
Multiple-Site Distributed Spatial Query
Optimization using Spatial Semijoins

Wendy OSBORNa,1, and Saad ZAAMOUTa
aDepartment of Mathematics and Computer Science, University of Lethbridge,

Lethbridge, Alberta T1K 3M4, Canada

Abstract. In this paper, we present our strategy for distributed spatial query opti-
mization that involves multiple sites. Previous work in thearea of distributed spatial
query processing and optimization focuses only on strategies for performing spa-
tial joins and spatial semijoins, and distributed spatial queries that only involve two
sites. We propose a strategy for optimizing a distributed spatial query using spatial
semijoins that can involve any number of sites in a distributed spatial database. In
this initial work we focus on minimizing the data transmission cost of a distributed
spatial query by identifying and initiating semijoins fromthe smaller relations in
order to reduce the larger relations and minimize the cost ofdata transmission. We
compare the performance of our strategy against the naïve approach of shipping
entire relations to the query site. We find that our strategy minimizes the data trans-
mission cost in all cases, and significantly in specific situations.

Keywords. Spatial data, distributed spatial queries, optimization,performance,
data transmission cost

1. Introduction

A distributed spatial database system [12] consists of several spatial database sites that
are dispersed geographically. Each site manages its own collection of spatial data, but
work collectively for processing inter-site data requirements. An important requirement
of a distributed spatial database is the ability to efficiently process a query that requires
spatial data from multiple sites. Historically, research in distributed relational databases
focused on generating query execution plans that minimizedthe cost of data transmission
over the network [3,4,11]. However, spatial data is more complex than alphanumeric
data. This increases the complexity of joining spatial relations. Therefore, CPU and I/O
costs should also be considered when processing a distributed spatial query [12].

Most existing strategies that process a distributed spatial query only work for two
sites. The one exception to this does not handle spatial joins. Therefore, this preliminary
work begins to address this shortcoming by propose a strategy for processing and opti-
mizing a distributed spatial query that handles more than two sites. Our strategy focuses
on minimizing the data transmission cost of a query by applying spatial semijoins in a
cost-effective manner. An evaluation of our strategy showsreduction in the data trans-
mission cost over the naïve approach (i.e. the approach thatinvolves shipping entire rela-
tions directly to the query site). In specific situations, this reduction in cost is significant.

1Corresponding Author



2. Background and Related Work

Most research in distributed spatial query processing focuses on spatial join algorithms,
spatial semijoins algorithms, and the use of Bloom filters for processing distributed spa-
tial queries. A spatial join [12] takes two relations R and S,each with a spatial attribute,
and relates pairs of tuples between R and S based on a spatial predicate that is applied
to the spatial attribute values. Examples of spatial predicates include the overlap, con-
tainment, and adjacency of two spatial attributes. A spatial semijoin [2] is performed by
projecting the spatial attribute from one relation, transmitting it to the site that contains
the other spatial relation, and performing a spatial join ofthe spatial projection and re-
lation. Then, the qualifying tuples from second site are shipped back to the first site and
joined with the spatial relation on that site. A Bloom filter [1] is a hashed bit array that
provides a compact but imprecise representation of the values of a joining attribute. A ’1’
bit represents the possible existence of a joining attribute value, while a ’0’ bit represents
the absence of the value.

With the exception of [6], all proposed strategies for processing distributed spatial
queries work for a two-site database only. We summarize these works below.

2.1. Spatial Join

A significant majority of spatial join algorithms are designed for a centralized system
[7]. This section focuses on spatial join strategies for distributed spatial queries.

Kang et al. [8] propose a parallel spatial join strategy thatis adapted to a distributed
spatial database environment. Their strategy has two phases: data redistribution, and fil-
ter and refinement. In the data redistribution phase, on eachsite, the space that contains
objects is partitioned into regions (i.e. buckets). A subset of regions is transmitted be-
tween servers so that each server has the same regions for both data sets. This subset is
chosen by estimating which will result in the lowest overallresponse time (although it
is unclear if I/O costs are considered). Then, the filter and refinement phase is carried
out on both sites by performing a spatial join. An experimental evaluation shows that
the parallel spatial join technique has a significantly faster response time – up to a 33%
improvement over a semijoin-based strategy.

