
JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 15, ISSUE 2, OCTOBER 2012

 1

mqr-tree: A 2-dimensional Spatial Access
Method

Marc Moreau and Wendy Osborn

Abstract—In this paper, we propose the mqr-tree, a two-dimensional spatial access method that organizes spatial objects in a
two-dimensional node and based on their spatial relationships. Previously proposed spatial access methods that attempt to
maintain spatial relationships between objects in their structures are limited in their incorporation of existing one-dimensional
spatial access methods, or have lower space utilization in its nodes, and higher tree height, overcoverage and overlap than is
necessary. The mqr-tree utilizes a node organization, set of spatial relationship rules and insertion strategy in order to gain
significant improvements in overlap and overcoverage. In addition, other desirable properties are identified as a result of the
chosen node organization and insertion strategies. In particular, zero overlap is achieved when the mqr-tree is used to index
point data. A comparison of the mqr-tree insertion strategy versus the R-tree shows significant improvements in overlap and
overcoverage, with comparable space utilization. In addition, a comparison of region searching shows that the mqr-tree
achieves a lower number of disk accesses in many cases.

Index Terms—spatial access methods, spatial relationships, direction relations, performance

—————————— � ——————————

1 INTRODUCTION

ANY applications existing today that store and
manipulate spatial data. A spatial database [22]
contains a large collection of objects that are locat-

ed in multi-dimensional space. For example, the Geologi-
cal Survey of Canada maintains a repository of spatial
data for many geosciences applications [14], while the
Protein Data Bank [6] contains many three-dimensional
protein structures.

An important issue in spatial data management is to
efficiently retrieve objects based on their location by us-
ing spatial access methods. An approximation method is
a spatial access method that maintains a hierarchy of ap-
proximations of both objects and the space occupied by
subsets of objects. Approximations are usually represent-
ed using a minimum bounding rectangle. Many approx-
imation strategies have been proposed in the literature.
However, most proposed strategies do not preserve all
spatial relationships between objects because the data,
which is represented in n-dimensional space, is forced
into a 1-dimensional ordering [3], [5], [9], [10], [11], [15],
[20]. This leads to inefficient searching, both within a
node and the structure as a whole, because the only op-
tion is a linear search of a node in its entirety.

A few strategies have been proposed that attempt to
preserve spatial relationships between objects [1], [12],
[16], [18]. However, they are limited in that they still in-
corporate existing 1-dimensional spatial access methods,
bulk-load their objects only, or result in a very high tree

height and low average space utilization. These limitations
can lead to high coverage, overcoverage and overlap of
minimum bounding rectangles.

Therefore, we propose the mqr-tree, which improves
upon existing spatial access methods by proposing a
modified node organization and set of spatial relation-
ship rules, and new insertion and search algorithms. We
evaluate the mqr-tree against a benchmark strategy, the
R-tree [9]. We show that the mqr-tree achieves significant
improvements in overlap and overcoverage over the R-
tree. Also, we show that the mqr-tree can achieve a signif-
icantly lower number of disk accesses when performing a
region search. With these improvements accomplished,
different searching strategies can be explored that can
perform a partial search of nodes.

This paper proceeds as follows. Section 2 presents re-
lated work in the area of spatial access methods and their
limitations. Section 3 presents the mqr-tree, in particular
its node organization, insertion strategy and region
search strategy. Section 4 presents special properties of
the mqr-tree. Section 5 presents the results of our experi-
mental evaluation versus the R-tree. Finally, the paper
concludes and gives research directions in Section 6.

2 RELATED WORK
Many approaches for indexing objects based on location
are proposed in the literature (see [8], [19], [22] for sur-
veys). These approaches are classified into three catego-
ries [8]: main memory methods, point access methods
and spatial access methods (spatial access methods).
Many important strategies are proposed in all categories.
We focus on spatial access methods, since our work re-
sides in this category.

Spatial access methods provide uniform access to both
point and object data. Also, they remain height-balanced
in the presence of a dynamic object set. Many spatial ac-

————————————————

• M. Moreau is with the City of Calgary, Calgary, Alberta, Canada, This
work was undertaken while author was a student at the University of Leth-
bridge.

• W. Osborn is with the Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4.

• Paper is extended version of [13] and [14], and contains modified material
from those papers

M

2

cess methods are proposed in the literature [1], [2], [3],
[5], [9], [10], [11], [12], [15], [16], [18], [20]. They can be
classified [8] into approximation, clipping, and mapping
methods.

Approximation methods store a hierarchy of approx-
imations of both objects and the space occupied by sub-
sets of objects. Since the space is not partitioned, approx-
imations can overlap. Many approximation methods are
proposed, including the R-tree [9], the R

*
-tree [3], the X-

tree [5], the R
*
Q-tree [8], the PR-tree [1], the 2DR-tree [16],

[17], the VoR-tree [21], the DR-tree [12] and the MSI ap-
proach [2]. Clipping methods, such as the R

+
-tree [20],

partition an object into parts so that overlap is avoided.
Mapping methods map objects in n-dimensional space
into a one-dimensional order. The objects are then stored
and retrieved using an access method such as a B

+
-tree

[7]. Approaches that use mapping include Z-ordering
[15], the Hilbert R-tree [10], and the Filter tree [11].

A limitation to most hierarchical spatial access meth-
ods is their one-dimensional structure. However, no n-
dimensional to one-dimensional mapping of spatial data
exists that preserves all spatial relationships between
objects [8]. This forces objects in n-dimensional space to
be in a one-dimensional ordering, which results in the
loss of spatial relationships. This leads to inefficient
searching, both within a node and the structure as a
whole, because the only option is a linear search of a
node in its entirety. Mapping methods do provide a one-
dimensional ordering of objects, but they cannot main-
tain all spatial relationships.

A few proposed strategies that attempt to overcome
this one-dimensional limitation are the R*-Q-tree, the
2DR-tree, the DR-tree and the MSI approach. In the R*-Q-
tree, the space that contains objects is partitioned into
four quadrants, and a standard R*-tree is constructed for
each. Although the root level takes the spatial relation-
ships of objects into account, the existence of the R*-trees
still implies that one-dimensional mapping of objects in
n-dimensional space still takes place. The MSI approach
extends the R*Q-tree approach by recursively partition-
ing the quadrants until the number of objects in each re-
gion falls below a specified threshold, before constructing
a traditional index for each region, such as an R-tree. The
regions are stored in a metaTree to facilitate access to the
required R-trees. Along with the R*-Q-tree, the MSI ap-
proach inherits the one-dimensional property of object
organization, since the R-tree is used and the metaTree
also organizes information in a linear fashion. The DR-
tree adopts a ``partitioning'' of space into north, south,
east, and inside, which is adopted by all nodes in the tree.
The authors, however, do not present an insertion strate-
gy. It appears that their structure is constructed using
bulk loading, and it is unclear if the DR-tree can handle
changes to the object set without having to be re-
constructed. The 2DR-tree proposes a 2-dimensional
node structure that fits the data as given and preserves

spatial relationships between objects, instead of forcing
n-dimensional data to fit a one-dimensional structure.
The insertion strategy applies node validity rules to en-
sure that 1) spatial relationships between objects are
maintained, and 2) reconstruction of the entire tree on
insertion of a new object is not required. Limitations of
the 2DR-tree include a unnecessarily high tree height and
a low average space utilization within its nodes, which in
turn results in high coverage, overcoverage and overlap
of minimum bounding rectangles.

