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mqr-tree: A 2-dimensional Spatial Access 
Method 

Marc Moreau and Wendy Osborn  

Abstract—In this paper, we propose the mqr-tree, a two-dimensional spatial access method that organizes spatial objects in a 
two-dimensional node and based on their spatial relationships.  Previously proposed spatial access methods that attempt to 
maintain spatial relationships between objects in their structures are limited in their incorporation of existing one-dimensional 
spatial access methods, or have lower space utilization in its nodes, and higher tree height, overcoverage and overlap than is 
necessary. The mqr-tree utilizes a node organization, set of spatial relationship rules and insertion strategy in order to gain 
significant improvements in overlap and overcoverage.  In addition, other desirable properties are identified as a result of the 
chosen node organization and insertion strategies.  In particular, zero overlap is achieved when the mqr-tree is used to index 
point data. A comparison of the mqr-tree insertion strategy versus the R-tree shows significant improvements in overlap and 
overcoverage, with comparable space utilization. In addition, a comparison of region searching shows that the mqr-tree 
achieves a lower number of disk accesses in many cases.   

Index Terms—spatial access methods, spatial relationships, direction relations, performance  

——————————   �   —————————— 

1 INTRODUCTION

ANY applications existing today that store and 
manipulate spatial data.  A spatial database [22] 
contains a large collection of objects that are locat-

ed in multi-dimensional space. For example, the Geologi-
cal Survey of Canada maintains a repository of spatial 
data for many geosciences applications [14], while the 
Protein Data Bank [6] contains many three-dimensional 
protein structures.  

An important issue in spatial data management is to 
efficiently retrieve objects based on their location by us-
ing spatial access methods. An approximation method is 
a spatial access method that maintains a hierarchy of ap-
proximations of both objects and the space occupied by 
subsets of objects. Approximations are usually represent-
ed using a minimum bounding rectangle.  Many approx-
imation strategies have been proposed in the literature. 
However, most proposed strategies do not preserve all 
spatial relationships between objects because the data, 
which is represented in n-dimensional space, is forced 
into a 1-dimensional ordering [3], [5], [9], [10], [11], [15], 
[20]. This leads to inefficient searching, both within a 
node and the structure as a whole, because the only op-
tion is a linear search of a node in its entirety.  

A few strategies have been proposed that attempt to 
preserve spatial relationships between objects [1], [12], 
[16], [18].  However, they are limited in that they still in-
corporate existing 1-dimensional spatial access methods, 
bulk-load their objects only, or result in a very high tree 

height and low average space utilization. These limitations 
can lead to high coverage, overcoverage and overlap of 
minimum bounding rectangles.  

Therefore, we propose the mqr-tree, which improves 
upon existing spatial access methods by proposing a 
modified node organization and set of spatial relation-
ship rules, and new insertion and search algorithms. We 
evaluate the mqr-tree against a benchmark strategy, the 
R-tree [9]. We show that the mqr-tree achieves significant 
improvements in overlap and overcoverage over the R-
tree. Also, we show that the mqr-tree can achieve a signif-
icantly lower number of disk accesses when performing a 
region search. With these improvements accomplished, 
different searching strategies can be explored that can 
perform a partial search of nodes.  

This paper proceeds as follows. Section 2 presents re-
lated work in the area of spatial access methods and their 
limitations. Section 3 presents the mqr-tree, in particular 
its node organization, insertion strategy and region 
search strategy. Section 4 presents special properties of 
the mqr-tree. Section 5 presents the results of our experi-
mental evaluation versus the R-tree.  Finally, the paper 
concludes and gives research directions in Section 6.  

2 RELATED WORK 
Many approaches for indexing objects based on location 
are proposed in the literature (see [8], [19], [22] for sur-
veys). These approaches are classified into three catego-
ries [8]: main memory methods, point access methods 
and spatial access methods (spatial access methods). 
Many important strategies are proposed in all categories.  
We focus on spatial access methods, since our work re-
sides in this category. 

Spatial access methods provide uniform access to both 
point and object data. Also, they remain height-balanced 
in the presence of a dynamic object set. Many spatial ac-
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cess methods are proposed in the literature [1], [2], [3], 
[5], [9], [10], [11], [12], [15], [16], [18], [20]. They can be 
classified [8] into approximation, clipping, and mapping 
methods. 

Approximation methods store a hierarchy of approx-
imations of both objects and the space occupied by sub-
sets of objects.  Since the space is not partitioned, approx-
imations can overlap.  Many approximation methods are 
proposed, including the R-tree [9], the R

*
-tree [3], the X-

tree [5], the R
*
Q-tree [8], the PR-tree [1], the 2DR-tree [16], 

[17], the VoR-tree [21], the DR-tree [12] and the MSI ap-
proach [2].  Clipping methods, such as the R

+
-tree [20], 

partition an object into parts so that overlap is avoided.  
Mapping methods map objects in n-dimensional space 
into a one-dimensional order. The objects are then stored 
and retrieved using an access method such as a B

+
-tree 

[7]. Approaches that use mapping include Z-ordering 
[15], the Hilbert R-tree [10], and the Filter tree [11]. 

A limitation to most hierarchical spatial access meth-
ods is their one-dimensional structure.  However, no n-
dimensional to one-dimensional mapping of spatial data 
exists that preserves all spatial relationships between 
objects [8]. This forces objects in n-dimensional space to 
be in a one-dimensional ordering, which results in the 
loss of spatial relationships. This leads to inefficient 
searching, both within a node and the structure as a 
whole, because the only option is a linear search of a 
node in its entirety. Mapping methods do provide a one-
dimensional ordering of objects, but they cannot main-
tain all spatial relationships. 

