is a classifier that provides support for browsing. A collection can
be configured for browsing by any metadata that is specified by the collection owner or
extracted by Greenstone. Furthermore, a collection can be configured for searching on the
same metadata fields, as well as full text.

Automating the Maintenance of Greenstone Collections

139

Fig. 2. Internal Representation of a Greenstone Collection

Figures 1(a) and 1(b) depict a Greenstone collection called pics. The pics collection is
configured to accept images only. Figure 1(a) shows the front page of the collection, which
provides general information on the collection. In addition, the collection is configured for
both browsing and searching by either Title or Filename. Figure 1(b) shows a display of
some images from the pics collection. In this view, the collection is being browsed by Title.
The user can click on any image to obtain a larger image for viewing.
Figure 2 depicts the internal representation of a Greenstone collection. Here, the four main
directories of a collection — import, archives, building, and index — are displayed. The
purpose of each is described below:
• import. The import directory contains all documents that are to be added to the

collection. If desired, the documents can be organized in a hierarchical directory
structure within the import directory.

• archives. The archives directory stores all documents that have been processed from the
import folder and added to the collection. All documents in the archives directory are
represented in a canonical XML format.

• building. The building directory is a working directory for creating all indices and
classifiers that are specified for the collection.

• index. The index directory contains the indices and classifiers after they are created.
A Greenstone collection is created or modified by the following four steps (Witten et al.,
2009): document addition, document importation, accessor creation, and collection
activation. Each step is described in detail below:
1. document addition. New documents that will be added to a collection are placed into the

import directory for the collection.
2. document importation. Each document in the import directory is processed for inclusion

by creating a canonical XML representation for it. This is accomplished by specifying an
import command. Different importing options can be specified by the user. For example,
documents in the import directory can be added to an existing collection by using a –
keepold option. Alternatively, all documents in the import directory—new and existing—
can be used to create a new instance of the collection by using a –removeold option. All
imported documents are placed in the archives directory.

 Digital Libraries - Methods and Applications

140

3. accessor creation. After the documents in the import directory are added to the collection,
indices and classifiers are set up by processing the canonical XML representations of all
documents. This is accomplished by specifying a build command. New indices and
classifiers can be built by specifying a –removeold option. Alternatively, existing indices
and classifiers can be modified by specifying a –keepold or –incremental option. The
resulting indices and classifiers are located in the building directory.

4. collection activation. Finally, the collection is activated by moving the indices and
classifiers from the building directory to the index directory. The collection is now
viewable online.

The command for each step can be executed in a terminal or command window, or via the
Greenstone Librarian Interface.

3. Greenstone Librarian Interface
The Greenstone Librarian Interface (GLI) (Witten, 2004) is a graphical user interface that
provides a user-friendly method to build and configure Greenstone collections. It
incorporates the four steps above. The only steps that are required by the user are to place
documents to the import directory via the Gather panel, and to add the documents to the
collection via the Create panel. In addition, the Librarian Interface allows a user to create
new collections, select metadata sets, configure which document types to allow, and select
import and build command options. Figure 3 shows the Librarian Interface.

Fig. 3. The Greenstone Librarian Interface

Automating the Maintenance of Greenstone Collections

141

4. Cron
Cron (Nemeth et al., 2007) is a program for users to schedule tasks that will run
automatically at a specified time. A task can be one command, or a script containing several
commands that are executed in sequence. Initially, Cron was implemented for Unix and
Linux platforms, with most systems running Vixie Cron (Vixie, 1994). Mac OS X also runs
Vixie Cron. In addition, versions of Cron now exist for Windows platforms, such as Pycron
(Schapira, 2004). We summarize the general ideas behind all implementations of Cron that
are applicable to our work.
Cron runs continuously in the background of the operating system. Every minute, Cron
reads several task configuration files. Each such file is called a crontab file. A crontab file
contains a record for every task that is scheduled for execution. Cron locates and runs all
tasks that are scheduled at the current time.
The format of a crontab record is (min hr dom moy dow user task), where min, hr, dom, moy,
and dow are the minute, hour, day of month, month of year and day of week, respectively,
user is the username that the command will run under, and task is the command or script
that is executed at the specified time. A task can be scheduled to run hourly, daily, weekly,
monthly, or yearly:
• hourly. An hourly scheduled task executes every hour at a specified minute.
• daily. A task that is scheduled daily executes at a specific hour, which is required, and a

specific minute. If no minute is specified, execution will occur every minute during the
specified hour.

