
Continuous k-Nearest Neighbour
Strategies Using the mqrtree

Wendy Osborn(B)

Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

wendy.osborn@uleth.ca

Abstract. In this paper, two strategies for processing a continuous k-
nearest neighbor query for location-based services are proposed. Both
use a spatial access method, the mqrtree, for locating a safe region.
The mqrtree supports searching within the structure, so searches from
the root are not required - a property which is exploited in the strate-
gies. However, the proposed strategies will work with most spatial access
methods. The strategies are evaluated and compared against a repeated
nearest neighbor search. It is shown that both approaches achieve sig-
nificant performance gains in reducing the number of times a new safe
region must be identified, in both random and exponentially distributed
points sets.

1 Introduction

A location-based service provides information to a user of a mobile device (e.g.
smartphone or tablet) based on their location, interests and the type of query
issued by the user [22]. One example of such a query is to find the nearest k
restaurants to the user. This query is referred to as a k-nearest neighbour (k-NN)
query. Another important aspect to processing queries for location-based services
is the aspect that the user is moving around as their query is being processed. As
the user moves, this affects the result for their query - in the above case, the k
nearest restaurants - and therefore this results needs to be continually updated.
Therefore, an efficient continuous k-nearest neighbour query processing strategy
is important, especially when the query is initiated from a mobile device [22].

Many strategies have been proposed that process nearest neighbour queries
for location-based services. Several utilize spatial access methods, including
[1,2,4,5,10,20,21,23]. In addition, several strategies have been proposed for pro-
cessing continuous k-nearest neighbour queries in static point sets, including
[3,7,8,11– 17,19]. These strategies have several limitations, including repeated
searching of a spatial access method, caching more data on the device than is
desired, requiring that safe regions - regions where a query remains valid when
it moves around - need to be constructed from scratch whenever a new one is
needed, and knowing the query trajectory in advance.

The mqrtree [18] is a spatial access method with desirable properties, includ-
ing two-dimensional nodes and the maintenance of spatial relationships between
c⃝ Springer Nature Switzerland AG 2019
L. Barolli et al. (Eds.): NBiS 2018, LNDECT 22, pp. 168–181, 2019.
https://doi.org/10.1007/978-3-319-98530-5_15



Continuous k-Nearest Neighbour Strategies Using the mqrtree 169

objects. This structure lends itself to continuous spatial query processing that
requires no repeated searching from the root, no requirement to know the tra-
jectory in advance, and no requirement to construct safe regions from scratch,
since potential ones exist in the index structure. The mqrtree has been applied to
process k-nearest neighbour queries [20], and preliminary results are promising.
However, when used to process a continuous k-nearest neighbour queries, many
adjacent queries produce the same results, which is undesirable and unnecessary.

There, this paper proposes two strategies for continuous k-nearest neigh-
bour processing that utilize an approximation-based spatial access method (e.g.
mqrtree). The strategies obtain safe regions from the spatial access method. In
addition, the strategies determine where to begin the search within the structure
for an updated safe region, when a new one is needed. An experimental evalu-
ation and comparison shows that the strategies significantly reduce the number
of new safe regions needed for processing a user trajectory of queries, and also
reduces the computation required for the employed k-nearest-neighbour strategy.

2 Background

This section presents some background relevant to the work to be proposed. An
overview of the mqrtree is provided here, along with a summary of its k-nearest
neighbour search strategy. More details on the mqrtree (including validity, inser-
tion, construction, and basic region searching algorithms) can be found in [18],
while details on the k-nearest neighbour search can be found in [20].

The mqrtree [18] is a approximation-based spatial access method that uses
two-dimensional nodes to organize objects in two-dimensional space. This allows
the existing spatial relationships to be maintained between objects and the
regions of space that contain them. After an object or point is inserted, a valid-
ity test is performed to ensure that all spatial relationships are maintained, and
any objects or regions that violate the spatial relationship rules are relocated.
In addition to traditional region searching and point searches, the features of
the mqrtree also allow it to support k-NN searching. A very nice feature of the
mqrtree that will lend itself nicely to k-NN searching is that zero overlap of
regions (on the same level of the tree) occurs when the mqrtree is used to solely
index point data [18].