Therefore, we present an improved two-dimensional
node and tree structure and strategy for spatial relation-
ship preservation within a node. We also present our in-
sertion and region search algorithms, along with a per-
formance evaluation for both. Our goal is to eliminate
the linear nature of existing spatial access methods, and
at the same time improve the height, space utilization,
overlap and overcoverage of existing methods.

3 THE MQR-TREE

In this section, we present our approach to the tree, or-
ganizing objects within each node, and the new insertion
and search strategies. In addition, we demonstrate some
features of the new insertion strategy through a short
example. We utilize several terms in our work, which we
define here first.

The term object can represent any object in two-
dimensional space, such as a point, line or polygon of
arbitrary shape. An object or subregion of space that con-
tains a subset of objects is approximated using a minimum
bounding rectangle (MBR). An MBR defines the minimum
two-dimensional rectangular range that an object (or sub-
region of space) occupies. A node MBR is defined for eve-
ry node in the tree. For a given node, it is the minimum
two-dimensional extent that encompasses all MBRs in
the node and all of the nodes in its subtrees.

3.1 Structure
All nodes in the mqr-tree have the same two-dimensional
structure. Fig. 1 depicts the node layout. A node contains
5 locations - northeast (NE), northwest (NW), southwest
(SW), southeast (SE) and centre (EQ). Each location con-
tains either:

(MBR,obj_ ptr)
where obj_ptr is a pointer that references an object and
MBR is the approximation of the object, or:

(MBR,node_ ptr)

Fig. 1 Node Layout

 3

where node_ptr is a pointer to a subtree and MBR is the
MBR that encompasses all MBRs in the subtree.

Every node in the mqr-tree must have at least two lo-
cations, and not more than five locations, that are refer-
encing either an object or a subtree. It is possible to have
a node contains pointers to both objects and subtrees. In
light of this, we relax the requirement that the tree must
be height-balanced. However, no path in our experiments
(see Section 5) is more than 50% longer than the average
path length.

3.2 Node Organization and Validity
In every node of the mqr-tree, we determine the relative
placement of both objects and subregions by using the
centroids of their MBRs. We define the origin of each
node as its centre location. The objects that are refer-
enced from the centre location have the same centroid as
the centroid of the node MBR for the node. All other ob-
jects and subregions that are referenced from the other
locations (NW,SE,SW,NE) are placed with respect to the
centroid of the node MBR. Fig. 2 depicts the spatial rela-
tionships, where A refers to the centroid of a new object,
and B refers to the centroid of the node MBR. The orien-
tations (NE, SE, SW, NW) include centroids that fall on
the axes (E, S, W, N, respectively).

A node is classified as either 'NORMAL' or 'CENTER'.
In a NORMAL node, the locations are organized based
on the orientations defined above (see Fig. 1). A NOR-
MAL node is valid when:
• The node MBR encloses all the minimum bounding

rectangles in the objects or subtrees that the node ref-
erences, and

• All objects or subtrees pointed to by a location are in
the proper quadrant relative to the node centroid.

In a CENTER node, the locations are organized linear-
ly. A CENTER node only references objects whose cen-
troids are the same as the centroid of the node MBR. In
addition, a CENTER node is utilized only when more
than one object exists with overlapping centroids.

Fig. 3 depicts a NORMAL node containing three ob-
jects. Object 1 is located northwest of the centroid of the
node MBR (defined by the dashed box on the diagram),
while object 2 is located northeast of the centroid of the
node MBR. Object 3 is located directly south of the node
MBR centroid, therefore it is placed in the southeast

quadrant.
Although the mqr-tree node resembles a quadtree

node [4], there are some significant differences that must
be noted. First, the quadtree defines a recursive partition
of space using the points that are inserted. Therefore, the
entire space is indexed, including areas that contain no
points. The mqr-tree defines an approximation of regions
that contain objects. Therefore, the amount of space that
is indexed by the mqr-tree is reduced, because only space
that contains objects is indexed. Some whitespace (i.e.
overcoverage) may be present, but is often significantly
less than managed by a partition-based method. Second,
the partitions in a quadtree are static after they are creat-
ed when a point is inserted. In other words, the point that
divides the space does not change when other points are
inserted. In the mqr-tree, the point that divides the space
into quadrants is flexible, and adjusts when objects are
inserted. Finally, the mqr-tree accommodates objects
whose centroid overlaps the node centroid separately
from the node centroid itself, where in the quadtree the
data point and the quadrant partitioning point are the
same. This allows for the flexibility of the node MBRs
(and their centroids) in the mqr-tree.

3.3 Insertion Strategy
The insertion strategy works as follows. Beginning at the
root node, the node MBR is adjusted to include the new
object. Then, the appropriate location, relative to the cen-
troid of the node MBR, is identified for inserting a refer-
ence to the new object. If the location is empty, the refer-
ence to the object is inserted. Otherwise, the subtree is
traversed in the same manner, until either: 1) an appro-
priate location is found that is empty and the object ref-
erence can be inserted, or 2) a leaf node is reached, and
no proper location is available for the new object refer-
ence. If the object reference cannot be inserted in the
proper location of the leaf node, then a new leaf node is
created.

In addition, for each node on the insertion path, node
validity is maintained by removing and reinserting ob-
jects that have changed orientation relative to the cen-
troid of the node MBR during the insertion process.
When inserting an object from a node, one of four things
will happen to the node MBR:
• The centroid of the node will not change and there-

fore all objects remain in their proper orientation,
• The node is a CENTER node, and the new object to

Fig. 2 Orientation of A with respect to B

Fig. 3 Node with Objects

1

1

2

3

2

3

4

be inserted has a different centroid than the existing
objects.

• The centroid of the node moves as the region of the
node MBR increases in size,

• The centroid of the node moves as the region of the
node MBR decreases in size.