A few proposed strategies that attempt to overcome 
this one-dimensional limitation are the R*-Q-tree, the 
2DR-tree, the DR-tree and the MSI approach. In the R*-Q-
tree, the space that contains objects is partitioned into 
four quadrants, and a standard R*-tree is constructed for 
each.  Although the root level takes the spatial relation-
ships of objects into account, the existence of the R*-trees 
still implies that one-dimensional mapping of objects in 
n-dimensional space still takes place.  The MSI approach 
extends the R*Q-tree approach by recursively partition-
ing the quadrants until the number of objects in each re-
gion falls below a specified threshold, before constructing 
a traditional index for each region, such as an R-tree.  The 
regions are stored in a metaTree to facilitate access to the 
required R-trees.  Along with the R*-Q-tree, the MSI ap-
proach inherits the one-dimensional property of object 
organization, since the R-tree is used and the metaTree 
also organizes information in a linear fashion.  The DR-
tree adopts a ``partitioning'' of space into north, south, 
east, and inside, which is adopted by all nodes in the tree.  
The authors, however, do not present an insertion strate-
gy.  It appears that their structure is constructed using 
bulk loading, and it is unclear if the DR-tree can handle 
changes to the object set without having to be re-
constructed. The 2DR-tree proposes a 2-dimensional 
node structure that fits the data as given and preserves 

spatial relationships between objects, instead of forcing 
n-dimensional data to fit a one-dimensional structure. 
The insertion strategy applies node validity rules to en-
sure that 1) spatial relationships between objects are 
maintained, and 2) reconstruction of the entire tree on 
insertion of a new object is not required.  Limitations of 
the 2DR-tree include a unnecessarily high tree height and 
a low average space utilization within its nodes, which in 
turn results in high coverage, overcoverage and overlap 
of minimum bounding rectangles.  

Therefore, we present an improved two-dimensional 
node and tree structure and strategy for spatial relation-
ship preservation within a node. We also present our in-
sertion and region search algorithms, along with a per-
formance evaluation for both.  Our goal is to eliminate 
the linear nature of existing spatial access methods, and 
at the same time improve the height, space utilization, 
overlap and overcoverage of existing methods.  

3 THE MQR-TREE 

In this section, we present our approach to the tree, or-
ganizing objects within each node, and the new insertion 
and search strategies. In addition, we demonstrate some 
features of the new insertion strategy through a short 
example.  We utilize several terms in our work, which we 
define here first.  

The term object can represent any object in two-
dimensional space, such as a point, line or polygon of 
arbitrary shape. An object or subregion of space that con-
tains a subset of objects is approximated using a minimum 
bounding rectangle (MBR). An MBR defines the minimum 
two-dimensional rectangular range that an object (or sub-
region of space) occupies. A node MBR is defined for eve-
ry node in the tree. For a given node, it is the minimum 
two-dimensional extent that encompasses all MBRs in 
the node and all of the nodes in its subtrees.  

3.1 Structure 
All nodes in the mqr-tree have the same two-dimensional 
structure.  Fig. 1 depicts the node layout. A node contains 
5 locations - northeast (NE), northwest (NW), southwest 
(SW), southeast (SE) and centre (EQ). Each location con-
tains either:  

(MBR,obj_ ptr)  
where obj_ptr is a pointer that references an object and 
MBR is the approximation of the object, or: 

(MBR,node_ ptr)  

 

Fig. 1 Node Layout  



 3 

 

where node_ptr is a pointer to a subtree and MBR is the 
MBR that encompasses all MBRs in the subtree. 

Every node in the mqr-tree must have at least two lo-
cations, and not more than five locations, that are refer-
encing either an object or a subtree.  It is possible to have 
a node contains pointers to both objects and subtrees.  In 
light of this, we relax the requirement that the tree must 
be height-balanced. However, no path in our experiments 
(see Section 5) is more than 50% longer than the average 
path length.  

3.2 Node Organization and Validity 
In every node of the mqr-tree, we determine the relative  
placement of both objects and subregions by using the 
centroids of their MBRs. We define the origin of each 
node as its centre location.   The objects that are refer-
enced from the centre location have the same centroid as 
the centroid of the node MBR for the node. All other ob-
jects and subregions that are referenced from the other 
locations (NW,SE,SW,NE) are placed with respect to the 
centroid of the node MBR. Fig. 2 depicts the spatial rela-
tionships, where A refers to the centroid of a new object, 
and B refers to the centroid of the node MBR. The orien-
tations (NE, SE, SW, NW) include centroids that fall on 
the axes (E, S, W, N, respectively).   

A node is classified as either 'NORMAL' or 'CENTER'.  
In a NORMAL node, the locations are organized based 
on the orientations defined above (see Fig. 1).  A NOR-
MAL node is valid when:  
• The node MBR encloses all the minimum bounding 

rectangles in the objects or subtrees that the node ref-
erences, and  

• All objects or subtrees pointed to by a location are in 
the proper quadrant relative to the node centroid.  

In a CENTER node, the locations are organized linear-
ly.  A CENTER node only references objects whose cen-
troids are the same as the centroid of the node MBR. In 
addition, a CENTER node is utilized only when more 
than one object exists with overlapping centroids.  

Fig. 3 depicts a NORMAL node containing three ob-
jects. Object 1 is located northwest of the centroid of the 
node MBR (defined by the dashed box on the diagram), 
while object 2 is located northeast of the centroid of the 
node MBR. Object 3 is located directly south of the node 
MBR centroid, therefore it is placed in the southeast  

quadrant.  
Although the mqr-tree node resembles a quadtree 

node [4], there are some significant differences that must 
be noted. First, the quadtree defines a recursive partition 
of space using the points that are inserted. Therefore, the 
entire space is indexed, including areas that contain no 
points. The mqr-tree defines an approximation of regions 
that contain objects. Therefore, the amount of space that 
is indexed by the mqr-tree is reduced, because only space 
that contains objects is indexed. Some whitespace (i.e. 
overcoverage) may be present, but is often significantly 
less than managed by a partition-based method. Second, 
the partitions in a quadtree are static after they are creat-
ed when a point is inserted. In other words, the point that 
divides the space does not change when other points are 
inserted. In the mqr-tree, the point that divides the space 
into quadrants is flexible, and adjusts when objects are 
inserted. Finally, the mqr-tree accommodates objects 
whose centroid overlaps the node centroid separately 
from the node centroid itself, where in the quadtree the 
data point and the quadrant partitioning point are the 
same. This allows for the flexibility of the node MBRs 
(and their centroids) in the mqr-tree.   