Figure 1 presents an mqrtree for the given dataset. A node has the quadrants
NW, NE, SW and SE. Each node has a corresponding nodeMBR, which encom-
passes all objects, points and regions in the subtrees accessible from the node.
All objects and regions containing other objects, are placed in the appropriate
quadrant based on their relationship to the centroid of the nodeMBR. For exam-
ple, in the leaf node containing m1, m2 and p9, we observe that m1 is NW of
the centroid for the nodeMBR that contains it Similarly, m2 is SW and p9 is
NE of the centroid, respectively. Therefore, these objects are placed in the NW,
SW, and NE quadrants of the node, respectively. All nodes, including the root
node, are organized in this manner.

The mqrtree k-nearest neighbour search strategy [20] requires two steps: (1)
location of a candidate nodeMBR that leads to at least k points, which requires



170 W. Osborn

Fig. 1. mqrtree example [18]

a simple path search, and (2) a traversal of all nodes from that location in order
to obtain the corresponding set of points that reside in the nodeMBR. If the
obtained nodeMBR and point set contain a valid k-nearest neighbour result for
the query, then the search is stopped. Otherwise, this process is repeated at the
parent entry of the nodeMBR, until a suitable candidate is found. In the worst
case, the nodeMBR at the Root node may be chosen. However, studies show
that this case happens infrequently [20].

3 Continuous k-Nearest Neighbour Strategies

In this section, I propose two strategies for continuous k-nearest neighbour query
processing. First, the concept of a safe region will be presented, along with how
it can be obtained easily. Then, I propose two strategies - CKNN1 and CKNN2 -
that deal with decisions on what to do when safe regions are no longer valid. I will
first present the strategies respect to the mqrtree k-nearest neighbour strategy
proposed in [20]. After, the application to any existing spatial access method will
be discussed.

3.1 Safe Regions

Intuitively, a region of space is defined as a safe region if the query remains
in the region, as this guarantees that the query answer is valid. With respect



Continuous k-Nearest Neighbour Strategies Using the mqrtree 171

to a k-nearest neighbour query, if a query remains in the safe region, then the
current result (i.e. k nearest neighbours) remains valid. This work also utilizes the
concept of a safe region. However, whether or not a region of space is considered
safe will be determined differently than in other safe-region approaches. The
trade off is that existing minimum bounding rectangles within a spatial access
method can serve as safe regions.

Given a region (lx, ly, hx, hy), a query point q and the kth nearest neighbour
kq, a region of space is identified as a safe region if it meets the following criteria:

1. it contains at least k points, and
2. the distance between q and kq is less than or equal to the distance between

q and each side of (lx, ly, hx, hy):

dist(q, kq) < min(dist(q, lx), dist(q, hx), dist(q, ly), dist(q, hy))

Figure 2 depicts a valid and invalid safe region respectively for a 1-nearest
neighbour query. In Fig. 2a, the distance from the query point to the k point
(where k = 1) is less than all distances to the four sides of the region. Therefore,
this is a valid safe region for this query point. In Fig. 2b, the distance between
the query point and the kth point is greater than the distance to the north side
of the region. This means that there may be a closer nearest neighbour that
resides outside of the north side. Therefore, this region is not a safe region since
the query result is not guaranteed.

Fig. 2. Valid and invalid cases

To obtain a safe region, one approach is to construct a new one whenever
that is required. This can become costly if being created from scratch. Another
approach - and the one adopted for this work - is to utilize a data structure that
already contains pre-defined regions, in order to locate a suitable safe region.
A spatial access methods (i.e. spatial index) [6] is a hierarchical structure that
indexes regions of objects, and regions of regions, using minimum bounding rect-
angles. Therefore, a spatial access method is very suitable for obtaining candidate
safe regions that will support multiple queries along a user trajectory without
having to be updated.



172 W. Osborn

3.2 CKNN1 and CKNN2

I now present the two approaches for continuous k-nearest neighbour query
processing that utilize minimum bound rectangles (MBRs) from a hierarchi-
cal approximation spatial access method. For presentation purposes here, I
assume the use of the mqrtree [18] and its corresponding k-nearest neighbour
strategy [20].

The first strategy, called CKNN1, works as follows. First, for the first query
point p, an initial safe region and corresponding set of m points (where m>= k)
that reside within the safe region are identified using the k-nearest neighbour
strategy. For each subsequent query point along the user trajectory, it is handled
based on one of the following situations:

1. The safe region is still valid and is not the minimum bounding rectangle from
the root node of the mqrtree. There is nothing further that needs to be done
here until the next query arrives.

