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Abstract

The application of spatial joins for processing queries in spatial data streams is explored in this paper. Although their application
has been studied in centralized and distributed systems, it has received little attention in spatial data streams. This work explores a
particular issue with spatial join processing in spatial data streams - the lack of a bounded region of space from which the spatial
objects are generated. Therefore, two strategies for join processing in spatial data streams in this situation are proposed. Both
provide estimation of the common region shared by multiple spatial data streams to best process a spatial join between them. The
strategies are evaluated and compared with a recently proposed approach. Results show that one strategy does an excellent job of
estimating the common region given no existing bounded regions of space. Other results and future improvements are identified.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chair.

Keywords: spatial data streams; spatial join; stream query processing; performance

1. Introduction

Applications exist today that generate data continuously. It is impossible to store all continuous streaming data, as
it becomes very large over time [3, 6]. Also, a data item in the stream may become invalid over time [3, 6]. Therefore,
new approaches are required for managing data in data streams, as traditional approaches were proposed for managing
stored data that is considered valid until it is explicitly deleted [3]. This scenario also applies to spatial data streams
that generate and transmit object data (e.g. objects of non-zero area that represent regions of space) [11]. One such
strategy that requires consideration in this context is the spatial join [15]. Given two object sets, a spatial join finds
objects that are related based on a spatial predicate (e.g. overlap). A requirement for traditional spatial join processing
is the existence of all objects when the join takes place, which is not the case for objects generated by a spatial data
stream. Since objects are arriving continuously, each must be processed for the spatial join as soon as it arrives. Also,
a decision must be made whether or not to keep the object, as it may be required for joining with a object that is
arriving in the future [6].
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Existing strategies that utilize a spatial join have been proposed previously in the literature. Their use can be
organized as follows: in a centralized database [14, 7, 18, 2, 8, 17], in a distributed database [1, 16, 9, 10, 5, 13], and
in a spatial data stream [11, 12]. As we can see, significant work has been undertaken in the areas of centralized and
distributed query processing. However, the main limitation for these strategies is that all objects in the participating
spatial object sets must available for the joins. The only exceptions are the works of Kwon and Li [11] and Osborn [12].
Kwon and Li proposed a progressive spatial join strategy that joins the same pair of objects multiple times, beginning
with a simplified representation (i.e. a minimum bounding box) and increasing the complexity of the representation
for subsequent joins, in order to reduce the cost of the spatial join as simpler representations are computationally less
expensive to join [11]. A limitation of this approach is that two objects - in particular, two objects that ultimate are
matched based on the chosen spatial predicate - are processed several times. Osborn proposed several strategies that
utilize both a conventional spatial join and a bit-array join (i.e. similar to a Bloom join [4]). They employ the idea of a
common region between the two spatial data streams to identify objects that would participate in a join. One general
limitation of this work is that the spatial extent that the data streams obtain their data from must be known in advance.

Therefore, this paper proposes two strategies that attempt to overcome the limitations of both previously proposed
strategies stated above - not knowing in advance the overall spatial extent of the generated object set, and reducing the
number of spatial joins that must take place. The first strategy (Sliding Window) estimates the common spatial extent
(i.e. common region) shared by two data streams by creating it from an initial sliding window set of objects. The
second strategy (Incremental) creates an initial common region from the first two objects to arrive as the spatial data
stream processor, and incrementally (and selectively) grows the common region as more objects arrive from the spatial
data streams. An experimental evaluation and comparison versus an existing approach that uses a pre-determined
common region shows that the Sliding Window strategy achieves comparable results to that of the existing approach,
and significantly outperforms the Incremental strategy.

The rest of this paper proceeds as follows. Section 2 summarizes the background information that is required for the
proposed strategies. In Section 3, two strategies are proposed that attempt to overcome the limitation of an unknown
spatial extent of the data streams. Section 4 summarizes the empirical evaluation of the two strategies, including a
comparison against one of the previously proposed approaches. Section 5 provides a conclusion and future research
directions for this work.

2. Background

This section summarizes some background that is required for this work. After an introduction of the symbolic
notation used in this paper, a spatial data stream system, spatial join, and the Spatial2 strategy [12] are summarized.

