
Continuous Region Query Processing in the mqr-tree

Wendy Osborn
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta
T1K 3M4 Canada

wendy.osborn@uleth.ca

Abstract

This paper presents a novel approach for processing
continuous spatial region queries using the mqr-tree.
Previous approaches to this problem that utilize a
spatial index have several limitations, including signif-
icant caching of data on the client, knowing the user
trajectory in advance, sparse indices, and having to
perform repeated searching whenever the location of the
query region is updated. Taking advantage of desirable
properties of the mqr-tree, a continuous region query
strategy is proposed that does not require repeated
searching from the top of the index, and also does
not require the trajectory to be known in advance. I
evaluate this strategy against repeated searching, and
find that very significant savings are achieved with
respect to the number of disk accesses required to fetch
data. This results in a novel strategy that can be used
for location-based services.

keywords: continuous region queries, location-based
services, spatial access methods

1 Introduction

A location-based service provides results to a user
of a mobile device (e.g. smartphone, tablet) based on
their location, interests and the type of query being
performed [11]. One example of such a query is a region
query [10, 12]. A region query returns all points or
objects that overlap a query region. With respect to
location-based services, this can also be a region defined
around a user and their current location. For example,
a user may want to find all restaurants within a certain
region around them. However, as they move around,
the restaurants that would fall within this region will
change.

Therefore, an efficient continuous region query strat-
egy is important, especially when the query is initiated
from a mobile device [11]. Many strategies have been
proposed that can handle continuous region queries for

location-based services. Several utilize spatial access
methods [1], including [13, 14, 3, 5, 6, 9]. These
strategies have several limitations, including repeating
searching, caching more data on the device than is
desired, or knowing the query trajectory in advance.
The mqr-tree [7] is a spatial index with some desirable
properties, including two-dimensional node and the
maintenance of spatial relationships between objects.
This structure lends itself to continuous spatial query
process that achieves no repeated searching from the
top of the index and no requirement to know the
trajectory in advance.

In this paper, I propose a continuous query processing
strategy that utilized the mqr-tree. The strategy
is presented, followed by an evaluation of its server
performance. It is found that the proposed continuous
region query processing strategy significantly reduces
the number of disk accesses (i.e. page hits) that are
required to process a continuous region query, in both
randomly and exponentially distributed data.

This paper proceeds as follows. Sections 2 and
3 summarize related work and required background.
Section 4 presents and describes the continuous region
query strategy. Section 5 presents the methodology and
result of the performance evaluation. Finally, Section 6
conclude the paper and gives research directions.

2 Related Work

Many strategies have been proposed for processing
a continuous region query (see Ilarri et al. [4]). Since
my work resides in the area of strategies that utilize a
spatial index [1], I focus my summary on these works.
Some strategies that exist that utilize a spatial index,
use an R-tree [2] or a modified grid file [8].

Song and Roussopoulos [13] propose an approach
for continuous query processing that utilizes existing
stationary spatial query approaches (e.g. [10]) to obtain
a superset of m qualifying points, so that the result
stays current while the query point moves around. An

978-1-943436-05-7 / copyright ISCA, SEDE 2016
September 26-28, 2016, Denver, Colorado, USA

109

issue with this approach is in choosing an appropriate
value of m, so that fewer query calls are made but not
at the expense of significantly increased storage at the
client.

Tao et al. [14] propose a strategy that utilizes an
R-tree for speeding up searches. One limitation of
this approach is that “vertical” searching for new co-
ordinates must be performed repeatedly. Lee et al. [6]
improve upon this strategy by attempting to reduce the
number of required queries by fetching both required
and additional complementary objects. One issue
is that repeated searching is still required to obtain
enough complementary objects. An improvement was
also proposed by Park et al. [9] by proposing a “hori-
zontal” search for required objects along a trajectory.
Although their strategy is shown to be efficient when
spatial indexes are used, the entire trajectory must be
known in advance.

A caching strategy is proposed by Hu et al. [3] which
works for multiple spatial query types including region
and nearest neighbour. Their strategy uses caching of
previous query results and the R-tree nodes that lead
to them. The cached R-tree nodes are always searched
first, before fetching additional required objects from
the server. One issue is that the caching overhead and
local processing costs may be prohibitive.