2. The safe region is still valid, but was derived from the minimum bounding
rectangle that corresponds to the root node. The search starts over again from
the root node for a new safe region and corresponding point set that contains
the k nearest neighbours. The reasons for handling this case in this manner
are the following. First, a safe region that corresponds to the root node will
have a corresponding set ofm>= k points that includes all points from within
the mqrtree. This can be up to thousands or millions of points, which most
mobile devices will not (likely) have the storage capacity to handle. Second,
and related, a safe region corresponding to the root node will always remain
valid and never result in a new safe region being sought, unless the situation
is forced. This will result in some additional processing cost, but the tradeoff
is that a more management safe region and set of points can be send to the
client.

3. The safe region is no longer valid. The search begins for a new safe region
(and corresponding point set) from the parent of the node from which the
safe region was derived. This approach is proposed in order to attempt to
optimize the k-nearest neighbour search by not having it begin at the root of
the mqrtree.

This strategy continues while query points are sent from the client and remain
within the general region of space covered by the mqrtree. Figure 3 depicts the
pseudocode for the CKNN1 strategy. This pseudocode utilizes the following func-
tions: (1) knn query(starting node, query point, safe region, result set), to find
and return a new safe region and points (i.e. result set) that reside in it, and (2)
node(region) to return the node that represents the region passed in.

The second proposed strategy, called CKNN2, is a simplified version of
CKNN1. It works as follows. An initial search for a safe region and correspond-
ing set of points that reside in the safe region is still carried out. Then, for each
subsequent query point along the user trajectory, it is handled in one of two
ways:



Continuous k-Nearest Neighbour Strategies Using the mqrtree 173

Fig. 3. First continuous k-NN search strategy - CKNN1

• The safe region is still valid and is not the minimum bounding rectangle from
the root node of the mqrtree. There is nothing further that needs to be done
here until the next query arrives.

• For all other cases, the search for a new safe region and corresponding point
set begin at the Root node.

The reason for proposing a simplified version of CKNN1 is to determine if start-
ing new searches from within the mqrtree structure, as opposed to returning to
the root, results in significant savings in computation.

3.3 Application to Other Spatial Access Methods

Although I assumed above that the mqrtree k-nearest neighbour strategy [20]
is the ad-hoc strategy of choice, both strategies will also work with other spa-
tial access methods that are hierarchical-based and utilize minimum bounding
rectangles for approximations of regions of points and regions that contain other
regions. The only requirement are: (1) a k-nearest neighbour strategy exist for



174 W. Osborn

a chosen spatial access method that can identify and return both a safe region
and a corresponding superset of points that reside in the safe region, and (2)
that pointers from all nodes (except the root) exist that point back to the par-
ent nodes. If these requirement are met, then the above strategies CKNN1 and
CKNN2 can be applied.

4 Evaluation

This section presents the empirical evaluation of the mqrtree-based k-NN strat-
egy, including a comparison against repeated k-nearest neighbour searching. I
first present the framework and evaluation methodology. Then, I will present the
outcome of the evaluation and the resulting discussion of the outcome.

4.1 Methodology

The mqrtree-based k-NN strategy is implemented in C on a PC running the
Centos 7 version of Linux. It was evaluated using several synthetic point sets for
both the data and the queries. These were chosen so that certain characteristics,
such as the number of points and distribution, could be controlled. Altogether, 18
points sets were used for the experiments. The first are 6 point sets of uniform
distribution, each of which 500, 1000, 5000, 10000, 50000, and 100000 points
respectively. Each set of n points is drawn from a two-dimensional region of
space of dimensions (

√
(n) ∗ 10)x(

√
(n) ∗ 10). For example, the points in the

1000-point set are drawn from a 310× 310 region.
Next are 6 point sets of exponential (i.e., skewed) distribution. Each also

contains the same number of points as the uniform datasets, and are drawn
from the same sized regions of space as the uniformly distributed sets. Finally,
there are 6 sets of query points. Each contain the square root of the number
of points of the data set they are applied to. For example, the query point set
corresponding to the 1000-point data sets contains 31 query points, while the
one corresponding to the 100000-point data set contains 316 query points. The
reason for this is because the query point set in each file represents a trajectory
that proceeds diagonally through the region of space that contains the points.

The two continuous strategies proposed above are evaluated by using the
mqr-based k-nearest neighbour strategy proposed in [20]. This strategy is also
employed for comparison against the two strategies by performing repeated
searching. This strategy was chosen for comparison due to promising perfor-
mance improvements shown in its preliminary evaluation. The expectation is
that using the continuous strategies with it will result in further performance
improvements.