2.2. Spatial Semijoin

Abel et al. [2,13] propose a spatial semijoin operator that combines the conventional
semijoin operator with the filter stage of spatial query processing in order to reduce the
data transmission, I/O and CPU costs. Their work explores two adaptations of the spa-
tial semijoin. In the first, a "projection" of a set of MBRs from one spatial relation is
transmitted to the second site and applied to the other relation using a spatial join. In
the second, the "projection" is a single-dimensional mapping that represents the objects
in each relation. A performance evaluation between these approaches shows that 1) for
datasets with very large spatial descriptions, both strategies perform the same, 2) for
datasets with smaller spatial descriptions, a semijoin that uses single-dimensional map-
ping works best, 3) using the R-tree for retrieving MBRs incurs significant CPU costs,
and 4) single-dimensional mapping causes more false drops than MBRs.

Karam and Petry [10] propose a spatial semijoin, which differs from [2,13] in that
MBRs from different levels of the R-tree are chosen for the spatial semijoin, instead of



requiring that all come from the same level. A performance evaluation shows that their
spatial semijoin outperforms the naïve spatial join (i.e. the whole relation is shipped to the
other site for joining) when applied to real world data, but not when applied to randomly
distributed rectangle sets. Limitation of their work are: 1) no comparison versus other
strategies, 2) no consideration of CPU time.

2.3. Bloom Filters

Karam [9] propose a 2-dimensional bit-matrix approach for performing a semijoin of
two relations that focuses on minimizing the data transmission, I/O and CPU costs. A
2-dimensional space is partitioned into equal-sized regions, with each region mapping to
a bit in a 2-dimensional array. If a region contains objects,the corresponding bit is set to
1. This bit-matrix is transmitted to the site containing theother relation, and is applied
by testing each region containing objects for the existenceof a ’1’ bit in the bit-matrix.
Any qualifying objects are sent to the first site. A performance evaluation shows that this
approach shows the best improvement when applied to real world data. Limitation of
this work are: 1) an evaluation against the spatial join, andnot versus a spatial semijoin,
which in functionality is a closer match to the bit-matrix approach, and 2) no compression
of the bit-matrix – a bit-matrix that contains many zeros is still transmitted in its entirety.

Hua et al. [6] propose the BR-tree, which is an R-tree that is augmented with Bloom
filters to support exact-match queries. Each node entry contains 1) a minimum bounding
rectangle (MBR) that approximates an object or a subset of objects, and 2) a Bloom
filter that also represents one or more objects. In a leaf node, a Bloom filter is created
by taking each object and producing k bits in the filter using different hash functions. In
a non-leaf node, a Bloom filter is created by intersecting theBloom filters in its child
node. Although the BR-tree supports exact-match queries byusing Bloom filters, it still
requires the MBRs for region and point queries. A strategy for processing distributed
region, point, and exact-match queries is proposed. The algorithm duplicates the root of
every BR-tree across every site in the database. Any objectsthat pass the test against a
root node is shipped to the site containing the original BR-tree. This strategy works for
any number of sites. A significant limitation is a lack of support for spatial joins.

3. Distributed Spatial Query Processing Strategy

In this section we present our algorithm for processing a distributed spatial query. The fo-
cus is to reduce the cost of data transmission over the network by using spatial semijoins.
In the future we will also consisder I/O and CPU costs.

3.1. Preliminaries

We apply spatial semijoins by shipping the smaller spatial attributes to other sites and
applying them to the larger relations in order to eliminate asignificant amount of data that
will not participate in the final result. We utilize a modifiedversion of the approximation-
based spatial semijoin that is proposed in [13].

In our implementation of the spatial semijoin, we use the following approach. We
have two sites R and S that each contain a spatial relation. First, we obtain the projection
of the spatial attribute from R. Then, the spatial relation is transferred to S and joined



with the spatial relation on S. Our semijoins differs after this point. Instead of sending
the qualifying tuples from S back to R for the final join, we send back to R the identifiers
from the spatial projection, which are used to select tuplesfrom the relation on R to ship
to the final query site. In addition, the tuples on site S that qualified in the semijoin are
also shipped to the query site. Using this semijoin strategyallows us to incorporate more
than two sites when processing a distributed query.