• weekly. A weekly scheduled task runs on a specified day, which is required, and at a
specified hour and minute. If no hour is specified, execution will occur every hour
during the specified day.

• monthly. A monthly scheduled task runs on a specified day (between the 1st and last
day of the month).

• yearly. A yearly scheduled task runs on a specified month.
Any unspecified values are replaced with an asterisk in the crontab record.
Systems that use Vixie Cron support two types of crontab files – system crontab and user
crontab. The system crontab files are primarily for system administration and maintenance
tasks. Also, even if all tasks have a specified low-level username, root privileges are
required for modifying a system crontab file. User crontab files, on the other hand, can be
set up by any user on the system to execute tasks under their own username. Assuming the
user has permission to execute the task, no root permissions are required. In addition,
Pycron only supports user crontab files. Therefore, the Scheduler will employ a user crontab
file.
Figure 4 displays a sample user crontab file. It contains 4 tasks that are scheduled for specific
times. The first task, /collect/pics/gsdl.pl, is scheduled to be run at 30 minutes past every
hour. The second task, /usr/bin/cleanup.bash, is scheduled for execution daily at 11:59pm.

30 * * * * /collect/pics/gsdl.pl
59 23 * * * /usr/bin/cleanup.bash
00 6 * * 7 /home/someuser/alarm
00 0 1 1 * echo "Happy New Year!"

Fig. 4. Sample Crontab File

 Digital Libraries - Methods and Applications

142

The third task, home/someuser/alarm, is scheduled every Sunday at 6:00am. Finally, the
fourth task, which echoes ”Happy New Year!”, is schedule for execution every January first
at 12:00 AM.

5. The Scheduler
We first present our design for the Scheduler command-line module in Greenstone. The
Scheduler is written in Perl and runs on Linux, Windows and Mac OS X. It also utilizes the
Cron scheduling service (Nemeth et al., 2007) for scheduling collection re-building. We
chose Perl because a Perl script can be executed across different platforms without the need
to recompile. Similarly, we chose Cron because it is available for Linux and Mac OS X (Vixie,
1994), as well as Windows (Schapira, 2004). Therefore, we can maintain the the cross-
platform requirement of Greenstone.
The Scheduler requires the following parameters from the user as input:
1. the collection to be rebuilt,
2. the full import command that is required to import documents into the collection,
3. the full build command required to construct the indices and classifiers for the

collection, and
4. a specification of either an hourly, daily, or weekly build.
For example, if the user wants the collection pics to be scheduled for construction on a daily
basis, the parameters would look something like this:

schedule.pl pics “import.pl –removeold pics”
“buildcol.pl –removeold pics” daily

where pics is the name of the collection, ”import.pl –removeold pics” is the Greenstone
command for importing documents into the collection pics, ”buildcol.pl –removeold pics” is the
Greenstone command for creating the required indices and classifiers for pics, and daily
indicates that the collection will be scheduled for construction on a daily basis.
Using the arguments provided by the user, the Scheduler performs two main tasks: 1) create
a script that automates the building of the collection (i.e. build script), and 2) create a
crontab record that schedules the execution of the build script at specified intervals.

5.1 Automation script generation
The Scheduler generates a build script for any import and build command, and for the Linux,
Windows or Mac OS X platforms. The build script contains all instructions that are required
for building the specified collection. The commands include those for setting the Greenstone
environment variables required for the collection building process, the import command and
the build command.
Figure 5 shows a sample build script for Linux that contains the instructions for building the
collection pics, as specified in the schedule.pl command above. The first four instructions set
the environment variable that are required for the import.pl and buildcol.pl commands. The
next two instructions are the specified import and build commands. The remaining
instructions handle cleanup in order to activate the collection. Similarly, Figure 6 shows
a sample build script for Windows that is generated for the same schedule.pl command
above.