2.1. Preliminaries
The following symbols are used throughout this paper:

e S and S,: spatial data streams which transmit objects to the spatial data stream processor,

e FE; and E;: the extents in space that contains objects from S| and S, respectively,

CR: a “common region”, which is the region of space shared by both spatial data streams. It consists of the
overlap of E| and E»,

RS : result stream,

S W: sliding window.

numob j(S W): the number of objects currently in S W, and

Osywx, X = 1 to numob j(S W) — 1: the objects in S W.

In Figure 1 a data stream system with two sensors is depicted. These sensors continuously generate and send data
to a remote server for processing stream data, including query processing. Then, any results that are generated from
processing on the sever are transmitted on a result data stream to a specific destination [6]. For spatial data streams,
the data that is generated and transmitted is spatial data, which is some combination of point and/or object data.
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Fig. 1. Data Stream System Fig. 2. Overlap of Two Regions (from [12])

A data stream processor is capable of storing only a limited amount of information that is sent from the streams.
Several approaches exist [6] for selecting the data that will be stored at the data stream server. A sliding window is
one such approach. It is a limited size memory or data storage that stores incoming stream data for some finite amount
of time. When the sliding window has no more space left for incoming data, a decision must be made about which
data to discard. In this work, the use of both the first-in-first-out (FIFO) and least recently used (LRU) strategies are
utilized, to determine if one approach is superior to the other in terms of keeping the “best” data in the data stream.

Given spatial object sets, S| and S, a spatial join [15] relates pairs of objects from each set based on a spatial
predicate (e.g. overlap). The following assumptions are made for this work. First, although any non-directional spatial
predicate can be used, this work uses the overlap predicate. Second, this work also uses the nested-loop join for joining
a portion of S| and S,. Finally, a vector (i.e. geometric) representation of polygons is assumed, where a polygon is a
sequence of connected points.

2.2. Spatial2 Strategy

Proposed in [12], the Spatial2 strategy will be used for comparison against the new strategies. It is chosen as it was
found to achieve high accuracy in smaller spatial data streams [12] and when compared to [11].

The strategy takes object input (0; and 0,) from two spatial data streams (S ; and S,) and processes them for spatial
joins as they arrive. A sliding window S W of the most recent set of arriving objects from both streams is maintained.
The strategy uses the concept of a common region CR to determine which spatial extent contains objects from both
S| and §,). Figure 2 depicts an example of a common region. Given spatial extents £; and E, which correspond to
streams S| and S, respectively, the grey region is the spatial extent that is common to both E; and E,. This is known
as the common region CR, and is the only area that contains objects from both streams.

Spatial2 works by tests arriving objects o; and o, for overlap with the CR. The strategy is carried out in the
following manner [12]:

1. First, the regions E| and E,, which represent the regions in space that contain objects from S| and S, are
transmitted to the stream query processor so that the common region CR between E; and E; can be determined.

2. Next, each of S| and S, transmits objects o1 and o, respectively to the data stream processor.

3. If required, if S W does not have enough room for 0 and 0,, then one or two objects must be chosen for removal.
Spatial2 utilizes the First-in-First-out strategy for making this decision.

4. Object oy is tested for overlap with the CR. it is added to S W if the overlap test is successful, and o, is evaluated
for overlap with all other objects o0y, in S W that were transmitted from S,. Any pair that have a positive overlap
result is transmitted on the result stream RS .

5. Object 0, is tested for overlap with the CR. it is added to S W if the overlap test is successful, and o, is evaluated
for overlap with all other objects oy, in S W that were transmitted from S ;. Any pair that have a positive overlap
result is transmitted on the result stream RS .

6. This is repeated from Step 2 while objects continue to be received from S| and S ;.
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3. Strategies for Unbounded Spatial Data

In this section, two polygon-based nested-loop join processing strategies are proposed for spatial data streams.
Both the Sliding Window and Incremental strategies attempt to overcome the limitation of having pre-determined
spatial extents (and therefore, a pre-determined common region), as these may not be available, or would need to be
significantly overestimated in order to be applied to existing strategies. Both strategies are described in summary and
in detail below.