3.3 Insertion Strategy 
The insertion strategy works as follows.  Beginning at the 
root node, the node MBR is adjusted to include the new 
object. Then, the appropriate location, relative to the cen-
troid of the node MBR, is identified for inserting a refer-
ence to the new object. If the location is empty, the refer-
ence to the object is inserted. Otherwise, the subtree is 
traversed in the same manner, until either: 1) an appro-
priate location is found that is empty and the object ref-
erence can be inserted, or 2) a leaf node is reached, and 
no proper location is available for the new object refer-
ence.  If the object reference cannot be inserted in the 
proper location of the leaf node, then a new leaf node is 
created.  

In addition, for each node on the insertion path, node 
validity is maintained by removing and reinserting ob-
jects that have changed orientation relative to the cen-
troid of the node MBR during the insertion process. 
When inserting an object from a node, one of four things 
will happen to the node MBR: 
• The centroid of the node will not change and there-

fore all objects remain in their proper orientation, 
• The node is a CENTER node, and the new object to 

 

 

 

 

 

Fig. 2 Orientation of A with respect to B  
 

 

 

 

 

Fig. 3 Node with Objects  
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be inserted has a different centroid than the existing 
objects.  

• The centroid of the node moves as the region of the 
node MBR increases in size,  

• The centroid of the node moves as the region of the 
node MBR decreases in size. 

 
In the second case, a CENTER node contains existing 
points or objects that all have the same centroid, but the 
new object has a centroid that differs from the other ob-
jects or points. Therefore, all existing objects must be 
moved. In the latter two cases, some objects may have 
shifted to a different quadrant due to the movement of 
the centroid of the resulting node MBR. If so, these ob-
jects are no longer in their proper relative node location. 
Any objects in this situation must be located and moved. 
In all of cases 2-4 above, the objects are moved by re-
inserting them beginning at the current level of the tree 
so that they are placed in a proper relative location.    

Fig. 4(a) shows a NE expansion of the node MBR from 
the original area (shaded) to the new area. The MBR is 
split into four quadrants using hashed lines.  The direc-
tion of the hash indicates the quadrant in which the ob-
ject on that line is included. The regions that are labeled 
represent the destination location for the objects found 
within that region.The 'EQ' location has been omitted for 
clarity.  Notice that after the MBR is expanded, partial 
regions that once belonged to the NW, NE and SE quad-
rants now belong to the region that makes up the SW 
quadrant. Any objects within these areas are no longer 
properly located relative to the new node centre, and 
would have to be relocated.  Fig. 4(b) shows a SW 
contration in a similar manner. All other expansions and 
contractions work in a similar manner. 

3.4 Insertion Implementation Details 
Here, we present the implementation details for our 

insertion strategy. As mentioned earlier, at each level of 
the insertion path, one or more of the following actions 
take place when the MBR that represents a new object is 
inserted into a node: 
1) Prepare the new object for insertion into the current 

node, 
• increase the size of the node MBR of the current 

node in order to enclose the new object, 
• determine which quadrant that the reference to 

the new object will be potentially inserted into, 
• add the MBR reference of the new object to the 

insertion queue. 
2) Locate the MBRs of objects or subtrees whose exist-

ing location in the node is no longer valid because 
the centroid of the node MBR has changed. Add the-
se MBRs to the insertion queue.  

 
 
 
 
 
 
 
 
 
 
Fig. 4 (a) NE Node MBR Expansion (b) SW Node MBR Contraction 

Algorithm:   insert 
Input: 
   n: node - node in which to insert newobj 
   newobj: object - pointer to new object 
 
Variables: 
   objs: queue - queue of objects to be inserted 
   orig_mbr: mbr before new object is inserted in n 
   item: object to be placed on objs queue 
 
=== Begin === 
# if node is empty, insert newobj in center 
if number_childen(n) == 0 
   n->mbr = newobj->mbr 
   n->loc[EQ] = newobj 
 
else  
   # copy the original node MBR 
   orig_mbr = n->mbr 
 
   # merge newobj's MBR into the node's MBR 
   merge_mbrs( n->mbr, newobj->mbr ) 
 
   # Prep newobj for insertion 
   item.quad =  
         find_insert_quad( newobj->mbr, n->mbr ) 
   item.obj = newobj 
 
   # Add newobj to the insertion queue 
   enqueue(objs, item) 
 
   # Find other objects that are no longer in a  
   # valid quadrant 
   # Add them to the insertion queue 
   find_shifted_objs(objs, n, orig_mbr) 
 
   # (Re)insert objects in the current node 
   insert_queue(n, objs) 
 
return   
 
=== End === 
 
Fig. 5 Main Insertion Strategy 

(a)                  (b)
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3) (Re)insert the MBRs on the insertion queue into the 
current node.  

Fig. 5 presents the pseudocode for the main insertion 
strategy, which depicts an overview of the above se-
quence of events. Fig. 6 and Fig. 7 present a sketch of the 
implementation for identifying MBRs of object or subre-
gions that are no longer in the proper quadrant with re-
spect to the centroid of the node MBR. It handles all four 
cases mentioned above: 1) identifying that no changes 
have occurred, 2) a CENTER node situation exists, 3) the 
new node MBR is larger than the previous one before a 

new object was added, and 4) the new node MBR is 
smaller than the previous one before a new node was 
added. Fig. 6 depicts the first two situations.  First, to 
determine if no change to the proper locations of all exist-
ing references (plus the new object to be inserted) has 
occurred, the relative location of the centroid for the new 
node MBR with respect to the centroid of the original 
MBR is determined.   If the centroids overlap, this means 
that, although an increase of then node MBR could have 
taken place, the centroid of the node MBR has not 
changed and all objects in the node are still in their prop-