Automating the Maintenance of Greenstone Collections

143

#!/usr/bin/perl

$ENV{’GSDLHOME’}="/gsdl";
$ENV{’GSDLOS’}="linux";
$ENV{’GSDLLANG’}="EN";
$ENV{’PATH’}="/usr/local/gsdl/bin/script:/usr/local/gsdl/bin/linux";
system("import.pl -removeold pics");
system("buildcol.pl -removeold pics");
system("\\rm -r /gsdl/collect/pics/index/*");
system("mv /gsdl/collect/pics/building/*

/gsdl/collect/pics/index/");
system("chmod -R 755 /gsdl/collect/pics/index/*");

Fig. 5. Sample Automation Script for Linux

#!/usr/bin/perl

$ENV{’GSDLHOME’}="C:\\gsdl";
$ENV{’GSDLOS’}="windows";
$ENV{’GSDLLANG’}="en";
$ENV{’PATH’}="C:\\gsdl\\bin\\windows\\perl\\bin;C:\\gsdl\\bin\\windows;
C:\\gsdl\\bin\\script;C:\\Perl\\bin\\;
C:\\WINDOWS\\system32;C:\\WINDOWS;
system("import.pl pics");
system("buildcol.pl pics");
system("rd \/S \/Q \"C:\\gsdl\\collect\\pics\\index\"");
system("md \"C:\\gsdl\\collect\\pics\\index\"");
system("xcopy \/E \/Y \"C:\\gsdl\\collect\\pics\\building*\"
\"C:\\gsdl\\collect\\pics\\index\\\"");
Fig. 6. Sample Automation Script for Windows

5.2 Crontab generation
A crontab record is created to execute the automation script at a specified interval. The user
has the option of specifying an hourly, daily or weekly build. An hourly build is scheduled
for the beginning of the hour, a daily build is scheduled for midnight, and a weekly build is
scheduled for Sunday morning at midnight. After creating the crontab record, it is added to
the crontab file or replaces an existing crontab record. Figure 7 depicts the daily crontab
record for the automation script in Figure 5, while Figure 8 depicts the crontab record
corresponding to the automation script in Figure 6.

00 0 * * * /gsdl/collect/pics/gsdl.pl

Fig. 7. Crontab Record for Linux

00 0 * * * c:\gsdl\collect\pics\gsdl.pl

Fig. 8. Crontab Record for Windows

 Digital Libraries - Methods and Applications

144

6. Evaluation
In this section, we discuss the performance of the Scheduler. The focus of our experiments is
to evaluate the Scheduler for correct execution in specific situations. For correct execution,
we looked at the following:
• Crontab. Does the Scheduler generate a correct crontab record? A crontab record is

correct if: 1) it is accepted by the crontab program (Linux and Mac OS X only), and it
causes Cron to execute the automation script at the proper time.

• Automation Script. In addition, does the scheduler generate the correct automation script
to build a collection. An automation script is generated correctly if the collection it is
created for is rebuilt correctly given the parameters that are specified when the script is
created.

We conducted three experiments. The first is an hourly build of one collection. The second is
an hourly build of two collections. The third is a daily build of one collection. All three
experiments were performed on both Linux and Windows. These tests were not performed
extensively on Mac OS X. However, the scheduler was executed many times on this
platform to ensure that it does work.

6.1 Hourly build of one collection
The focus of this experiment is to ensure that the Scheduler produced a correct crontab
record and automation script to re-build a collection of images every hour for 24 hours. To
determine that each execution of the automation script was successful, we looked at the
following. For Linux, Cron was configured to send an email message containing the output
of the automation script. The email message for each of the 24 builds contains an output for
a successful Greenstone build. For Windows, Pycron maintains a log that contains two
records for each automation script execution – one record indicating the start of execution,
and one record indicating the end of execution and a return code. The terminating records
for all 24 builds have a return code of zero, which indicates a successful execution of the
automation script.
In both cases, a visual inspection of the collection was also performed periodically to verify
the success of the Scheduler.