3.1. Sliding Window Strategy

In the Sliding Window strategy, the common region CR is formed using the spatial extents from the first
numob j(S W)/2 objects that are transmitted from S; and S, respectively. At the same time, the first numob j(S W)
objects are processed to identify any spatial joins that exist between them. After CR is formed, all subsequent objects
01 and 0, that are transmitted from S| and S, are tested for overlap with CR to determine if they should be saved in
S W for future joins. The strategy proceeds as follows:

1. First, the first numob j(S W)/2 objects from each of S| and S2 are obtained and join processed:

(a) Each spatial data stream S| and S, transmits objects 0; and o, respectively to the data stream processor.

(b) Object o, is evaluated for overlap with all other objects oy, in S W that were transmitted from S,. Any pair
that have a positive overlap result is transmitted on the result stream RS .

(c) Object 0, is evaluated for overlap with all other objects oy, in S W that were transmitted from S ;. Any pair
that have a positive overlap result is transmitted on the result stream RS .

2. Next, the common region CR is formed:

(a) Spatial extent E is formed from all objects oy, in S W that were transmitted from S ;.
(b) Spatial extent E; is formed from all objects o0y, in S W and were transmitted from S ,.
(c) Finally, the common region CR is formed by determining the overlapped area between E; and E,.

3. From here, the Spatial2 strategy (summarized above) is applied to process joins with incoming objects from S
and §S,, and to determine which objects are to be added to and removed from S W.

3.2. Incremental Strategy

In the Incremental Strategy, CR is formed gradually as objects o, and o0, arrive. An initial CR is formed by creating
the minimum bounding rectangle that encompasses the first 0; and o, that are transmitted from S| and S ;. Following
this, for all subsequently transmitted o, and 0,, if either o; and/or 0, overlap CR, then CR is increased the accommo-
date the new object(s), and the objects are added to S W (with space being made in S W for them if required). Spatial
joins are also processed at this point. The strategy proceeds as follows:

1. An initial common region CR is created by forming a minimum bounding rectangle that encompasses o and 0,.
2. Then, all subsequent objects o1 and o, are processed as they arrive from S| and S ;:

(a) Object o is tested for overlap with the CR. If successful, CR is increased to accommodate oy, and o; is
added to S W. In addition, o0, is evaluated for overlap with all other objects oy,,, in S W that were transmitted
from S,. Any pair that have a positive overlap result is transmitted on the result stream RS .

(b) Object o0, is tested for overlap with the CR. If successful, CR is increased to accommodate 0,, and 0, is
added to S W. In addition, o, is evaluated for overlap with all other objects oy, in S W that were transmitted
from S;. Any pair that have a positive overlap result is transmitted on the result stream RS .

(c) Ifrequired, if S W does not have enough room for o; and o,, then one or two objects are chosen for removal.
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4. Evaluation

In this section, the empirical evaluation of the two spatial data stream join processing strategies is presented,
along with a comparison against the Spatial2 existing strategy [12]. The evaluation framework and methodology is
summarized, followed by the summary and discussion of the results of the evaluation.

4.1. Framework and Methodology

The experimental environment used for all experiments consisted of two simulated spatial data streams. The central
stream query processor utilizes one sliding window for managing a subset of objects that were transmitted from both
data streams. Both the First-In-First-Out (FIFO) and Least Recently Used (LRU) strategies are employed for selecting
objects for removed when space is needed in the sliding window.

Both strategies proposed in Section 3 are implemented in Linux Centos 7 using C++. Several simulated spatial
data streams that generated a sequence of 10x10 rectangles were used for evaluating both strategies. This approach
was used so specific aspects of the data could be controlled — in particular, the overall region of space covered by a
stream of generated objects, as well as the overlap between the region of space covered by two streams. Altogether,
28 sets of rectangles were used in pairs for spatial joins, and groups into three evaluation sets. The first evaluation
set used pairs containing 500, 1000, 1500 and 2000 rectangles, respectively. The second used pairs containing 2000,
4000, 6000, 8000, and 10000 rectangles, respective. Finally, the third set used pairs containing 20000, 40000, 60000,
80000, and 100000 rectangles, respectively. Each set of n rectangles are generated from a region of space of dimension
(vn = 10)x(+/n = 10) (e.g. rectangles the1000-rectangle sets were generated from a region of space of size 310x310).
In addition, the overall region of space for each set of rectangles have 25% overlap between them.