In the second case, a CENTER node contains existing
points or objects that all have the same centroid, but the
new object has a centroid that differs from the other ob-
jects or points. Therefore, all existing objects must be
moved. In the latter two cases, some objects may have
shifted to a different quadrant due to the movement of
the centroid of the resulting node MBR. If so, these ob-
jects are no longer in their proper relative node location.
Any objects in this situation must be located and moved.
In all of cases 2-4 above, the objects are moved by re-
inserting them beginning at the current level of the tree
so that they are placed in a proper relative location.

Fig. 4(a) shows a NE expansion of the node MBR from
the original area (shaded) to the new area. The MBR is
split into four quadrants using hashed lines. The direc-
tion of the hash indicates the quadrant in which the ob-
ject on that line is included. The regions that are labeled
represent the destination location for the objects found
within that region.The 'EQ' location has been omitted for
clarity. Notice that after the MBR is expanded, partial
regions that once belonged to the NW, NE and SE quad-
rants now belong to the region that makes up the SW
quadrant. Any objects within these areas are no longer
properly located relative to the new node centre, and
would have to be relocated. Fig. 4(b) shows a SW
contration in a similar manner. All other expansions and
contractions work in a similar manner.

3.4 Insertion Implementation Details
Here, we present the implementation details for our

insertion strategy. As mentioned earlier, at each level of
the insertion path, one or more of the following actions
take place when the MBR that represents a new object is
inserted into a node:
1) Prepare the new object for insertion into the current

node,
• increase the size of the node MBR of the current

node in order to enclose the new object,
• determine which quadrant that the reference to

the new object will be potentially inserted into,
• add the MBR reference of the new object to the

insertion queue.
2) Locate the MBRs of objects or subtrees whose exist-

ing location in the node is no longer valid because
the centroid of the node MBR has changed. Add the-
se MBRs to the insertion queue.

Fig. 4 (a) NE Node MBR Expansion (b) SW Node MBR Contraction

Algorithm: insert
Input:
 n: node - node in which to insert newobj
 newobj: object - pointer to new object

Variables:
 objs: queue - queue of objects to be inserted
 orig_mbr: mbr before new object is inserted in n
 item: object to be placed on objs queue

=== Begin ===
if node is empty, insert newobj in center
if number_childen(n) == 0
 n->mbr = newobj->mbr
 n->loc[EQ] = newobj

else
 # copy the original node MBR
 orig_mbr = n->mbr

 # merge newobj's MBR into the node's MBR
 merge_mbrs(n->mbr, newobj->mbr)

 # Prep newobj for insertion
 item.quad =
 find_insert_quad(newobj->mbr, n->mbr)
 item.obj = newobj

 # Add newobj to the insertion queue
 enqueue(objs, item)

 # Find other objects that are no longer in a
 # valid quadrant
 # Add them to the insertion queue
 find_shifted_objs(objs, n, orig_mbr)

 # (Re)insert objects in the current node
 insert_queue(n, objs)

return

=== End ===

Fig. 5 Main Insertion Strategy

(a) (b)

 5

3) (Re)insert the MBRs on the insertion queue into the
current node.

Fig. 5 presents the pseudocode for the main insertion
strategy, which depicts an overview of the above se-
quence of events. Fig. 6 and Fig. 7 present a sketch of the
implementation for identifying MBRs of object or subre-
gions that are no longer in the proper quadrant with re-
spect to the centroid of the node MBR. It handles all four
cases mentioned above: 1) identifying that no changes
have occurred, 2) a CENTER node situation exists, 3) the
new node MBR is larger than the previous one before a

new object was added, and 4) the new node MBR is
smaller than the previous one before a new node was
added. Fig. 6 depicts the first two situations. First, to
determine if no change to the proper locations of all exist-
ing references (plus the new object to be inserted) has
occurred, the relative location of the centroid for the new
node MBR with respect to the centroid of the original
MBR is determined. If the centroids overlap, this means
that, although an increase of then node MBR could have
taken place, the centroid of the node MBR has not
changed and all objects in the node are still in their prop-

Algorithm: find_shifted_objs

Input:
 q: queue - queue in which to place objects that need
 to be moved
 n: node - node to be updated
 orig_mbr: mbr - MBR of node n before merge

Variables:
 q: quadrant - relative location
 area_diff: int region: mbr

=== Begin ===
#first, find if any objects have shifted quads
quad = find_insert_quad(n->mbr, orig_mbr)

if quad = EQ
 # nothing to do, MBR may have changed but all
 # objects are already in their proper location
 return

if n->type = CENTER
 # The node is a center node and all objects in this
 # node need to be removed so they can be placed in
 # the appropriate quadrant

 # Find where the objects will be inserted
 quad = find_insert_quad(orig_mbr, n->mbr)

 # remove all objects and place them on the queue
 for each node location 'tmploc'
 remove_and_q_objects(q, quad, tmploc, n->mbr)
 done
 n->type = NORMAL
 return

Get objects that belong in the EQ location
adjust_region(n->mbr.cx, n->mbr.cx,
 n->mbr.cy, n->mbr.cy)
remove_and_q_objects(q, EQ, n->loc[quad], region)

area_diff = area_change(n->mbr, orig_mbr)

Fig. 6 Finding Shifted Objects – Part 1

#new node MBR larger than original
if area_diff > 0
 if quad = NE
 # to SE
 adjust_region(n->mbr.cx, orig_mbr->hx,
 orig_mbr->cy, n->mbr.cy -1)
 remove_and_q_objects(q, SE, n->loc[NE], region)

 # to SW, part NE
 adjust_region(orig_mbr->cx +1, n->mbr.cx -1,
 orig_mbr->cy, n->mbr.cy)
 remove_and_q_objects(q, SW, n->loc[NE], region)

 # to SW, part SE
 adjust_region(orig_mbr->cx, n->mbr.cx -1,
 orig_mbr->ly, orig_mbr->cy -1)
 remove_and_q_objects(q, SW, n->loc[SE], region)

 # to SW, part NW
 adjust_region(orig_mbr->lx, orig_mbr->cx,
 orig_mbr->cy +1, n->mbr.cy)
 remove_and_q_objects(q, SW, n->loc[NW], region)

 # to SW part EQ
 remove_and_q_objects(q, SW, n->loc[EQ], orig_mbr)

 # to NW
 adjust_region(orig_mbr->cx +1, n->mbr.cx,
 n->mbr.cy +1, orig_mbr->hy)
 remove_and_q_objects(q, NW, n->loc[NE], region)

 # also have cases for SE, NW and SW,
 # and are handled similarly to NE

 else #new node MBR smaller than original

 # contraction cases for NE, SE, SW
 # and NW handled similar to above

return

=== End ===

Fig. 7 Finding Shifted Objects – Part 2

6

er quadrants. The search for shifted objects ends here
and the reference for the new object can be inserted (via
the insert_queue function - see Fig. 9).