6.2 Hourly build of two collections
The focus of this experiment is to ensure that if multiple collections are scheduled to be
rebuilt at the same time, they are successfully rebuilt. We scheduled the building of two
collections on hourly intervals for 24 hours. A perusal of email messages (for Linux) and the
log (for Windows) verify that both collections were rebuilt successfully.

6.3 Daily build of one collection
The focus of this experiment is twofold. The first is to ensure correct daily execution of an
automation script generated by the Scheduler. The second is to simulate a situation of a
collection that has images added to it on a daily basis. We schedule one collection to be built
daily for seven days. The collection starts with 10 images, and 10 images are added daily. In
addition to the successful daily build, the collection did reflect the addition of the new
images that arrived daily.

Automating the Maintenance of Greenstone Collections

145

Fig. 9. The Schedule Options Panel

7. Scheduling in the Librarian Interface
The Scheduler is a minimal, yet powerful tool for maintaining Greenstone collections. It
hides the details concerning the collection building process, and also the details for
scheduling a Cron task. However, the Scheduler has two main limitations. The first is that
the user is still required to know the syntax and command-line parameters for both the
import and build commands in order to perform scheduling. The second is that, currently,
notification of collection building success—or failure—is still dependent on the version of
Cron (and indirectly, the operating system it is running on) that is used.
The Librarian Interface provides a user-friendly tool for building collections, including
configuring the import and build commands. Therefore, it is ideal to extend the Librarian
Interface to allow the configuration of the Scheduler as well. Figure 9 depicts the Librarian
Interface extension to support the scheduling of collection builds. Currently, the Create
panel is displaying most of the parameters (i.e. Schedule Options) for the Scheduler.
Notice that no explicit options exist for the import and build commands. This is because the
import and build commands are created based on the arguments selected from the Import
Options and Build Options panels. Therefore, the user no longer needs to know the exact
syntax of the import and build commands.

7.1 User modes
The Librarian Interface has four modes of use— Library Assistant, Librarian, Library
Systems Specialist, and Expert—stepwise increasing the functionality available to the user

 Digital Libraries - Methods and Applications

146

(Witten, 2004). It was important to determine which modes would have access to the
Scheduling Options, and for those modes that were granted access, how much access each
would be granted. It was decided that Library Systems Specialists and Experts would be
provided access to the Scheduling Options. In addition to determining which options to
make available to each user mode, it is also necessary to determine how the Scheduler
would interact with the existing import and build functionality in the Librarian Interface.

7.1.1 Mode level for options
The Scheduler was first modified so that the passing of command-line arguments
conformed with that of other Greenstone commands, such as import and build. This also
allowed us to easily specify which user mode could have access to each argument when it is
added as a Schedule Option in the Librarian Interface. The Expert user mode is granted full
access to all Schedule Options, while Librarian Systems Specialist is only granted limited
access to options. This user mode can only specify whether or not to schedule a collection
build with the default values—a frequency of hourly, and no sending of email.

7.1.2 Scheduling and building
Another important decision was how the Scheduler would interact with the collection
building functionality of the Librarian Interface. The question asked was, should scheduling
be done at the same time as collection building, or be a completely separate task?
For Expert mode, the functionality for Scheduling is separate from that of collection
building. This is because an expert user may want to configure and manually re-build their
collection before scheduling an automatic re-build of it. For Library System Specialist mode,
the Scheduling functionality is done at the same time as collection building. If the specialist
chooses to schedule, a new scheduled build is created. If the specialist chooses not to
schedule, any existing scheduled builds are deleted.

7.2 Cron event logs
It is important to maintain logs that keep track of the outcome of a scheduled collection
build. Both Vixie Cron and Pycron maintain a log that keeps track of the attempted
execution of all scheduled tasks. Neither scheduling service keeps track of the success or
failure of a scheduled task, nor do they keep track of the output of a task. In addition, to
view logs created by Vixie Cron, the user must have root access.
Another desirable feature of maintaining logs is the ability to be able to only record
output that is considered important, and to disregard all other task output. For example, if
the output from the input and build commands of Greenstone is required, but the
output from moving indices and classifiers is not considered important, the log should
reflect this.
Therefore, the Scheduler is modified in two ways to handle the logging of building script
output. The first is to create a custom log for each execution of the automation script. The
automation script creates a unique filename every time it is executed by using a timestamp.
The second is to specify in the automation script which actions will have its output
redirected to the logfile. The actions whose output is to be ignored will have its output
redirected to the ‘bit bucket’ (e.g. /dev/null/ in Linux).