Algorithm:   find_shifted_objs 
 
Input: 
   q: queue - queue in which to place objects that need 
                      to be moved 
   n: node - node to be updated 
   orig_mbr: mbr - MBR of node n before merge 
 
Variables: 
   q: quadrant - relative location 
   area_diff: int   region: mbr 
 
=== Begin === 
#first, find if any objects have shifted quads 
quad = find_insert_quad( n->mbr, orig_mbr ) 
 
if quad = EQ 
   # nothing to do, MBR may have changed but all  
   # objects are already in their proper location 
   return 
 
if n->type = CENTER 
   # The node is a center node and all objects in this  
   # node need to be removed so they can be placed in 
   # the appropriate quadrant 
 
   # Find where the objects will be inserted 
   quad = find_insert_quad( orig_mbr, n->mbr) 
 
   # remove all objects and place them on the queue 
   for each node location 'tmploc' 
      remove_and_q_objects(q, quad, tmploc, n->mbr) 
   done 
   n->type = NORMAL 
   return 
 
# Get objects that belong in the EQ location 
adjust_region(n->mbr.cx, n->mbr.cx,  
                        n->mbr.cy, n->mbr.cy) 
remove_and_q_objects(q, EQ, n->loc[quad], region) 
 
area_diff = area_change( n->mbr, orig_mbr) 
 
Fig. 6 Finding Shifted Objects – Part 1 

#new node MBR larger than original 
if area_diff > 0  
   if quad = NE 
       # to SE 
       adjust_region(n->mbr.cx, orig_mbr->hx,  
                               orig_mbr->cy, n->mbr.cy -1) 
       remove_and_q_objects(q, SE, n->loc[NE], region) 
       
       # to SW, part NE 
       adjust_region(orig_mbr->cx +1, n->mbr.cx -1, 
          orig_mbr->cy, n->mbr.cy) 
       remove_and_q_objects(q, SW, n->loc[NE], region) 
 
       # to SW, part SE 
       adjust_region(orig_mbr->cx, n->mbr.cx -1,  
          orig_mbr->ly, orig_mbr->cy -1) 
       remove_and_q_objects(q, SW, n->loc[SE], region) 
 
       # to SW, part NW 
       adjust_region(orig_mbr->lx, orig_mbr->cx,  
          orig_mbr->cy +1, n->mbr.cy) 
       remove_and_q_objects(q, SW, n->loc[NW], region) 
 
       # to SW part EQ 
       remove_and_q_objects(q, SW, n->loc[EQ], orig_mbr) 
 
       # to NW 
       adjust_region(orig_mbr->cx +1, n->mbr.cx,  
          n->mbr.cy +1, orig_mbr->hy) 
       remove_and_q_objects(q, NW, n->loc[NE], region) 
 
       # also have cases for SE, NW and SW,   
       # and are handled similarly to NE 
   
   else #new node MBR smaller than original  
    
     # contraction cases for NE, SE, SW  
     # and NW handled similar to above 
 
return 
 
=== End === 
 
Fig. 7 Finding Shifted Objects – Part 2 
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er quadrants.  The search for shifted objects ends here 
and the reference for the new object can be inserted (via 
the insert_queue function - see Fig. 9).  

If the centroids do not overlap, then the other cases 
must be considered.  The next case is determining if the 
existing node is a CENTER node, and the new object to 
be inserted has an MBR with a centroid that is not equal 
to the centroids of the existing MBRs in the node. We 
chose to handle this situation simply - we identify which 
quadrant they will be placed in, remove all MBRs from 
the CENTER node and place them on the insertion queue 
(via remove_and_q_objects, see Fig. 8), and change the 
node type to NORMAL.   
     Fig. 7 depicts a portion of the last two cases of node 

MBR expansion and contraction.  Here, we show how a 
NE expansion (see Fig. 4(a)) is detected and handled. All 
other cases for both expansion and contraction are han-
dled similarly. The expansion type is determined using 

Algorithm:    remove_and_q_objects 
 
Input: 
   q: queue - insertion queue 
   quad: int - destination quad for relocated objects 
   loc: node quadrant containing objects for relocation 
   region: mbr - region containing objects for relocation 
 
Variables: 
   item: queue item 
   loctmp: location - location iterator 
 
=== Begin === 
if loc is undefined 
   return 
 
# We are always going to quad 
item.quad = quad 
 
if loc references a node 
   n = loc 
   if ( overlaps( n->mbr, region ) ) 
      for each node location 'tmploc' 
      do 
         remove_and_q_objects( q, quad, tmploc, region) 
      done 
       
      # if any objects are recursively removed here the  
      # node MBR must be adjusted, or the node deleted 
      adjust_node(loc->parent)     
            
else 
# location references an object 
      if centroid_within(loc->mbr, region)  
         item.obj = loc 
         enqueue( q, item ) 
         loc = undefined 
 
=== End === 
 
Fig. 8 Queuing Misplaced Objects 

Algorithm:  insert_queue 
 
Input: 
   n: node -- node to insert queue objects 
   q: queue -- queue containing objects 
 
Variables: 
   item: item from queue to insert   obj: object     
   quad: int -- location index    
   ntmp: node -- temporary node 
 
=== Begin === 
while queue is not empty do 
   item = dequeue(q) 
   quad = item.quad 
   obj = item.obj 
 
   if n->type = CENTER  
         # see if a location if available 
         quad = next_ctr_loc(n) 
         if quad is defined 
            n->loc[quad] = obj 
            sort_ctr(n) 
            continue; 
         # else, new node is added to the CENTER  
         # node list for object 
 
   if n->loc[quad]  
      if n->loc[quad] is a node  
         insert( n->loc[quad], obj)  
         continue 
      else 
         # Create a new child and insert 
         if quad = EQ and num_child(n) = 1 
            # convert node to a CENTER node 
            n->type = CENTER 
            enqueue( q, item ) 
         else 
            ntmp = new_node() 
            insert( ntmp, obj ) 
            insert( ntmp, n->loc[quad] ) 
            ntmp->parent = n 
            n->loc[quad] = ntmp 
   else 
      # insert at n->loc[quad] 
      n->loc[quad] 
done 
 