For both strategies in Section 3, two sets of tests were carried out that varied: 1) the number of objects sent through
each data stream, and 2) the size of the sliding window. For each set of tests:
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0 I i | ] 0 “ Il I A. mm B sm . mmow
2000 4000 6000 8000 10000 20000 40000 60000 80000 100000
W CR WmSWFIFO = IncFIFO mSW LRU ®IncLRU WCR mSWFIFO = IncFIFO mSW LRU mIncLRU
(a) Up to 10000 x 10000 Objects - WinSize 16K (b) Up to 100000 x 100000 Objects
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2000 4000 6000 8000 10000 20000 40000 60000 80000 100000
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(c) Up to 10000 x 10000 Objects - WinSize 160K (d) Up to 100000 x 100000 Objects - Winsize 160K

Fig. 3. Varying Number of Objects vs. Accuracy
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o Varying the number of objects. Overall, 20 tests were carried out, which can be categorized into five groups:
— 2000x2000, 4000x4000, 6000x6000, 8000x8000 and 10000x10000 spatial object stream pairs, with slid-
ing window size 16000 bytes (i.e. 1000 rectangles),
— 20000x20000, 40000x40000, 60000x60000, 80000x80000 and 100000x100000 spatial object stream
pairs, with sliding window size 16000 bytes (i.e. 1000 rectangles),
— 2000x2000, 4000x4000, 6000x6000, 8000x8000 and 10000x10000 spatial object stream pairs, with slid-
ing window size 160000 bytes (i.e. 10000 rectangles),
— 20000x20000, 40000x40000, 60000x60000, 80000x80000 and 100000x100000 spatial object stream
pairs, with sliding window size 160000 bytes (i.e. 10000 rectangles),
o Varying the window size. Overall, 16 tests were carried out, which can be categorized into five groups:
— 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000, 1500 and 2000 rectangles, respectively), using the
4000x4000 spatial object stream pair.
— 8000, 16000, 24000 and 32000 bytes (i.e., 500, 1000, 1500 and 2000 rectangles, respectively), using the
40000x40000 spatial object stream pair.
— 80000, 160000, 240000 and 320000 bytes (i.e., 5000, 10000, 15000 and 20000 rectangles, respectively),
using the 4000x4000 spatial object stream pair.
— 80000, 160000, 240000 and 320000 bytes (i.e., 5000, 10000, 15000 and 20000 rectangles, respectively),
using the 40000x40000 spatial object stream pair.

For all tests, in addition to the final spatial join stream, two performance factors were recorded: the CPU time over
the entire join at the stream query processor, and the number of joined tuples in the final result stream. Given this
latter value, Accuracy was determined by calculating the number of tuples in the overall join result (i.e assuming a
full spatial join with no sliding window) that were also determined in each strategy.

4.2. Results and Discussion

This section presents the results and discussion of the evaluation. The results for varying spatial data stream sizes
are presented first, followed by the results for the varying sliding window sizes. In all result charts, the following is
represented: CR represents the outcome of the Spatial2 strategy [12], SW FIFO represents the outcome of the Sliding
Window strategy where a FIFO strategy is utilized for selecting objects for removal from S W, Inc FIFO represents the
outcome of the Incremental strategy where a FIFO strategy is utilized for selecting objects for removal from S W, SW
LRU represents the outcome of the Sliding Window strategy where a LRU strategy is utilized for selecting objects for
removal from S W, and Inc LRU represents the outcome of the Incremental strategy where a LRU strategy is utilized
for selecting objects for removal from SW.