The following tests are performed by applying the point query sets to their
respective point data sets, mentioned above:

• 1-NN, first continuous strategy. 12 tests, with 6 using the uniform point sets
and 6 using the exponential point sets.



Continuous k-Nearest Neighbour Strategies Using the mqrtree 175

• 1-NN, second continuous strategy. 12 tests, with 6 using the uniform point
sets and 6 using the exponential point sets.

• 1-NN, repeated individual search. 12 tests, with 6 using the uniform point
sets and 6 using the exponential point sets.

• k-NN (k = 1 to 10), first continuous strategy. 20 tests, with 10 using the
uniform 10000-point set and 10 using the exponential 10000 point set.

• k-NN (k = 1 to 10), second continuous. 20 tests, with 10 using the uniform
10000-point set and 10 using the exponential 10000 point set.

• k-NN (k = 1 to 10), repeated individual search. 20 tests, with 10 using the
uniform 10000-point set and 10 using the exponential 10000 point set.

For all tests, the following performance factors are recorded:

• The CPU time is recorded for each query. Two average times are calculated
and recorded: the average time over all queries, and the average time for
the queries that have less than 2µs CPU time. The reason for this will be
explained later.

• The number of queries that have less than 2µs CPU time.
• The number of pages hits. The number of page hits (i.e., nodes that are

checked) for each query is recorded.
• The number of queries with invalid tests over the trajectory. Tt is possible

that the initial set of candidate points that is fetched may not contain a valid
set of k nearest neighbours, due to other members of the true result being
outside of the corresponding superMBR. Therefore, the number of queries
that produce at least one invalid result during the search is recorded.

• The number of queries that traverse from the root. In [20] it is possible that
the chosen safe region corresponds to the root node, which means that the
entire spatial access method must be traversed.

In addition, for the tests that utilize the continuous query processing approaches,
the number of times a safe region remained valid when the next query point was
evaluated is also recorded. This is not specifically recorded for repeated k-nearest
neighbour searching, since all queries are executed from the beginning (i.e. Root).

4.2 Results

I first present the comparisons of most results across all of the performance
factors above, followed by a comparison of how the retention of safe regions over
many query points affect the number updates to the safe region that must be
performed. In all charts presented here: strat is the strategy applied (cknn1,
cknn2, knn is for repeated knn), k is the number of nearest neighbours #points
is the number of points in the data set, #queries is the number of queries,
max#phits is the number of page hits (i.e. node accesses) required by the worst
performing query point, avg#phits is the average number of page hits over all
queries, #valid is the number of times a safe region remained valid when one
or more subsequent query points arrived, #invalid is the number of queries that
had last least one invalid safe region generated during the search for a valid safe



176 W. Osborn

region (see [20] for more info), #root is the number of queries that ultimately
chose a safe region that corresponded to the root of the mqrtree, avgtime is the
average CPU time over all queries, #u2ms is the number of queries that required
less than 2µ of CPU time, and tu2ms is the average running time for the queries
that ran in less than 2µ.

Figures 1 and 2 present the results of the 1-nearest neighbour tests across all
uniform and exponential point sets, respectively. Due to space limitations, we
only present the results for 5000 to 100000 points. For the Uniform data sets, we
observe a significantly high percentage of times that safe regions remained valid
when subsequent queries were processed - from approximately 68% for queries in
the 500 point set, up to approximately 95% for queries in the 100000 point set. In
the Exponential data sets, we see similar trends, with the only exception being
for the exponential 500-point set. This number also contributes to improvements
in the number of queries that identified at least one invalid safe region during the
search for one is significantly lower in both CKNN1 and CKNN2, over repeated
knn searching.

We also see that for the Uniform data set, there exists no noticeable difference
between the average number of page accesses between CKNN1 and CKNN2,
although both have modest improvements over repeated knn searching. However,
a surprise is with the difference in the average number of pages accesses for the
Exponential data sets. The average for CKNN2 is actually lower than that for
CKNN1.

Finally, we see the high maximum number of page accesses for both the
Uniform and Exponential data sets. Although we observe a high number of
times that a safe region remains valid, unfortunately in some cases performing a
k-nearest neighbour query still incurs a high number of page hits. This does have
more to do with the k-nearest neighbour strategy chosen [20] than the proposed
approaches here.