If the centroids do not overlap, then the other cases
must be considered. The next case is determining if the
existing node is a CENTER node, and the new object to
be inserted has an MBR with a centroid that is not equal
to the centroids of the existing MBRs in the node. We
chose to handle this situation simply - we identify which
quadrant they will be placed in, remove all MBRs from
the CENTER node and place them on the insertion queue
(via remove_and_q_objects, see Fig. 8), and change the
node type to NORMAL.
 Fig. 7 depicts a portion of the last two cases of node

MBR expansion and contraction. Here, we show how a
NE expansion (see Fig. 4(a)) is detected and handled. All
other cases for both expansion and contraction are han-
dled similarly. The expansion type is determined using

Algorithm: remove_and_q_objects

Input:
 q: queue - insertion queue
 quad: int - destination quad for relocated objects
 loc: node quadrant containing objects for relocation
 region: mbr - region containing objects for relocation

Variables:
 item: queue item
 loctmp: location - location iterator

=== Begin ===
if loc is undefined
 return

We are always going to quad
item.quad = quad

if loc references a node
 n = loc
 if (overlaps(n->mbr, region))
 for each node location 'tmploc'
 do
 remove_and_q_objects(q, quad, tmploc, region)
 done

 # if any objects are recursively removed here the
 # node MBR must be adjusted, or the node deleted
 adjust_node(loc->parent)

else
location references an object
 if centroid_within(loc->mbr, region)
 item.obj = loc
 enqueue(q, item)
 loc = undefined

=== End ===

Fig. 8 Queuing Misplaced Objects

Algorithm: insert_queue

Input:
 n: node -- node to insert queue objects
 q: queue -- queue containing objects

Variables:
 item: item from queue to insert obj: object
 quad: int -- location index
 ntmp: node -- temporary node

=== Begin ===
while queue is not empty do
 item = dequeue(q)
 quad = item.quad
 obj = item.obj

 if n->type = CENTER
 # see if a location if available
 quad = next_ctr_loc(n)
 if quad is defined
 n->loc[quad] = obj
 sort_ctr(n)
 continue;
 # else, new node is added to the CENTER
 # node list for object

 if n->loc[quad]
 if n->loc[quad] is a node
 insert(n->loc[quad], obj)
 continue
 else
 # Create a new child and insert
 if quad = EQ and num_child(n) = 1
 # convert node to a CENTER node
 n->type = CENTER
 enqueue(q, item)
 else
 ntmp = new_node()
 insert(ntmp, obj)
 insert(ntmp, n->loc[quad])
 ntmp->parent = n
 n->loc[quad] = ntmp
 else
 # insert at n->loc[quad]
 n->loc[quad]
done

=== End ===

Fig. 9 (Re)-inserting Misplaced Objects

 7

the relative location of the new node MBR with respect to
the original node MBR (this was calculated earlier). In
our example in Fig. 4(a), this expansion is NE, because
the centroid for the new node MBR is northeast of the
centroid for the original node MBR. After the expansion
type is identified, the corresponding subregions that are
affected by the node MBR expansion are also identified.
Referring back to Fig. 4(a), there are seven subregions
that have shifted from one quadrant to another - NE to
SE, NE to SW, NE to NW, NW to SW, SE to SW, NE to EQ
(not in the figure), and EQ to SW (also, not in the figure).
Any MBRs in these subregions will need to be removed
and reinserted into the proper quadrant. Therefore, each
subregion is identified using the original and new node
MBRs, and any MBRs that reside in these regions are re-
moved and added to the insertion queue using re-
move_and_q_objects (see Fig. 3).
 Fig. 8 depicts the pseudocode for the function re-
move_and_q_objects. This function takes as input the
node quadrant that potentially contains MBRs the must
be relocated, the subregion that is affected, the destina-
tion quadrant for any MBRs that must be moved, and the
insertion queue that the affected MBRs must be placed
on. Its goal is to remove all MBRs that are accessible from
input quadrant and that overlap the given subregion,
and place them on the insert queue. Three situations
exist: 1) the input quadrant references nothing, in which
case the function terminates, 2) the input quadrant con-
tains an MBR of an object, and 3) the input quadrant con-
tains an MBR of a subtree.
 If the input quadrant contains an MBR for an object,
then a test is performed to see the centroid of the MBR
falls within the shifted region. If so, it is removed from
the node and added to the insertion queue.

If the input quadrant contains an MBR for a subtree,
then two steps must be carried out. The first is to recur-
sively call the function on each quadrant in the subtree,
to identify objects that must be removed and reinserted.
The second is to adjust the node MBR or delete the node
if all MBRs have been removed during this process.

Finally, Fig. 9 depicts the function for inserting the
MBRs on the insert queue into the current node (recall
that this current node is the node that we started with at
the beginning of the sequence of events above). This will
attempt to insert the new object, as well as re-insert any
removed MBRs, into the quadrant that is specified for
each MBR. Again, for each object or MBR being (re)-
inserted, several situations exist: 1) the specified quad-
rant in the node is empty, 2) the node is a CENTER node,
3) the specified quadrant contains MBR for a node, and 4)
the specified quadrant contains an MBR for an object.

If the quadrant specified for an object or MBR is emp-
ty, then the MBR and corresponding reference can be in-
serted, and insertion is finished for the current object or
MBR. If the node is a CENTER node, then the next avail-
able location for the MBR and reference is located and is
inserted. If necessary, an additional node is added to

form a linked list of CENTER nodes. If the quadrant that
is specified for the new object or MBR is referencing a
subtree, then the insert function (see Fig. 5) is called on
the object or MBR, and the root of the subtree. Finally, if
the quadrant contains an MBR for an boject, a new child
node is created, and the insert function is called on both
MBRs.

3.5 Example
Here, we demonstrate a few features of the mqr-tree by
inserting some objects. Beginning with the node and ob-
jects in Fig. 3, we will insert three more objects into the
mqr-tree. First, Object 4 is inserted, which causes the
node MBR to increase, Object 3 is no longer be in its
proper location because its centroid now overlaps the
centroid for the node MBR. Therefore, Object 3 is also re-
inserted, and is placed in the EQ location. Fig. 10(a) de-
picts the resulting node.

Fig. 10 Insertion Example

(a)

(b)

(c)

8

Next, Object 5 is inserted. The node MBR does not
change, so therefore no objects need to be checked to de-
termine their proper location. Fig. 10(b) depicts the result
node. Finally, Object 6 is inserted. The southeast quad-
rant is chosen, and the node MBR does not change. How-
ever, object 5 is already located in the same quadrant.
Therefore, a new leaf node is created and Objects 5 and 6
are inserted into it. The new node MBR is created and
referenced from the southeast quadrant in the parent
node. Fig. 10(c) depicts the resulting mqr-tree.