=== End === 
 
Fig. 9 (Re)-inserting Misplaced Objects 
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the relative location of the new node MBR with respect to 
the original node MBR (this was calculated earlier).  In 
our example in Fig. 4(a), this expansion is NE, because 
the centroid for the new node MBR is northeast of the 
centroid for the original node MBR.  After the expansion 
type is identified, the corresponding subregions that are 
affected by the node MBR expansion are also identified. 
Referring back to Fig. 4(a), there are seven subregions 
that have shifted from one quadrant to another - NE to 
SE, NE to SW, NE to NW, NW to SW, SE to SW, NE to EQ 
(not in the figure), and EQ to SW (also, not in the figure). 
Any MBRs in these subregions will need to be removed 
and reinserted into the proper quadrant. Therefore, each 
subregion is identified using the original and new node 
MBRs, and any MBRs that reside in these regions are re-
moved and added to the insertion queue using re-
move_and_q_objects (see Fig. 3). 
    Fig. 8 depicts the pseudocode for the function re-
move_and_q_objects. This function takes as input the 
node quadrant that potentially contains MBRs the must 
be relocated, the subregion that is affected, the destina-
tion quadrant for any MBRs that must be moved, and the 
insertion queue that the affected MBRs must be placed 
on. Its goal is to remove all MBRs that are accessible from 
input quadrant and that overlap the given subregion, 
and place them on the insert queue.  Three situations 
exist: 1) the input quadrant references nothing, in which 
case the function terminates, 2) the input quadrant con-
tains an MBR of an object, and 3) the input quadrant con-
tains an MBR of a subtree.   
    If the input quadrant contains an MBR for an object, 
then a test is performed to see the centroid of the MBR 
falls within the shifted region.  If so, it is removed from 
the node and added to the insertion queue.  

If the input quadrant contains an MBR for a subtree, 
then two steps must be carried out.  The first is to recur-
sively call the function on each quadrant in the subtree, 
to identify objects that must be removed and reinserted.  
The second is to adjust the node MBR or delete the node 
if all MBRs have been removed during this process.   

Finally, Fig. 9 depicts the function for inserting the 
MBRs on the insert queue into the current node (recall 
that this current node is the node that we started with at 
the beginning of the sequence of events above).  This will 
attempt to insert the new object, as well as re-insert any 
removed MBRs, into the quadrant that is specified for 
each MBR. Again, for each object or MBR being (re)-
inserted, several situations exist: 1) the specified quad-
rant in the node is empty, 2) the node is a CENTER node, 
3) the specified quadrant contains MBR for a node, and 4) 
the specified quadrant contains an MBR for an object.  

If the quadrant specified for an object or MBR is emp-
ty, then the MBR and corresponding reference can be in-
serted, and insertion is finished for the current object or 
MBR. If the node is a CENTER node, then the next avail-
able location for the MBR and reference is located and is 
inserted. If necessary, an additional node is added to 

form a linked list of CENTER nodes.  If the quadrant that 
is specified for the new object or MBR is referencing a 
subtree, then the insert function (see Fig. 5) is called on 
the object or MBR, and the root of the subtree. Finally, if 
the quadrant contains an MBR for an boject, a new child 
node is created, and the insert function is called on both 
MBRs.    

3.5 Example 
Here, we demonstrate a few features of the mqr-tree by 
inserting some objects. Beginning with the node and ob-
jects in Fig. 3, we will insert three more objects into the 
mqr-tree. First, Object 4 is inserted, which causes the 
node MBR to increase, Object 3 is no longer be in its 
proper location because its centroid now overlaps the 
centroid for the node MBR. Therefore, Object 3 is also re-
inserted, and is placed in the EQ location. Fig. 10(a) de-
picts the resulting node.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 10 Insertion Example 

(a)

(b)

(c)
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Next, Object 5 is inserted. The node MBR does not 
change, so therefore no objects need to be checked to de-
termine their proper location. Fig. 10(b) depicts the result 
node. Finally, Object 6 is inserted. The southeast quad-
rant is chosen, and the node MBR does not change. How-
ever, object 5 is already located in the same quadrant. 
Therefore, a new leaf node is created and Objects 5 and 6 
are inserted into it. The new node MBR is created and 
referenced from the southeast quadrant in the parent 
node.  Fig. 10(c) depicts the resulting mqr-tree. 

3.6 Search 
The mqr-tree has the potential for exploring different 
types of search strategies. For example, the opportunity 
exists to use a binary partition of nodes for performing a 
region search.  For initial comparison purposes, we chose 
to implement and use a region search strategy that eval-
uates the overlap of a search region with the MBRs of all 
objects or subtrees that are referenced by a node.  

4 PROPERTIES 
In our investigations, we have identified some interesting 
properties of the mqr-tree index and insertion algorithm: 
• For a distinct set of points, any point, and therefore 

any MBR centroid, has only one possible location in 
the tree.  This leads to a tree that is independent of 
the insertion order of all objects. 

• The centroid of a node will have the same orientation 

in its parent as does all the objects inclosed by the 

node MBR. 

• The MBR of a location will have less then half of its 

area outside its quadrant, except for the 'EQ' 

quadrant. This may lead to a minimizing in overlap. 

• With datasets consisting of only points, the overlap 

of any two MBRs at any level of the tree is zero.  

There is no area that has the potential to be covered 

twice.  

5 EVALUATION 
In this section, we present the results of our empirical 
evaluation of the mqr-tree. Initially, we compared the 
mqr-tree with the 2DR-tree [13]. We found that the mqr-
tree achieved significant improvements in height, space 
utilization, coverage, overcoverage and overlap over the 
2DR-tree.  Here, we compare the performance of the mqr-
tree insertion and region search algorithms with those 
from the R-tree [9], which is considered one of the 
benchmark approaches for spatial indexing. We evaluate 
the mqr-tree insertion algorith musing rectangles, points, 
and lines. In particular, line data may generate signifi-
cantly high amounts of overcoverage because a line is 
approximated with an MBR. Therefore, it is important to 
evaluate how the mqr-tree performs in the presence of 
line data. 