Automating the Maintenance of Greenstone Collections

147

7.3 Email notification
It is also important than an email notification service be provided, which will inform users
of the outcome of their scheduled collection build. We handle email notification from the
Scheduler and Librarian Interface for the following reasons:
1. User notification. Whether Cron notifies users about the outcome of a scheduled task

depends on the its implementation. For Vixie Cron, the outcome of a task (i.e. output
from either successful task completion, or error output) is emailed to the owner of the
task. Pycron does not send email notification.

2. Flexibility of Notification. In Vixie Cron it is possible to suppress email notification, either
by setting an environment variable to null, or by redirecting all output to a file or the
‘bit bucket’. However, this is normally an all-or-nothing event—either all output, or
none, is sent by email. Similar to logging, a desirable feature would be to send email
that contains only the most important parts of the building process, and ignores other
parts of the building process.

3. Greenstone Email Support. Greenstone comes with a Perl email script, that is a wrapper
for the Perl sendmail command. The email script is platform-independent. Therefore, it
is ideal to use it to provide a uniform way to send email concerning the execution of a
scheduled task. In addition, the script does not require the piping of build output
directly to it, but instead can send the contents of a file.

Therefore, both the Librarian Interface and the Scheduler are modified so that email
notification is handled in a uniform and user-friendly manner across all operating systems.
First, options have been added to the Scheduler that are required for the Perl email script—
specifically, a flag to specify that email will be sent (–email), the sender (–fromaddr), receiver
(–toaddr) and the email server that will be used to send the email (–smtp). Also, the
corresponding fields exist in the Schedule Options pane of the Librarian Interface. In order
to assist users in using the email features of scheduling, the Librarian Interface attempts to
populate the fields –toaddr, –fromaddr, and –smtp in the Schedule Options pane by consulting
the configurations for the Librarian Interface and Greenstone. If suitable values are available
from these sources, they are assigned to the appropriate fields.
Second, the output from the building script must be captured and re-directed to the Perl
email script. The capturing of output already takes place, in the event log. This serves as the
file that the email script will send to the user. Also, since it contains only the output that is
considered important, this will be reflected in the email message as well.
Finally, the Scheduler is modified so that, if specified, the automation script will send an
email message containing the contents of the log to the specified recipient. An added bonus
is that if email is not specified, the log can still be consulted by the user if required.

7.4 Scheduled building in isolation
An important modification to the Scheduler is to ensure that a scheduled build is completed
in its entirety without interference from another scheduled build. A build may take a
significant amount of time depending on the size of the collection—from seconds for a small
one to 33 hours for a collection containing 20 GB of raw text and 50 GB of metadata (Boddie
et al., 2008).
To handle this, the automation script for the collection checks for a lock file, which indicates
that a collection build is underway. If the file exists, the collection owner is notified via email
and information is placed in the event log. Otherwise, a lock file is created before the

 Digital Libraries - Methods and Applications

148

scheduled build begins, and is removed when the build finishes. This ensures that multiples
builds do not occur concurrently.