3.6 Search
The mqr-tree has the potential for exploring different
types of search strategies. For example, the opportunity
exists to use a binary partition of nodes for performing a
region search. For initial comparison purposes, we chose
to implement and use a region search strategy that eval-
uates the overlap of a search region with the MBRs of all
objects or subtrees that are referenced by a node.

4 PROPERTIES
In our investigations, we have identified some interesting
properties of the mqr-tree index and insertion algorithm:
• For a distinct set of points, any point, and therefore

any MBR centroid, has only one possible location in
the tree. This leads to a tree that is independent of
the insertion order of all objects.

• The centroid of a node will have the same orientation

in its parent as does all the objects inclosed by the

node MBR.

• The MBR of a location will have less then half of its

area outside its quadrant, except for the 'EQ'

quadrant. This may lead to a minimizing in overlap.

• With datasets consisting of only points, the overlap

of any two MBRs at any level of the tree is zero.

There is no area that has the potential to be covered

twice.

5 EVALUATION
In this section, we present the results of our empirical
evaluation of the mqr-tree. Initially, we compared the
mqr-tree with the 2DR-tree [13]. We found that the mqr-
tree achieved significant improvements in height, space
utilization, coverage, overcoverage and overlap over the
2DR-tree. Here, we compare the performance of the mqr-
tree insertion and region search algorithms with those
from the R-tree [9], which is considered one of the
benchmark approaches for spatial indexing. We evaluate
the mqr-tree insertion algorith musing rectangles, points,
and lines. In particular, line data may generate signifi-
cantly high amounts of overcoverage because a line is
approximated with an MBR. Therefore, it is important to
evaluate how the mqr-tree performs in the presence of
line data.

5.1 Data Sets
We use both synthetic and real datasets for our compari-
son. With the exception of the road and railroad data
(see below), all datasets are randomly generated and con-
tain between 500 and 10,000 objects. Our datasets consist
of:
• squares of 10x10 units each, where each dataset as-

sumes a uniform distribution,
• points, where each dataset assumes a uniform distri-

bution,
• squares of 10x10 units each, where each dataset as-

sumes an exponential distribution,
• points, where each dataset assumes an exponential

distribution,
• lines of 10 units each, where each dataset contains

50% horizontal and 50% vertical lines,
• lines of 10 units each, where each dataset contains

equal percentages of lines of slope 1/2, 1, 2, -1/2, -1
and -2 respectively.

• lines of 10 units each, where each dataset contains
equal percentages of lines of slope 1/2, 1, 2, -1/2, -1, -
2, 0, horizontal and vertical lines respectively.

• road and railroad data that vary in size from 11,000
to 122,000 line segments. This data is part of the Digi-
tal Chart of the World and obtained from [23].

5.2 Experiments
For each dataset, we created 100 trees using each inser-
tion algorithm on a random ordering of the dataset. The
number of nodes, height, average space utilization in
each node, total coverage of all MBRs, total overcoverage
(i.e. whitespace) of all MBRs, and the total overlap be-
tween all MBRs was calculated for each tree. Because the
mqr-tree is not height-balanced, the average path length
(i.e. average height) is also recorded. In addition, for
each tree created, 20 region searches were performed.
Over all 20 searches, the average number of objects that
overlapped the search region and the average number of
disk accesses required were calculated.

5.3 Space Utilization Results
Due to lack of space in our result tables below, we omit-
ted our space utilization calculations. However, over all
insertion results, the average space utilization in nodes of
the mqr-tree is between 50-55%, while the space utiliza-
tion for the R-tree was between 70-74%. Although the
space utilization of the mqr-tree is 22-23% lower than that
of the R-tree, it is still at least half of the number of loca-
tions in the node.

5.4 Insertion Results on Uniformly Distributed
Synthetic Data

Table 1 displays the results for the data sets consisting of
uniformly distributed squares. Note that for the R-tree, the
values for all parameters are averaged over all 100 runs,
since these values vary for each tree. For the mqr-tree, the
values are identical for all 100 trees. As mentioned earlier,

 9

the new insertion strategy is independent of the order in
which the objects are inserted. The only variation is in
how many objects are moved in order to maintain node
validity. Also note the two sets of values for height for the
mqr-tree. The first value represents the maximum (i.e.
worst-case) height, while the second value in parentheses
is the average height (i.e. average path length).

 Results show that the mqr-tree achieves a signifi-
cant improvement over the R-tree in many aspects. In
particular, there is a 14-55% decrease in coverage, a 33-
80% decrease in overcoverage, and a 49-87% decrease in
overlap. In all cases, the improvements increase as the
number of objects increases. In addition, although the
maximum tree height of the mqr-tree is higher than that
of the R-tree, the difference in tree height decreases to
33% as the number of objects increases. It must also be
noted that the average tree height of the mqr-tree is al-
most equal to the height of the R-tree. Also, it must be
noted that the mqr-tree requires more storage space since
it requires 45-50% more nodes than the R-tree. However,
we believe that these limitations are a small price to pay
for the significant decrease in coverage, overcoverage
and overlap, which result in an increase in search per-
formance. Table 2 presents the results for the data sets
consisting of uniformly distributed points. The most sig-

nificant finding in these results is that zero overlap is
achieved when an index is constructed for points using the
mqr-tree insertion strategy. This is very important be-
cause point queries can be executed without having to
potentially traverse multiple paths in the tree. In addi-
tion, significant reductions in coverage (21-60%) and
overcoverage (26-77%) occur. The values for height are
similar to those obtained for the object datasets, and
therefore we feel these are significantly outweighed by
the achievement of zero overlap.

5.5 Insertion Results on Exponentially Distributed
Synthetic Data

Table 4 presents the results for the data sets containing
exponentially distributed objects. Significant decreases in
coverage (36-55%), overcoverage (20-70%) and overlap
(35-82%) occur in the mqr-tree over the R-tree.