Jung et al. [5] propose a continuous nearest neighbour
approach using a grid index. Every cell in the index
contains a minimum bounding rectangle (MBR), which
encompasses the points that are reference by the cell.
If a query region does not overlap the MBR, then none
of its points will either. One limitation is that many
portions of the index may be sparse.

One additional limitation of strategies that utilize
a spatial index is that, whenever a continuous query
result needs to be updated when the trajectory is not
known in advance, a brand new search of the index
needs to be initiated. The mqr-tree [7] is a spatial
index that has desirable properties, which can be used
to eliminate repeated searching but not require the
trajectory to be known in advance.

3 The mqr-tree

In this section, I summarize some features of the
mqr-tree that are required for this work. More details
on mqr-tree validity, insertion, construction, and basic
region searching algorithms can be found in [7].

The mqr-tree [7] is a spatial index that uses
two-dimensional nodes to organize objects in two-
dimensional space. This allows the existing spatial
relationships between objects - and regions containing
objects - to be maintained. After each insertion, a

Figure 1: mqrtree Example (from [7])

validity test ensures that all spatial relationships are
maintained. This feature also allows the mqr-tree to
support continuous region query processing.

Figure 1 depicts an mqr-tree structure for the given
dataset. Every node has the quadrants NW, NE, SW
and SE. There is also a CTR (i.e. centre) option, but is
omitted for clarity and brevity. Associated with every
node is a node MBR, which encompasses all objects and
regions in the subtrees accessible from the node. The
centroid of the node MBR aligns with the centre of the
node. All references to objects and regions are placed
in the appropriate quadrant based on their relationship
to the centroid of the node MBR. For example, if we
look at the leaf node containing m1,m2 and p9, we see
that m1 is NW of the centroid for the node MBR that
contains it, while m2 is SW and p9 is NE of the centroid
respectively. Therefore, the objects are placed in the
NW, SW, and NE quadrants, respectively, in the node.
The other leaf nodes, and the root node, are organized
in the same manner.

A region search is performed in the following manner.
Beginning at the root node, if an object overlaps the
query region, it is returned for the result. If a region
overlaps the query region, then the search proceeds in
the child node. This continues until all eligible paths
have been searched and/or no other objects or regions

110

t r a v e r s i n g = True
s t i l l c u r r e n t = Fal se

/∗ obta in f i r s t search r eg i on and i n i t i a l s t a r t i n g po int in mqrtree ∗/
s e a r ch r e g i on = ob t a i n s t a r t i n g r e g i o n () ;
node X = search (Root , s e a r ch r e g i on) ;

While t r a v e r s i n g = True
/∗ i s s earch with in bounded reg i on covered by cur rent node ?∗/
I f s e a r ch r e g i on with in node MBR(X)

/∗ i f i t i s the same node MBR as be fore , nothing to be done at t h i s point ,
otherwise , f i nd lowest descendent node MBR that conta in s s e a r ch r e g i on ∗/

I f s t i l l c u r r e n t = Fal se
X = find descendent node MBR (X)

End I f

/∗ i f s earch out s i d e cur rent reg ion , move to parent r eg i on i f e x i s t s .∗/
Else I f has parent node (X)

X = parent node (X)
s t i l l c u r r e n t = f a l s e
cont inue ; /∗ t h i s s tops a new updated reg i on query from being handled

un t i l a new cur rent node i s found above∗/

/∗ otherwise , ou t s i d e o f space covered by index , so terminate search ∗/
Else

Exit
End I f

//∗ obta in updated search r eg i on ∗/
s e a r ch r e g i on = updat e s ea r ch r eg i on ()

End While

Figure 2: Continuous Region Query Strategy

overlap the query region.

In order to use the mqr-tree, it must be constructed.
Constructing the mqr-tree may take anywhere from
a few seconds for 10,000 objects, up to almost two
minutes for 100,000 points, using repeated insertion of
objects. However, the mqr-tree does support insertion
and deletion operations, so changes to the data set can
be accommodated quickly and easily.

4 Continuous Region Query
Strategy

In this section, I present my continuous region query
strategy, which takes advantage of the two dimensional
nodes and spatial relationship management of the mqr-

tree. The continuous region query strategy moves
through the mqr-tree to update the query result on
the client (e.g. mobile device), which results in huge
savings with respect to the number of disk accesses (i.e.
page hits) that are required for fetching results for the
continuous query. I assume for this discussion that the
strategy takes place on both the server and the client,
although I am only evaluating the performance on the
server for this work.