4.2.1. Varying Number of Objects

Figure 3 depicts the accuracy results, respectively, for varying the size of the spatial data streams while using
sliding windows of 16,000 bytes and 160,000 bytes respectively. As we can see, results show that overall, there is a
significant decrease in accuracy as the number of objects being transmitted from the data streams increase. In addition,
we see that with respect to accuracy, the Sliding Window strategy significantly outperforms the Incremental Strategy.
Finally, with respect to accuracy we see there is little to no difference between the use of FIFO and LRU for selecting
which objects to remove from the sliding window.

In Figures 3(a) and 3(b), the accuracy of the Sliding Window strategy is high and almost equal to that achieved
by the Spatial2 strategy, and for smaller data sizes is at least 80%. This is significantly better than the Incremental
strategy, which at best only achieves a 60% accuracy. Both strategies, however, have a significant decrease in accuracy
as the number of objects increase, with less than 20% in the larger stream sizes. With an increase in sliding window
size, which is shown in Figures 3(c) and 3(d), improvements - significant ones early on, and more modest one with
larger stream sizes - are achieved by the Sliding Window strategy. However, again it must be noted that the Sliding
Window strategy performs almost as well as the Spatial2 strategy. Therefore, having a pre-determined spatial extent
from which objects are streamed from is not necessary, and comparable results are achieved.

With respect to running time (not shown due to space limitations), we see a significant increase in running time as
the size of the data streams increase. An unusual finding is that the Incremental strategy has an initial lower running
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Fig. 4. Varying Sliding Window Size vs. Accuracy

time over the other approaches - including the Sliding Window strategy - but results in a higher running time as the
number of objects increase. However, there is a local explanation for this. Since the Sliding Window strategy creates
CR initially with numob j(S W) objects, where the Incremental strategy only creates CR with two objects initially,
more processing is required by Sliding Window to process not rectangles initially. However, Sliding Window only
performs overlap checking afterwards, where Incremental must adjust CR numerous times. So for larger data sets,
Incremental would lead to higher processing times overall.

4.2.2. Varying Sliding Window Size

Figure 4 depicts the accuracy results for varying the size of the sliding window under specific data size conditions.
We can see that, the results show overall that for larger data sizes, the accuracy does improve as the size of the sliding
window increases, but overall the size of the dataset requires a larger sliding window size in order to achieve better
performance. We also see that there is little to no difference between the use of FIFO and LRU for selecting which
objects to remove from the sliding window.

We see similar trends to those found for varying the number of objects transmitted from the data streams. Specifi-
cally, we see that the Sliding Window Approach achieves accuracies that are similar to those obtained by the Spatial2
strategy, and that the Incremental strategy performs poorly. The only exception is for the larger sliding windows and
the 4000x4000 spatial stream join, where the Incremental strategy does achieve 80% accuracy.

With respect to running time (not shown due to space limitations), the running time increases as the size of the
sliding window increases. We also observe the same trends as above - that the Sliding Window strategy has a higher
running than the Incremental strategy for the smaller data set sizes but this is reversed as the dataset size and the
sliding window size increase. Although the window size is what is increasing here, similar reasoning applies as it did
for the varying dataset size. The Sliding Window strategy only processes CR once once numob j(S W) objects have
arrived, where the Incremental strategy must adjust CR numerous times, regardless of the window size.
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5. Conclusion

In this paper, two strategies are proposed for processing spatial joins in spatial data streams. The goals of both
strategies are: 1) to attempt to estimate the common spatial extent shared by both input spatial data streams so that
having the spatial extents in advance is no longer required, and 2) to reduce the number of objects that will participate
in a spatial join if there is no chance that an object will join with other objects. The first strategy, Sliding Window,
estimates the common region by using the first numob j(S W) objects that arrive from the spatial data streams. The
second strategy forms an initial common region from the first objects - one from each stream) that arrive, and grow
the common region incrementally as other objects that overlap the region arrive from the spatial data streams.

An experimental evaluation and comparison versus an existing approach that uses a pre-determined common region
shows that the Sliding Window approach significantly outperforms the Incremental approach, and achieves accuracies
that are equal to those achieved by the existing approach.

Future research directions include the following: 1) considering spatial data streams where the arrival times of
objects differ, and 2) comparing the strategies with larger spatial data streams and against the original progressive join
algorithm proposed by [11].
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