Next, Figs. 3 and 4 present the results of the mqrtree-based k-NN tests on
both the 10000-point Uniform and Exponential point sets, respectively. Due to
space limitations, only the even nearest neighbour results (i.e. 2,4,6,8 and 10)
are shown. However, this subset still represents the outcome across all 10 cases.
Here, we can observe another surprising finding - that the number of nearest
neighbours does not affect the number of times a safe region remains valid when
subsequent queries are processed! In addition, although the number of queries
that find at least one invalid safe region does increase with k, the increase is
modest when compared to repeated k-nearest neighbour searching. Finally, the
trends with the average number of page hits found in the 1-nearest neighbour
tests (Tables 1 and 2) also exist here.

Finally, Figs. 4 and 5 depict the percentage of times that a new safe region is
needed due to it being no longer valid. As the number of points increases, this
percentage decreases - and is especially noticeable when compared to the 100%
that is required for repeated 1-nearest neighbour searching. Also, the number
of nearest neighbours does not affect the percentage of updates required to the



Continuous k-Nearest Neighbour Strategies Using the mqrtree 177

Table 1. 1-nn results - uniform distribution

#points #queries strat max#phits avg#phits #valid #invalid #root avgtime #u2ms tu2ms

5000 70 cknn1 3854 91.10 58 6 1 1.26 67 0.51

cknn2 3854 91.41 58 6 1 1.25 67 0.51

knn 3858 193.59 0 34 2 1.94 65 0.52

10000 100 cknn1 5759 157.23 87 4 2 3.26 96 0.52

cknn2 5759 157.56 87 4 2 3.28 96 0.52

knn 5759 199.63 0 38 2 3.30 96 0.56

50000 223 cknn1 28815 215.52 211 2 1 21.77 218 0.51

cknn2 28815 215.64 211 2 1 21.71 218 0.51

knn 28815 277.70 0 81 1 21.88 216 0.57

100000 316 cknn1 76980 403.92 301 9 1 63.10 309 0.50

cknn2 76980 404.05 301 9 1 62.60 309 0.50

knn 76980 531.31 0 136 1 63.58 299 0.53

Table 2. 1-nn results - exponential distribution

#points #queries strat max#phits avg#phits #valid #invalid #root avgtime #u2ms tu2ms

5000 70 cknn1 6626 630.50 51 14 8 5.08 59 0.50

cknn2 6627 553.14 48 15 8 4.63 60 0.50

knn 6627 993.74 0 39 13 7.79 53 0.51

10000 100 cknn1 13420 945.49 78 14 7 13.29 89 0.50

cknn2 13420 788.22 76 13 7 11.70 90 0.50

knn 13420 1061.04 0 50 8 14.90 87 0.51

50000 223 cknn1 69652 2597.97 198 17 6 165.65 212 0.50

cknn2 69652 2006.54 194 15 6 140.46 214 0.50

knn 69652 3114.56 0 115 7 209.86 210 0.54

100000 316 cknn1 137292 3173.13 296 14 5 410.00 305 0.50

cknn2 137292 2526.88 292 15 5 349.52 306 0.50

knn 137292 5761.48 0 171 7 788.15 286 0.56

safe region, and overall is significantly lower than required for repeated searching
(Tables 3 and 4).

4.3 Discussion

Overall, we observe some significant improvements in performance when a con-
tinuous k-nearest neighbour query processing strategy is used in conjunction
with a hierarchical approximation-based spatial access methods, and related k-
nearest neighbour algorithm. Notably, that identifying appropriate safe regions
from a spatial access method leads to significant savings in the number of times
a new safe region needs to be found, as well as significant savings in the number
of invalid attempts when trying to locate a safe region.

However, some surprising findings include a lower number of page hits in
Exponential data when using what would appear to be a less efficient algorithm.
CKNN2 restarts all searches for a new safe region from the root of the spatial