The strategy begins with a regular region search on
the server, which identifies a node as a starting point
for continuous navigation in the mqr-tree, along with
the corresponding node MBR and a superset of objects
that reside in the node MBR for the query result. The
chosen node MBR serves as a super-region, where the
moving query region and its result can be updated on

111

the client and be considered valid, as long as the query
region remains inside of the super-region. This node
MBR and superset are sent to the client.

When the location of the query region changes, if
it is no longer fully contained within the super-region,
then it is sent to the server so that an updated super-
region and superset of objects can be found. However,
instead of initiating a brand new query on the server,
the update takes place by moving through the mqr-tree
from the previous identified node, to a new node that
contains the update query region. A new super-region
and superset of objects are sent to the client. This
process continues until the client stops the query, or
the query region no longer resides in the overall space
that is managed by the mqr-tree.

Figure 2 depicts the pseudocode for my strategy. At
any given time on the server, the strategy is in one of
several stages:

(1) The chosen tree node (and super-region and super-
set of objects) is still current on the client, and the
client has not indicated that an update is necessary.
Basically, nothing else happens at this point until
the client indicates one is needed.

(2) The super-region is no longer valid, as indicated
by the client. The client sends an updated query
region to the server. The search for a new node
(and super-region) begins at the last chosen node
and proceeds by going up the tree to an ancestor
node whose node MBR contains the query region.
This may require only visiting the parent of the
last chosen node, or it may require going up a few
levels, and in the worst case going all the way to
the root.

(3) A new initial node is found that contains the query
region, but there may be a descendent node that
fully encompasses the query region. The search
contains by proceeding down the tree until the
lowest descendent node is found that still contains
the query region. At this point, the subtree from
this node is traversed to obtain the superset of
objects, and the super-region and superset are then
sent to the client.

(4) The query region no longer fully resides in the
overall space that is indexed by the mqr-tree. The
search is terminated at this point.

It should be mentioned that, although it may be
possible at any point that the search must proceed all
the way back to the root, if the query region is corre-
sponding to someone moving around - in particular, on
foot - the location changes will likely be incremental and
therefore it will likely not be necessary in most cases to
have to proceed more than one or two levels up the tree.

5 Evaluation

In this section, I present the performance evaluation
of the server portion of my continuous region query
processing strategy. Using multiple query regions
that reside on a trajectory, my strategy is compared
to processing trajectories by repeated region query
searching using the mqr-tree. I chose to compare
my strategy in this way because the mqr-tree region
query processing strategy was found to outperform
that proposed for the R-tree [2], which is considered a
benchmark spatial index and used by several strategies
that are outlined in Section 2. I present the data and
methodology used for the evaluation, followed by a
discussion of the results.

The data used for this evaluation consist of both data
and trajectories of query regions. Beginning with data
sets, altogether, 40 data sets were used. They can be
grouped into 4 categories, with each category ranging
between 100 and 100,000 data items. The first category
consists of randomly distributed squares of size 10x10
units. The second consists of randomly distributed
points. The third consists of 10x10 squares that assume
a exponential (i.e. skewed) distribution. Finally, the
fourth consists of exponentially distributed points.

For each data set size (between 100 and 100,000),
there is a corresponding trajectory of 10x10 squares,
which will server as my continuous query regions.
There is a total of 10 files, with each file containing
10 ∗

√
datasetsize squares.

Overall, 40 tests were carried out. For each test,
an mqr-tree was constructed with a data set, then
its corresponding trajectory was processed twice. For
the first pass, the continuous region query processing
strategy was applied to it. For the second pass, the
trajectory was processed by performing a regular region
query on each square. The data that was recorded
for all tests was the total number of disk accesses (i.e
page hits) required to process the trajectory. From
this, I can also calculate the average number of disk
accesses required per query region. I assume the worst
case scenario that every time a node is accessed on the
server, a disk access is required. However, no processing
on the client adds to this cost.