Table 3 presents the results for the data sets consisting
of exponentially distributed points. Zero overlap is still
achieved, and significant improvements in coverage (48-
59%) and overcoverage (18-63%) of the mqr-tree over the
R-tree are still achieved. Therefore, it is possible that the
mqr-tree can perform a one-path search at most, while
multiple search paths may be required for a point search
in the R-tree. It should be noted that for the exponential-

Table 1 – Exponential Distribution of Points
#pts Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 325 18 (10) 110974.18 52092.32 0.00

r-tree 186 4 214523.43 64108.84 12016.53

1000
mqr-tree 659 20 (12) 218845.42 97737.20 0.00

r-tree 372 4 472716.17 128215.98 30478.78

5000
mqr-tree 3370 24 (14) 1660007.95 500846.52 0.00

r-tree 1847 6 3434431.79 800483.10 299636.56

10000
mqr-tree 6828 26 (15) 3732725.27 999599.36 0.00

r-tree 3693 6 7498358.61 1828481.67 828882.29

50000
mqr-tree 35349 30(18) 50762334.93 11287680.72 0.00

r-tree 18457 7 122270387.5127474739.8916187059.34

100000
mqr-tree 69693 32(19) 113734895.1722594718.01 0.00

r-tree 36926 8 276474613.9661142614.97 38547897.18

Table 2 – Exponential Distribution of Objects

#obj Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 325 18(10) 174250.89 51192.16 18343.37

r-tree 194 4 272040.01 64329.05 28197.22

1000
mqr-tree 659 20(12) 338443.42 95161.33 38358.15

r-tree 392 4 606210.34 124529.81 60858.27

5000
mqr-tree 3370 24(14) 2270464.58 488148.33 201441.44

r-tree 1994 6 3933855.05 797565.45 480465.59

10000
mqr-tree 6827 26(15) 4966049.83 974169.77 402070.90

r-tree 4012 6 8682826.19 1761700.06 1134572.72

50000
mqr-tree 34711 30(18) 28520871.48 4845459.48 1977241.75

r-tree 20311 8 61323913.50 12127981.69 9004376.41

100000
mqr-tree 68910 32(19) 62395597.46 9725941.81 3942250.98

r-tree 40821 8 137228053.8128266370.2722024751.39

Table 3 – Uniform Distribution of Objects
#obj Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 285 8 (5) 287023.51 39892.16 21050.87

r-tree 196 4 335178.08 59979.97 40878.57

1000
mqr-tree 591 8 (6) 626970.98 78979.44 46605.40

r-tree 394 4 789612.88 133872.84 102429.08

5000
mqr-tree 2849 10 (7) 3680266.82 385573.84 245436.34

r-tree 1961 6 5354990.27 909009.13 783091.64

10000
mqr-tree 5770 10 (7) 7813449.90 751530.93 487169.05

r-tree 3926 6 12137966.53 2203426.85 1977476.17

50000
mqr-tree 28807 12 (9) 45170573.09 3832563.53 2524233.03

r-tree 19636 7 90814453.43 16463547.3515451954.96

100000
mqr-tree 57776 12 (9) 95725388.87 7717738.72 5110715.01

r-tree 39255 8 212272854.0340361580.8338452878.51

Table 4 – Uniform Distribution of Points

#pts Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 281 8 (5) 183202.42 52329.78 0.00

r-tree 191 4 232603.89 70802.17 18472.38

1000
mqr-tree 584 8 (6) 412179.74 101789.65 0.00

r-tree 382 4 575002.63 154275.98 52486.32

5000
mqr-tree 2880 10 (7) 2608566.97 503669.43 0.00

r-tree 1921 6 4245530.93 1024153.59 520484.17

10000
mqr-tree 5758 10 (7) 5683295.65 999477.64 0.00

r-tree 3845 6 9634100.78 2399071.70 1399594.05

50000
mqr-tree 28814 12 (9) 34311970.45 5017147.64 0.00

r-tree 19242 7 80654914.07 18486457.5813469309.91

100000
mqr-tree 57737 12 (9) 73778576.93 10048704.63 0.00

r-tree 38526 8 184978601.8842812880.6832764176.05

10

ly-distributed data sets, the mqr-tree achieves significant-
ly worse tree height - in both the worst and average cases
- than the R-tree.

5.6 Insertion Results on Road and Railroad Data
Table 5 presents the results for the road and railroad data.
Here, we also achieve almost no overlap in the mqr-tree.
The results show that a reduction in overlap of almost
100% is achieved. In addition, we also achieve over 85%
in reduction in both coverage and overcoverage. The
mqr-tree has a higher tree height in the worst case. How-
ever, given that the overlap and overcoverage of the mqr-
tree are significantly low, it is expected that more efficient
searching will be achieved despite the higher tree height.

5.7 Insertion Results on Synthetic Line Data
The results from the road and railroad data sets were
surprising. We conclude that the above results occurred
because: 1) the line segments were very small, and 2) the
line segments were sequential in nature (for example, a
road is made of several line segments that are connected
end-to-end). Therefore, we conducted further experi-
ments with randomly-generated line sets, where the lines
are much longer than those in the road and railroad data
sets.

Table 6 presents the results for the horizontal and ver-

tical line sets. This is expected to produce the best results
since at the leaf level, the overcoverage of minimum
bounding rectangles will be zero and the overlap will be
very low (effectively, the only overlap are the intersection
points between two lines). We find the most significant
result to be in the improvement in overlap. The mqr-tree
achieves lower overlap in all cases. Although the im-
provement amounts are not as high as with the road and
railroad data, they are still significant, especially in the
data sets with the higher number of line segments. Over-
all, we find in the smaller sets an improvement of ap-
proximately 45-50% lower overlap over the R-tree, while
in the larger sets the improvement is as high as 92%. We
also find the same trends for coverage and overcoverage,
with improvements that increase from 3% to 58% for
coverage and from 9% to 73% for overcoverage. The
height, although still high in the mqr-tree, is comparable
to those obtained in the initial road and railroad data
tests.

Table 7 depicts the results for the worst-case scenario,
where the MBRs for all lines contain a significant amount
of overcoverage. However, we find that for the most part
the performance improvements of the mqr-tree over the
R-tree are as significant as those found in the other eval-
uations. The only improvement that is not as significant

Table 5 - Road and Railroad Data
#obj Index #nodeHeightCoverageOvercovOverlap

MXrrline

10060

mqr-tree 6737 12(9) 1294.95 541.89 2.20

r-tree 3629 6 8822.50 4074.37 3534.69

CArrline

11381

mqr-tree 7755 14(9) 248.10 94.13 1.01

r-tree 4066 6 9358.27 4442.16 4349.06

CArdline

21831

mqr-tree 14116 14(9) 352.01 97.20 4.19

r-tree 7805 7 20992.97 9561.39 9468.41

CDrrline

35074

mqr-tree 23108 14(10) 4324.47 1561.67 18.18

r-tree 12564 7 35090.63 15508.73 13965.37

MXrdline

92392

mqr-tree 58851 14(10) 2038.99 553.05 16.87

r-tree 32872 8 93816.25 41718.96 41182.92

CDrdline

121416

mqr-tree 76998 16(11) 9500.39 2925.65 59.95

r-tree 43438 8 133233.80 55883.37 53017.86

Table 6 - Horizontal and Vertical Lines

#obj Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 293 8(5) 251619.56 67535.15 10782.32