5.1 Data Sets 
We use both synthetic and real datasets for our compari-
son.  With the exception of the road and railroad data 
(see below), all datasets are randomly generated and con-
tain between 500 and 10,000 objects. Our datasets consist 
of: 
• squares of 10x10 units each, where each dataset as-

sumes a uniform distribution, 
• points, where each dataset assumes a uniform distri-

bution,  
• squares of 10x10 units each, where each dataset as-

sumes an exponential distribution, 
• points, where each dataset assumes an exponential 

distribution,  
• lines of 10 units each, where each dataset contains 

50% horizontal and 50% vertical lines,  
• lines of 10 units each, where each dataset contains 

equal percentages of lines of slope 1/2, 1, 2, -1/2, -1 
and -2 respectively.  

• lines of 10 units each, where each dataset contains 
equal percentages of lines of slope 1/2, 1, 2, -1/2, -1, -
2, 0, horizontal and vertical lines respectively.  

• road and railroad data that vary in size from 11,000 
to 122,000 line segments. This data is part of the Digi-
tal Chart of the World and obtained from [23]. 

5.2 Experiments 
For each dataset, we created 100 trees using each inser-
tion algorithm on a random ordering of the dataset. The 
number of nodes, height, average space utilization in 
each node, total coverage of all MBRs, total overcoverage 
(i.e. whitespace) of all MBRs, and the total overlap be-
tween all MBRs was calculated for each tree. Because the 
mqr-tree is not height-balanced, the average path length 
(i.e. average height) is also recorded.  In addition, for 
each tree created, 20 region searches were performed. 
Over all 20 searches, the average number of objects that 
overlapped the search region and the average number of 
disk accesses required were calculated.  

5.3 Space Utilization Results 
Due to lack of space in our result tables below, we omit-
ted our space utilization calculations. However, over all 
insertion results, the average space utilization in nodes of 
the mqr-tree is between 50-55%, while the space utiliza-
tion for the R-tree was between 70-74%. Although the 
space utilization of the mqr-tree is 22-23% lower than that 
of the R-tree, it is still at least half of the number of loca-
tions in the node. 

5.4 Insertion Results on Uniformly Distributed 
Synthetic Data 

Table 1 displays the results for the data sets consisting of 
uniformly distributed squares. Note that for the R-tree, the 
values for all parameters are averaged over all 100 runs, 
since these values vary for each tree. For the mqr-tree, the 
values are identical for all 100 trees. As mentioned earlier, 
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the new insertion strategy is independent of the order in 
which the objects are inserted. The only variation is in 
how many objects are moved in order to maintain node 
validity. Also note the two sets of values for height for the 
mqr-tree. The first value represents the maximum (i.e. 
worst-case) height, while the second value in parentheses 
is the average height (i.e. average path length).  

     Results show that the mqr-tree achieves a signifi-
cant improvement over the R-tree in many aspects. In 
particular, there is a 14-55% decrease in coverage, a 33-
80% decrease in overcoverage, and a 49-87% decrease in 
overlap.  In all cases, the improvements increase as the 
number of objects increases.  In addition, although the 
maximum tree height of the mqr-tree is higher than that 
of the R-tree, the difference in tree height decreases to 
33% as the number of objects increases. It must also be 
noted that the average tree height of the mqr-tree is al-
most equal to the height of the R-tree. Also, it must be 
noted that the mqr-tree requires more storage space since 
it requires 45-50% more nodes than the R-tree. However, 
we believe that these limitations are a small price to pay 
for the significant decrease in coverage, overcoverage 
and overlap, which result in an increase in search per-
formance. Table 2 presents the results for the data sets 
consisting of uniformly distributed points. The most sig-

nificant finding in these results is that zero overlap is 
achieved when an index is constructed for points using the 
mqr-tree insertion strategy. This is very important be-
cause point queries can be executed without having to 
potentially traverse multiple paths in the tree.  In addi-
tion, significant reductions in coverage (21-60%) and 
overcoverage (26-77%) occur. The values for height are 
similar to those obtained for the object datasets, and 
therefore we feel these are significantly outweighed by 
the achievement of zero overlap.  

5.5 Insertion Results on Exponentially Distributed 
Synthetic Data 

Table 4 presents the results for the data sets containing 
exponentially distributed objects. Significant decreases in 
coverage (36-55%), overcoverage (20-70%) and overlap 
(35-82%) occur in the mqr-tree over the R-tree. 

Table 3 presents the results for the data sets consisting 
of exponentially distributed points. Zero overlap is still 
achieved, and significant improvements in coverage (48-
59%) and overcoverage (18-63%) of the mqr-tree over the 
R-tree are still achieved.  Therefore, it is possible that the 
mqr-tree can perform a one-path search at most, while 
multiple search paths may be required for a point search 
in the R-tree. It should be noted that for the exponential-

Table 1 – Exponential Distribution of Points 
#pts Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 325 18 (10) 110974.18 52092.32 0.00 

r-tree 186 4 214523.43 64108.84 12016.53 

1000 
mqr-tree 659 20 (12) 218845.42 97737.20 0.00 

r-tree 372 4 472716.17 128215.98 30478.78 

5000 
mqr-tree 3370 24 (14) 1660007.95 500846.52 0.00 

r-tree 1847 6 3434431.79 800483.10 299636.56 

10000 
mqr-tree 6828 26 (15) 3732725.27 999599.36 0.00 

r-tree 3693 6 7498358.61 1828481.67 828882.29 

50000 
mqr-tree 35349 30(18) 50762334.93 11287680.72 0.00 

r-tree 18457 7 122270387.5127474739.8916187059.34

100000
mqr-tree 69693 32(19) 113734895.1722594718.01 0.00 

r-tree 36926 8 276474613.9661142614.97 38547897.18

 
Table 2 – Exponential Distribution of Objects 

#obj Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 325 18(10) 174250.89 51192.16 18343.37 