I now present the results. Figures 3, 4 and 5
depict the total disk access results for the randomly
distributed objects, randomly distributed points and
exponentially distributed points. Figures 6, 7 and 8
depict the corresponding average disk access results.
We can see in all cases that the continuous region
query processing strategy for the mqr-tree significantly
outperforms the processing of multiple query regions
using repeated searching.

112

Figure 3: Randomly Distributed Objects

Figure 4: Randomly Distributed Point Data

Figure 5: Exponentially Distributed Point Data

Figure 6: Randomly Distributed Objects

Figure 7: Randomly Distributed Point Data

Figure 8: Exponentially Distributed Point Data

113

In particular, for the randomly distributed data sets,
the savings are very large. Although the savings in the
number of disk accesses are not as significant for the
exponentially distributed point set, at least 50% savings
is still achieved. With respect to the exponentially
distributed square data sets, the savings achieved by the
continuous strategy were so large that they did appear
on the chart when placed next to results of the other
approach, which is why they were left out of this paper.

6 Conclusion

The continuous region query strategy for the mqr-tree
achieves the elimination of both repeated searching and
the requirement of knowing the trajectory in advance.
The performance evaluation show that, on the server
side, significant savings are achieved in the number of
disk accesses that are required to process a continuous
region query.

Some future directions of research include the fol-
lowing. First, region queries that partially overlap
(but are not fully contained in the space indexed
by the mqr-tree) are not handled, and this must be
addressed. Second, further evaluation versus other
strategies (including ones that do not use an index) and
real-life data sets is required. Third, evaluation of both
the client side of our query processing strategy, and the
entire system as a hole, is required. In particular, the
execution time on the server, client and overall, must
be evaluated.

References

[1] V. Gaede and O. Günther. Multidimensional
access methods. ACM Computing Surveys, 30:170–
231, 1998.

[2] A. Guttman. R-trees: a dynamic index structure
for spatial searching. In Proc. ACM SIGMOD Int’l
Conf. Management of Data, pages 47–57, 1984.

[3] H. Hu, J. Xu, W.S. Wong, B. Zheng, D.L. Lee, and
W.-C. Lee. Proactive caching for spatial queries in
mobile environments. In Proc. 21st Int’t Conf. on
Data Engineering, 2005.

[4] S. Ilarri, E. Mena, and A. Illarramendi. Location-
dependent query processing: Where we are and
where we are heading. ACM Comput. Surv.,
42(3):12:1–12:73, March 2010.

[5] HR Jung, S.-W. Kang, MB Song, SJ Im, J Kim,
and C.-S. Hwang. Towards real-time processing
of monitoring continuous k-nearest neighbour
queries. In Proc. 2006 Int’l Conf. Frontiers of High
Performance Computing and Networking, 2006.

[6] K.C.K. Lee, W.-C. Lee, H.V. Leong, B. Unger,
and B. Zhang. Efficient valid scope computation
for location-dependent spatial queries in mobile
and wireless environments. In Proc. 3rd Int’l.
Conf. Ubiquitous Information Management and
Communication, 2009.

[7] M. Moreau and W. Osborn. mqr-tree: a two-
dimensional spatial access method. Journal for
Computer Science and Engineering, 15, 2012.

[8] J. Nievergelt, H. Hinterberger, and K. C. Sevcik.
The grid file: An adaptable, symmetric multikey
file structure. ACM Trans. Database Syst.,
9(1):38–71, March 1984.

[9] Y. Park, K. Bok, and J. Yoo. An efficient path
nearest neighbour query processing scheme for
location-based services. In Proc. 17th Int’l Conf.
Database Systems for Advanced Applications, 2012.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Near-
est neighbor queries. SIGMOD Rec., 24(2):71–79,
May 1995.

[11] Jochen H. Schiller and Agnès Voisard, editors.
Location-Based Services. Morgan Kaufmann, 2004.

[12] S. Shekhar and S. Chawla. Spatial Databases: A
Tour. Prentice Hall, 2003.

[13] Z. Song and N. Roussopoulos. K-nearest neighbor
search for moving query point. In Proc. 7th
Int’l Symp. on Advances in Spatial and Temporal
Databases, pages 79–96, 2001.

[14] Y. Tao, D. Papadias, and Q. Shen. Continuous
nearest neighbor search. In Proc. 28th Int’l Conf.
Very Large Data Bases, pages 287–298, 2002.

114