178 W. Osborn

Table 3. knn results - uniform distribution

k strat avg#phits max#phits #valid #invalid #root avgtime #u2ms tu2ms

2 cknn1 157.28 5759 87 9 2 3.27 96 0.52

cknn2 157.61 5759 87 10 2 3.26 96 0.52

knn 240.24 5759 0 88 2 3.45 95 0.59

4 cknn1 388.69 7713 84 26 5 8.56 93 0.52

cknn2 388.92 7713 84 26 5 8.51 93 0.52

knn 501.43 7713 0 120 5 8.80 91 0.60

6 cknn1 415.80 7713 88 36 5 8.66 93 0.52

cknn2 396.86 7713 88 32 5 8.56 93 0.52

knn 564.56 7713 0 144 5 9.12 89 0.65

8 cknn1 473.26 7713 88 34 6 10.32 92 0.52

cknn2 473.33 7713 88 34 6 10.25 92 0.52

knn 564.56 7713 0 144 5 9.12 89 0.65

10 cknn1 552.07 7713 84 40 7 12.87 91 0.52

cknn2 552.22 7713 84 40 7 12.88 91 0.52

knn 756.05 7713 0 142 7 13.47 86 0.67

Table 4. knn results - exponential distribution

k strat avg#phits max#phits #valid #invalid #root avgtime #u2ms tu2ms

2 cknn1 1014.65 13420 78 15 8 14.35 88 0.50

cknn2 857.36 13420 76 14 8 12.75 89 0.50

knn 1061.35 13420 0 53 8 14.82 87 0.51

4 cknn1 1273.40 13420 81 16 10 17.72 85 0.50

cknn2 1173.58 13420 81 15 10 16.77 86 0.50

knn 1598.87 13420 0 73 11 21.88 82 0.52

6 cknn1 1339.14 13420 80 17 11 18.77 84 0.50

cknn2 1239.32 13420 80 16 11 17.90 85 0.50

knn 2341.27 13420 0 73 19 32.89 73 0.52

8 cknn1 1738.94 13416 77 21 15 29.41 80 0.50

cknn2 1639.10 13416 77 20 15 23.45 81 0.50

knn 2679.39 13416 0 74 21 37.69 70 0.52

10 cknn1 1946.78 13416 74 24 18 27.55 77 0.50

cknn2 1846.94 13416 74 23 18 26.77 78 0.50

knn 3076.22 13416 0 76 24 44.15 64 0.52

access method, where CKNN1 starts this same search from the parent of the
node where the safe region came from. The problem lies in the fact that in the
Exponential data set, points are clustered around the positive x- and y-axes,
with very few elsewhere. When a search starts from the parent, a traversal to



Continuous k-Nearest Neighbour Strategies Using the mqrtree 179

Fig. 4. Required update to safe region - 1NN

Fig. 5. Required update to safe region - kNN

obtain a point set may result in an invalid point set right from the start, and
this search would proceed further up the tree in the same matter. Starting from
the root will allow for drill-down to a lower node before the traversing needs to
start. Therefore, this result is expected.

In addition, for the average CPU time it was noticeably lower for CKNN1
and CKNN2 than for repeated k-nearest neighbour searching. This is due to
the elimination of multiple repetitions of really costly searches. If one search
was costly but produced a safe region that was valid for several queries that



180 W. Osborn

followed, than these extra costly searches were successfully eliminated by the
proposed strategies.

5 Conclusion

This paper proposes two strategies for continuous k-nearest neighbour processing
that utilize an approximation-based spatial access method. The strategies obtain
safe regions - regions where a query remains valid when it moves around - from
the spatial access method. In addition, the strategies determine where to begin
the search within the structure for an updated safe region, when a new one
is needed. An experimental evaluation and comparison shows some significant
results. In particular, the number of new safe regions that are required is not more
than 20%, which result in other significant reductions in costs. In addition, the
number of nearest neighbours does not affect the performance of the strategies.

Some directions of future work include the following: (1) some optimizations
to both CKNN strategies and to the k-NN strategies in [20] have been identified
and can further improve performance, (2) using other spatial access methods,
such as the R-tree [9], and determining their performance in the proposed frame-
works, and (3) a comparison versus other strategies that must create safe regions
from scratch every time one is required.

References

1. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–
923 (1998)

2. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins using
R-trees. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD 1993, pp. 237–246. ACM, New York (1993)

3. Cheng, R., Lam, K.Y., Prabhakar, S., Liang, B.: An efficient location update mech-
anism for continuous queries over moving objects. Inf. Syst. 32(4), 593–620 (2007)

4. Friedman, J.H., Baskett, F., Shustek, L.J.: An algorithm for finding nearest neigh-
bors. IEEE Trans. Comput. 24(10), 1000–1006 (1975)

5. Fukunage, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)

6. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30, 170–231 (1998)

7. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial
databases. In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pp. 577–590. ACM (2009)

8. Gupta, M., Tu, M., Khan, L., Bastani, F., Yen, I.L.: A study of the model and
algorithms for handling location-dependent continuous queries. Know. Inf. Syst.
8(4), 414–437 (2005)

9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pp.
47–57 (1984)