r-tree 194 4 272040.01 64329.05 28197.22 

1000 
mqr-tree 659 20(12) 338443.42 95161.33 38358.15 

r-tree 392 4 606210.34 124529.81 60858.27 

5000 
mqr-tree 3370 24(14) 2270464.58 488148.33 201441.44 

r-tree 1994 6 3933855.05 797565.45 480465.59 

10000 
mqr-tree 6827 26(15) 4966049.83 974169.77 402070.90 

r-tree 4012 6 8682826.19 1761700.06 1134572.72 

50000 
mqr-tree 34711 30(18) 28520871.48 4845459.48 1977241.75 

r-tree 20311 8 61323913.50 12127981.69 9004376.41 

100000
mqr-tree 68910 32(19) 62395597.46 9725941.81 3942250.98 

r-tree 40821 8 137228053.8128266370.2722024751.39

 

Table 3 – Uniform Distribution of Objects 
#obj Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 285 8 (5) 287023.51 39892.16 21050.87 

r-tree 196 4 335178.08 59979.97 40878.57 

1000 
mqr-tree 591 8 (6) 626970.98 78979.44 46605.40 

r-tree 394 4 789612.88 133872.84 102429.08 

5000 
mqr-tree 2849 10 (7) 3680266.82 385573.84 245436.34 

r-tree 1961 6 5354990.27 909009.13 783091.64 

10000 
mqr-tree 5770 10 (7) 7813449.90 751530.93 487169.05 

r-tree 3926 6 12137966.53 2203426.85 1977476.17 

50000 
mqr-tree 28807 12 (9) 45170573.09 3832563.53 2524233.03 

r-tree 19636 7 90814453.43 16463547.3515451954.96

100000
mqr-tree 57776 12 (9) 95725388.87 7717738.72 5110715.01 

r-tree 39255 8 212272854.0340361580.8338452878.51

 
Table 4 – Uniform Distribution of Points 

#pts Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 281 8 (5) 183202.42 52329.78 0.00 

r-tree 191 4 232603.89 70802.17 18472.38 

1000 
mqr-tree 584 8 (6) 412179.74 101789.65 0.00 

r-tree 382 4 575002.63 154275.98 52486.32 

5000 
mqr-tree 2880 10 (7) 2608566.97 503669.43 0.00 

r-tree 1921 6 4245530.93 1024153.59 520484.17 

10000 
mqr-tree 5758 10 (7) 5683295.65 999477.64 0.00 

r-tree 3845 6 9634100.78 2399071.70 1399594.05 

50000 
mqr-tree 28814 12 (9) 34311970.45 5017147.64 0.00 

r-tree 19242 7 80654914.07 18486457.5813469309.91

100000
mqr-tree 57737 12 (9) 73778576.93 10048704.63 0.00 

r-tree 38526 8 184978601.8842812880.6832764176.05
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ly-distributed data sets, the mqr-tree achieves significant-
ly worse tree height - in both the worst and average cases 
- than the R-tree.  

5.6 Insertion Results on Road and Railroad Data 
Table 5 presents the results for the road and railroad data. 
Here, we also achieve almost no overlap in the mqr-tree. 
The results show that a reduction in overlap of almost 
100% is achieved. In addition, we also achieve over 85% 
in reduction in both coverage and overcoverage. The 
mqr-tree has a higher tree height in the worst case. How-
ever, given that the overlap and overcoverage of the mqr-
tree are significantly low, it is expected that more efficient 
searching will be achieved despite the higher tree height.  

5.7 Insertion Results on Synthetic Line Data 
The results from the road and railroad data sets were 
surprising. We conclude that the above results occurred 
because: 1) the line segments were very small, and 2) the 
line segments were sequential in nature (for example, a 
road is made of several line segments that are connected 
end-to-end). Therefore, we conducted further experi-
ments with randomly-generated line sets, where the lines 
are much longer than those in the road and railroad data 
sets.  

Table 6 presents the results for the horizontal and ver-

tical line sets. This is expected to produce the best results 
since at the leaf level, the overcoverage of minimum 
bounding rectangles will be zero and the overlap will be 
very low (effectively, the only overlap are the intersection 
points between two lines). We find the most significant 
result to be in the improvement in overlap. The mqr-tree 
achieves lower overlap in all cases. Although the im-
provement amounts are not as high as with the road and 
railroad data, they are still significant, especially in the 
data sets with the higher number of line segments. Over-
all, we find in the smaller sets an improvement of ap-
proximately 45-50% lower overlap over the R-tree, while 
in the larger sets the improvement is as high as 92%. We 
also find the same trends for coverage and overcoverage, 
with improvements that increase from 3% to 58% for 
coverage and from 9% to 73% for overcoverage. The 
height, although still high in the mqr-tree, is comparable 
to those obtained in the initial road and railroad data 
tests.  

Table 7 depicts the results for the worst-case scenario, 
where the MBRs for all lines contain a significant amount 
of overcoverage.  However, we find that for the most part 
the performance improvements of the mqr-tree over the 
R-tree are as significant as those found in the other eval-
uations. The only improvement that is not as significant 