r-tree 195 4 291630.53 83903.64 27150.81

1000
mqr-tree 587 8(6) 544531.26 132311.38 24121.85

r-tree 394 4 696390.31 185733.09 77543.57

5000
mqr-tree 2914 10(7) 3294526.16 655888.20 137649.08

r-tree 1961 6 5042184.13 1241062.37 722823.28

10000
mqr-tree 5810 10(7) 7001261.27 1292190.54 272790.93

r-tree 3929 6 10965166.53 2715467.58 1696067.96

50000
mqr-tree 28890 12(9) 41092930.60 6506622.52 1444385.16

r-tree 19621 7 86853329.18 19697559.4314635322.12

100000
mqr-tree 58068 14(9) 87417416.02 13027973.93 2915851.38

r-tree 39224 8 203407727.0847028991.8436916869.57

Table 7 - Sloped Lines
#obj Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 284 8(5) 271315.61 50635.87 15181.68

r-tree 195 4 319704.04 69274.30 34247.39

1000
mqr-tree 581 8(6) 586703.65 100469.16 34995.16

r-tree 392 4 763931.88 152911.51 88912.03

5000
mqr-tree 2907 10(7) 3506656.31 492314.23 188213.63

r-tree 1963 6 5144578.40 1015634.70 721374.75

10000
mqr-tree 5760 10(7) 7445892.16 978976.24 386760.43

r-tree 3920 6 11572362.19 2395879.76 1826034.50

50000
mqr-tree 28909 12(9) 43421521.54 4935490.52 2017537.19

r-tree 19608 7 87460073.45 17320731.0414544767.33

100000
mqr-tree 57942 12(9) 91993440.89 9851272.71 4044739.58

r-tree 39216 8 206787354.0442502264.2637005936.91

Table 8 - Sloped, Horizontal and Vertical Lines

#obj Index #nodeHeight Coverage Overcov Overlap

500
mqr-tree 289 8(5) 277018.50 56623.55 16207.52

r-tree 194 4 324332.16 76640.31 36806.05

1000
mqr-tree 572 8(6) 580037.86 108356.88 33389.45

r-tree 392 4 734513.29 152146.81 78014.48

5000
mqr-tree 2903 10(7) 3486989.74 537944.78 184403.61

r-tree 1963 6 5130453.08 1062417.04 716194.67

10000
mqr-tree 5818 10(7) 7371817.94 1051413.83 363377.44

r-tree 3927 6 11439524.18 2458147.81 1786487.04

50000
mqr-tree 28979 12(9) 42915843.71 5285883.19 1887563.59

r-tree 19624 7 87958140.65 18005334.3514704704.00

100000
mqr-tree 58083 12(9) 91056946.11 10614180.99 3835949.08

r-tree 39229 8 205952536.3843688852.0637122966.54

 11

is in the overlap decrease for the smallest test set. How-
ever, the mqr-tree still achieves lower overlap in this case.

Table 8 presents the results of our average case, where
there is a mix of lines that result in significant
overcoverage and lines that have no overcoverage. We
find results that are very similar to those for the horizon-
tal and vertical line sets. We find that the mqr-tree
achieves an improvement in overlap that ranges from
43% for the smaller data sets to 90% for the largest one.
Similarly, we find improvements in coverage that fall
between 3% and 57%, and for overcoverage that fall be-
tween 14% and 77%. This is very reassuring because it
appears that diagonal lines (which in this case, make up
3/4ths of each data set) do not significantly affect the
performance criteria.

5.8 Search Results
We compare the mqr-tree region search with the R-tree
region search to determine if the significant reduction in
overlap and overcoverage results in a significant reduc-
tion in the number of disk accesses required for perform-
ing the same region search.

Tables 9, 10, 11 and 12 present the results for perform-
ing a region search on mqr-trees that were built with uni-
formly-distributed objects, uniformly-distributed points,
exponentially-distributed objects and exponentially-
distributed points respectively. For the most part, the
mqrtree achieves a lower average number of disk access-
es over the R-tree when performing a region search. In
particular, when the number of uniformly-distributed
objects increases, the amount of improvement significant-
ly increases to over 50%. The exception to the improve-
ment of the mqr-tree on region searching occurs in trees
containing exponentially-distributed objects. Here, the
R-tree achieves the more significant improvements in the
number of disk accesses over the mqr-tree.

7 CONCLUSION
We propose the mqr-tree, a two-dimensional index
structure that utilizes more efficient organizational
structure than other existing strategies. In addition, it
utilizes an insertion algorithm that achieves lower
overlap and overcoverage, which in turn achieves im-
proved search performance. We show through exper-
imental evaluation that the mqr-tree outperforms a
benchmark indexing strategy, and achieves no or little
overlap. In particular, zero overlap is achieved when
the mqr-tree is used to index point data, which is not
achieved by the R-tree.
Currently, the mqr-tree is limited to two dimensions.
Future work includes the following. The first is to in-
vestigate the extension of the node structure to multi-
ple dimensions and determine how this affects the
search performance of the mqr-tree. The second is to

increase the number of locations in a 2-dimensional
node. The third, related to the second, is to explore a
bottom-up strategy for height balancing. The fourth is
to create a bottom-up tree-construction strategy to
handle multiple insertions at once. The final im-
provement is a paging strategy that groups nodes
based on a high probability that they are retrieved for
the same queries. —these should be referenced in the
body of the paper.

ACKNOWLEDGMENT
This work was supported in part by a grant from the
University of Lethbridge Research Fund.