8. Example: collecting pictures while traveling
In this section, we present a simple application of scheduling from the Librarian Interface. In
this scenario, we have a traveler who wants to post pictures of their trip in a Greenstone
collection for her friends to view. Instead of waiting until the end of the trip, the traveler
wants to post her pictures from each day, incrementally adding to the collection on a daily
basis. The traveler does not want to worry about obtaining the Librarian Interface to rebuild
the collection while traveling. Instead, she simply wants to upload the pictures to the import
directory of her collection, and have her collection rebuilt automatically and on a daily basis.
This can be accomplished by setting up a scheduled, automatic rebuild of the collection of
travel photos from the Librarian Interface.
First, before departing, the traveler runs the Librarian Interface and creates a new collection.
Then, the user selects the Create tab to display the collection creation pane. From here,
clicking on Schedule Options will display the available options for setting up a scheduled,
automatic collection build of the collection of travel pictures. Figure 10(a) depicts the
available scheduling options, which are displayed with default and derived values as
appropriate. Here, the traveler selects schedule, which indicates that she wants to set up a
scheduled, automatic build. Also, she selects a frequency of hourly and an action of add (or,
to create a new scheduled build).
Next, the traveler clicks on Schedule Build. This will set up the building script for the
collection of travel pics, as well as the crontab record that will indicate to Cron that the
collection is to be rebuilt daily. The collection is now ready to be re-built while the traveler is
away.
At the end of the first day of travel, she uploads three pictures, which are added to the
collection when the collection is re-built automatically overnight. The updated collection is
depicted in Figure 10(b). The next day, the traveler uploads three more pictures. When the
collection is re-built overnight, these pictures are added to the existing collection. Figure
10(c) depicts the updated collection with the new pictures.
Although not shown here, the user can switch to the Import Options and Build Options and
select any options that are required for collection importing and building. These options are
incorporated into the automatic building script that is created for the collection. In addition,
the user can manually build and configure their collection as many times as necessary to
confirm the right sequence is being performed, before setting up a scheduled, automatic
build.

9. Conclusion and future work
In this paper, we present our solution to automated and scheduled collection maintenance
in Greenstone. First, we propose the Scheduler, which provides support for an automatic
rebuild of a collection at specific intervals by specifying a few simple parameters. The
Scheduler interacts with a resident task scheduler on the local operating system, which
results in a minimal but powerful tool. Several experiments are performed to show the
correct execution of the Scheduler for different build times and for different numbers of
collections.

Automating the Maintenance of Greenstone Collections

149

(a) Schedule Options Panel

 (b) Build - First Day (c) Build - Second Day

Fig. 10. Collection Build Scheduling

 Digital Libraries - Methods and Applications

150

In addition, we propose the incorporation of the Greenstone Scheduler into the Librarian
Interface. This overcomes two limitations of the Schedule—the requirement to know the
syntax and command-line arguments for both the import and build commands, and the
inconsistency of notification of collection building success or failure. Providing an interface
to the Scheduler improves its usability and provide further abstraction of the scheduling
process from the user. Some future directions of work include the following. The first is to
allow the user to select a specific period of time (e.g. 20 minutes after the hour) for their
collection to be re-built. Currently, collection building occurs at the top of the hour (hourly),
at midnight (daily) and on Sunday at midnight (weekly). The second is support for
dependencies between fields in the Librarian Interface. For example, if a user selects the
email option, it requires –toaddr, –fromaddr, and –smtp. Currently, the user must ensure that
these are also selected, as it is not done automatically. A final research direction is to
provide support for an automatic re-build of a collection when certain events are triggered.
For example, the arrival of a new document can trigger an automatic rebuild of the
collection.

10. References
Boddie, S., Thompson, J., Bainbridge, D. &Witten, I. H. (2008). Coping with very large digital

collections using greenstone, Proc. of the ECDLWorkshop on Very Large Digital
Libraries.

Lagoze, C., Payette, S., Shin, E. &Wilper, C. (2006). Fedora: an architecture for complex
objects and their relationships, International Journal on Digital Libraries 6(2): 124–138.

Nemeth, E., Snyder, G. & Hein, T. R. (2007). Linux Administration Handbook, Prentice-Hall.
Schapira, E. (2004). Python cron - great cron for windows. Website. Last visited June 2010.

http://sourceforge.net/projects/pycron.
Tansley, R., Bass, M. & Smith, M. (2006). Dspace as an open archival information system:

Status and future directions, Proc. of the 10th European Conference on Digital Libraries.
Vixie, P. (1994). Vixie cron for FreeBSD. Website. Last visited June 2010.

http://www.freebsd .org/cgi/cvsweb.cgi/src/usr.sbin/cron/.
Witten, I. H. (2004). Creating and customizing collections with the Greenstone Librarian

Interface, Proc. of the Int’l Symp. on Digital Libraries and Knowledge Communities in
Networked Information Society.

Witten, I. H., Bainbridge, D. & Nichols, D. (2009). How to Build a Digital Library, Morgan
Kaufmann.