Table 5 - Road and Railroad Data 
#obj Index #nodeHeightCoverageOvercovOverlap 

MXrrline 

10060 

mqr-tree 6737 12(9) 1294.95 541.89 2.20 

r-tree 3629 6 8822.50 4074.37 3534.69 

CArrline 

11381 

mqr-tree 7755 14(9) 248.10 94.13 1.01 

r-tree 4066 6 9358.27 4442.16 4349.06 

CArdline 

21831 

mqr-tree 14116 14(9) 352.01 97.20 4.19 

r-tree 7805 7 20992.97 9561.39 9468.41 

CDrrline 

35074 

mqr-tree 23108 14(10) 4324.47 1561.67 18.18 

r-tree 12564 7 35090.63 15508.73 13965.37

MXrdline

92392 

mqr-tree 58851 14(10) 2038.99 553.05 16.87 

r-tree 32872 8 93816.25 41718.96 41182.92 

CDrdline 

121416 

mqr-tree 76998 16(11) 9500.39 2925.65 59.95 

r-tree 43438 8 133233.80 55883.37 53017.86

 
Table 6 - Horizontal and Vertical Lines 

#obj Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 293 8(5) 251619.56 67535.15 10782.32 

r-tree 195 4 291630.53 83903.64 27150.81 

1000 
mqr-tree 587 8(6) 544531.26 132311.38 24121.85 

r-tree 394 4 696390.31 185733.09 77543.57 

5000 
mqr-tree 2914 10(7) 3294526.16 655888.20 137649.08 

r-tree 1961 6 5042184.13 1241062.37 722823.28 

10000 
mqr-tree 5810 10(7) 7001261.27 1292190.54 272790.93 

r-tree 3929 6 10965166.53 2715467.58 1696067.96 

50000 
mqr-tree 28890 12(9) 41092930.60 6506622.52 1444385.16 

r-tree 19621 7 86853329.18 19697559.4314635322.12

100000
mqr-tree 58068 14(9) 87417416.02 13027973.93 2915851.38 

r-tree 39224 8 203407727.0847028991.8436916869.57

 

Table 7 - Sloped Lines 
#obj Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 284 8(5) 271315.61 50635.87 15181.68 

r-tree 195 4 319704.04 69274.30 34247.39 

1000 
mqr-tree 581 8(6) 586703.65 100469.16 34995.16 

r-tree 392 4 763931.88 152911.51 88912.03 

5000 
mqr-tree 2907 10(7) 3506656.31 492314.23 188213.63 

r-tree 1963 6 5144578.40 1015634.70 721374.75 

10000 
mqr-tree 5760 10(7) 7445892.16 978976.24 386760.43 

r-tree 3920 6 11572362.19 2395879.76 1826034.50 

50000 
mqr-tree 28909 12(9) 43421521.54 4935490.52 2017537.19 

r-tree 19608 7 87460073.45 17320731.0414544767.33

100000
mqr-tree 57942 12(9) 91993440.89 9851272.71 4044739.58 

r-tree 39216 8 206787354.0442502264.2637005936.91

 
Table 8 - Sloped, Horizontal and Vertical Lines 

#obj Index #nodeHeight Coverage Overcov Overlap 

500 
mqr-tree 289 8(5) 277018.50 56623.55 16207.52 

r-tree 194 4 324332.16 76640.31 36806.05 

1000 
mqr-tree 572 8(6) 580037.86 108356.88 33389.45 

r-tree 392 4 734513.29 152146.81 78014.48 

5000 
mqr-tree 2903 10(7) 3486989.74 537944.78 184403.61 

r-tree 1963 6 5130453.08 1062417.04 716194.67 

10000 
mqr-tree 5818 10(7) 7371817.94 1051413.83 363377.44 

r-tree 3927 6 11439524.18 2458147.81 1786487.04 

50000 
mqr-tree 28979 12(9) 42915843.71 5285883.19 1887563.59 

r-tree 19624 7 87958140.65 18005334.3514704704.00

100000
mqr-tree 58083 12(9) 91056946.11 10614180.99 3835949.08 

r-tree 39229 8 205952536.3843688852.0637122966.54
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is in the overlap decrease for the smallest test set. How-
ever, the mqr-tree still achieves lower overlap in this case.  

Table 8 presents the results of our average case, where 
there is a mix of lines that result in significant 
overcoverage and lines that have no overcoverage. We 
find results that are very similar to those for the horizon-
tal and vertical line sets. We find that the mqr-tree 
achieves an improvement in overlap that ranges from 
43% for the smaller data sets to 90% for the largest one. 
Similarly, we find improvements in coverage that fall 
between 3% and 57%, and for overcoverage that fall be-
tween 14% and 77%. This is very reassuring because it 
appears that diagonal lines (which in this case, make up 
3/4ths of each data set) do not significantly affect the 
performance criteria.  

5.8 Search Results 
We compare the mqr-tree region search with the R-tree 
region search to determine if the significant reduction in 
overlap and overcoverage results in a significant reduc-
tion in the number of disk accesses required for perform-
ing the same region search.  

Tables 9, 10, 11 and 12 present the results for perform-
ing a region search on mqr-trees that were built with uni-
formly-distributed objects, uniformly-distributed points, 
exponentially-distributed objects and exponentially-
distributed points respectively. For the most part, the 
mqrtree achieves a lower average number of disk access-
es over the R-tree when performing a region search. In 
particular, when the number of uniformly-distributed 
objects increases, the amount of improvement significant-
ly increases to over 50%.  The exception to the improve-
ment of the mqr-tree on region searching occurs in trees 
containing exponentially-distributed objects.  Here, the 
R-tree achieves the more significant improvements in the 
number of disk accesses over the mqr-tree.  

7 CONCLUSION 
We propose the mqr-tree, a two-dimensional index 
structure that utilizes more efficient organizational 
structure than other existing strategies. In addition, it 
utilizes an insertion algorithm that achieves lower 
overlap and overcoverage, which in turn achieves im-
proved search performance. We show through exper-
imental evaluation that the mqr-tree outperforms a 
benchmark indexing strategy, and achieves no or little 
overlap. In particular, zero overlap is achieved when 
the mqr-tree is used to index point data, which is not 
achieved by the R-tree.  
Currently, the mqr-tree is limited to two dimensions. 
Future work includes the following. The first is to in-
vestigate the extension of the node structure to multi-
ple dimensions and determine how this affects the 
search performance of the mqr-tree. The second is to 

increase the number of locations in a 2-dimensional 
node. The third, related to the second, is to explore a 
bottom-up strategy for height balancing. The fourth is 
to create a bottom-up tree-construction strategy to 
handle multiple insertions at once. The final im-
provement is a paging strategy that groups nodes 
based on a high probability that they are retrieved for 
the same queries. —these should be referenced in the 
body of the paper. 
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