REFERENCES
[1] L. Arge, M. de Berg, H.J. Heverkort and K. Yi, “The Priority R-

Table 9 - Uniform Objects
#obj Index #found #diskhits

500
mqr-tree 3.6 7.85

r-tree 3.6 8.089

1000
mqr-tree 4.1 8.85

r-tree 4.1 9.779

5000
mqr-tree 4.05 10.05

r-tree 4.05 13.1845

10000
mqr-tree 4.25 11.35

r-tree 4.25 14.9075

50000
mqr-tree 4.55 13

r-tree 4.55 21.615

100000
mqr-tree 3.65 13

r-tree 3.65 24.764

Table 10 - Uniform Points
#pts Index #found#diskhits

500
mqr-tree 0.40 4.65

r-tree 0.40 6.02

1000
mqr-tree 0.85 5.75

r-tree 0.85 7.91

5000
mqr-tree 0.75 7.10

r-tree 0.75 11.17

10000
mqr-tree 1.10 7.75

r-tree 1.10 13.31

50000
mqr-tree 1.30 9.25

r-tree 1.30 20.96

100000
mqr-tree 1.25 10.25

r-tree 1.25 24.00

Table 11 - Exponential

Objects
#obj Index #found #diskhits

500

mqr-

tree
273.00 180.85

r-tree 273.00 113.95

1000

mqr-

tree
539.30 364.05

r-tree 539.30 224.38

5000

mqr-

tree
2595.50 1780.65

r-tree 2595.50 1074.92

10000

mqr-

tree
5122.05 3529.81

r-tree 5122.05 2121.67

50000

mqr-

tree
24926.10 17543.35

r-tree 24926.10 10418.19

100000

mqr-

tree
49275.10 34282.90

r-tree 49275.10 20697.80

 Table 12 - Exponential
Points

#pts Index #found #diskhits

500

mqr-

tree
90.50 68.85

r-tree 90.50 71.16

1000

mqr-

tree
172.70 132.50

r-tree 172.70 133.83

5000

mqr-

tree
755.70 534.25

r-tree 755.70 577.42

10000

mqr-

tree
1440.80 1014.75

r-tree 1440.80 1101.89

50000

mqr-

tree
6451.80 4629.30

r-tree 6451.80 4958.53

100000

mqr-

tree
12333.05 8888.35

r-tree 12333.05 9628.49

12

tree: A Practically Efficient and Worst-case Optimal R-tree,”

Proc. 2004 ACM SIGMOD International Conference on Manage-

ment of Data, pp. 347-358, 2004.

[2] A. Al-Badarneh and A. Al-Alaj, “A Spatial Index Structure

Using Dynamic Recursive Space Partitioning,” Proc. 2011 Inter-

national Conference on Innovations in Information Technology, pp.

255-260, 2011.

[3] N. Beckmann, H.-P. Kriegel, H.-P. Schneider and B. Seeger,

“The R
*
-tree: An Efficient and Robust Access Method for Points

and Rectangles,” Proc. 1990 ACM SIGMOD International Confer-

ence on Management of Data, pp. 322-331, 1990.
[4] J.L. Bentley, “Multidimensional Binary Search Trees in Data-

base Applications,” IEEE Trans. Software Engingeering, vol. 5,
no. 4, pp. 333-340, 1975.

[5] S. Berchtold, D. Keim and H.-P. Kriegel, “The X-tree: An Index

Structure for High-dimensional Data,” Proc. 22
nd

 International

Conference on Very Large Data Bases, pp. 28-39, 1996.
[6] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.

Weissig, I.N. Shindyalov, and P.E. Bourne, “The Protein Data
Bank,” Nucleic Acids Research, vol. 28, pp. 235-242, 2000.

[7] D. Comer, “The Ubiquitous B-Tree,” ACM Computing Surveys,
vol. 11, no. 2, pp. 121-137, 1979.

[8] V. Gaede and O. Guenther, “Multidimensional Access Meth-
ods,” ACM Comupting Surveys, vol. 30, no. 2, pp. 170-230, 1998.

[9] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial

Searching,” Proc.1984 ACM SIGMOD International Conference on

Management of Data, pp. 47-57, 1984.

[10] I. Kamel and C. Faloutsos, "Hilbert R-tree: An Improved R-tree

Using Fractals,” Proc. 20
th
 International Conference on Very Large

Data Bases, pp. 28-39, 1996.

[11] N. Koudas, “Indexing Support for Spatial Joins,” Data and

Knowledge Engineering, vol. 34, pp. 99-124, 2000

[12] G. Li and J. Tang, "A New DR-tree K-nearest Neighbour Query

Algorithm Based on Directive Relationship,” Proc. International

Conference on Environmental Science and Information Application

Technology, pp. 246-250, 2010.

[13] M. Moreau and W. Osborn, "The mqr-tree: Improving Upon a

2-Dimensional Spatial Access Method,” Proc. 4
th
 IEEE Interna-

tional Conference on Digital Information Management, pp. 205-210,

2009.

[14] M. Moreau and W. Osborn, "Efficient Indexing of Lines with

the mqr-tree," Proc. 13
th
 International Conference on Enterprise In-

formation Systems, pp. 314-319, 2011.

[15] Natural Resources Canada, Geoscience Data Repository,

http://www.nrcan.gc.ca/earth-sciences/products-services/

geoscience-data-repository/11818. 2012.

[16] J.A. Orenstein and T.H. Merrett, "A Class of Data Structures for

Associative Searching,” Proc. 3
rd
 ACM-SIGACT-SIGMOD Sym-

posium on Principles of Database Systems, pp. 181-190, 1984.

[17] W. Osborn, “2DR-tree: A 2-dimensional Spatial Access Method,”

PhD dissertation, Dept. of Computer Science., Univ. of Calgary,

Alberta, Canada, 2005.

[18] W. Osborn and K. Barker, "An Insertion Strategy for a 2-

dimensional Spatial Access Method,” Proc. 9
th
 International Con-

ference on Enterprise Information Systems, pp. 295-300, 2007.
[19] J. Qiu, X. Tang and H. Huang, “An Index Structure Based on

Quad-tree and R
*
-tree – R

*
Q-tree,” J. Computer Applications, vol.

23, no. 8, pp. 124-126, 2003.

[20] H. Samet, The Design and Analysis of Spatial Data Structures.

Addison-Wesley, 493 pages, 1990.

[21] T. Sellis, N. Roussopoulos and C. Faloutsos, "The R
+
-tree: A

Dynamic Index for Multi-dimensional Objects,” Proc. 13
th
 Inter-

national Conference on Very Large Data Bases, pp. 507-518, 1987.

[22] M. Sharifzadeh and C. Shabani, "VoR-tree: R-tree with Voronoi

Diagrams for Efficient Processing of Nearest Neighbour Que-

ries,” Proc. VLDB Endowment, vol. 3, no. 1, pp. 1231-1242, 2010.

[23] S. Shekhar and S. Chawla, Spatial Databases: A Tour. New Jersey:

Prentice Hall, 262 pages, 2003.

[24] Y. Theodoridis, The R-tree Portal, http://www.rtreeportal.org.

2002

Marc Moreau obtained his B.Sc. degree from the University of
Lethbridge in 2011. He is currently a system administrator for the
City of Calgary, Alberta, Canada. Marc has previously published
four conference papers in the areas of spatial indexing and image
processing.

Wendy Osborn obtained her B.C.S. (Hons.) and M.Sc. degrees
from the University of Windsor, and her Ph.D. degree from the Uni-
versity of Calgary. She is currently an Assistant Professor of Com-
puter Science at the University of Lethbridge. She has over 20 pa-
pers published in the areas of distributed query optimization, spatial
indexing, spatial query processing, digital libraries and context-
aware mobile systems.