We make the following assumptions in our work:

1. Every spatial object is represented using its minimum bounding rectangle
(MBR).

2. Every site that participates in the distributed spatial query has one spatial relation.
If a site contains other relations that are required for the query, it is assumed that
all local processing has taken place and one spatial relations remains.

3. All spatial relations have one spatial attribute.
4. All objects (and corresponding MBRs) in all spatial attributes are drawn from the

same “spatial domain” (i.e. same region of space).
5. The cardinality of each spatial attribute is equal to the number MBRs in the rela-

tion. That is, we assume that all MBRs in a spatial attribute are distinct.
6. The number of sites participating in the distributed spatial query is a multiple of

two. The reason for this will be made clear when the algorithmis presented.
7. The spatial attribute for every spatial relation is already indexed by an R-tree (or

a similar index that places the minimum bounding rectanglesfor all objects in its
leaf level).

3.2. The Algorithm

Given n sites that will be participating in processing a distributed query, where each site
has one spatial relation, our strategy has four main steps:

1. Sorting and grouping by spatial attribute cardinality,
2. Transmission of spatial attributes,
3. Semijoin execution,
4. Transmission of qualifying tuples to query site for the final join and processing.

Each step is described next. First, the sites will be orderedby increasing spatial
attribute cardinality. After ordering, the firstn/2 sites of the ordered list are placed in a
set P, while the remainingn/2 sites are placed in a set Q.

Then, the spatial attribute from the relation on each site inP are transmitted to a site
in Q in the following manner:

• The attribute from the site with the smallest spatial cardinality in P is sent to the
site with the smallest spatial attribute in Q,

• The attribute from the site with the next smallest spatial cardinality in P is sent to
the site with the next smallest spatial attribute in Q,

• and so on... until,
• The attribute from the site with the largest spatial cardinality in P is sent to the

site with the largest spatial attribute in Q.

Next, on each site in Q, a spatial semijoin is performed between the existing spatial
relation and the spatial attribute sent from the corresponding site in P. The results of of



the semijoin are: 1) the set of tuples on the site that qualifyin the semijoin, and 2) a set
of identifiers from the spatial attribute whose MBRs also qualify in the semijoin. The set
of identifiers is sent back to the corresponding site in P.

Finally, for all sites in P, the tuples whose identifiers match the ones obtained from Q
are shipped to the query site. In addition, for each site in Q the set of tuples that qualified
in the semijoin are sent to the query site. At the query site, the final join is performed.

3.3. Example

Suppose we have a distributed spatial database with six sites. Each site contains a spatial
relation with 100, 200, 400, 600, 800, and 1000 tuples respectively. Our strategy for pro-
cessing a query that involves these sites proceeds as follows. First, our sites are ordered
by increasing spatial attribute cardinality. Then, the list is divided into the two sets. The
set P will contain the sites with the 100-, 200- and 400-tuplerelations, while the set Q
will contain the sites with the 600-, 800-, and 1000-tuple relations.

Next, the spatial attributes from the sites in set P are sent to sites in Q in the fol-
lowing manner. First, the spatial attribute from the site containing 100 tuples is sent to
the site that contains 600 tuples. Similarly, the spatial attribute from the 200-tuple sites
is set to the 800-tuple site, and the spatial attribute from the 400-tuple site is sent to the
1000-tuple site. Then, on the 600-, 800-, and 1000-tuple sites, a semijoin is performed
between the local spatial relation and the spatial attribute that was shipped to it. During
this process, the identifiers that correspond to the MBRs in the spatial attribute that qual-
ify for the semijoin are sent back to originating site. For example, on the 600-tuple site,
the identifiers for the qualifying MBRs are sent back to the 100-tuple site, and are used
to select the corresponding tuples. Finally, all qualifying tuples from all sites are shipped
to the query site.

4. Experimental Evaluation

Here, we present our empirical evaluation of our distributed query processing algorithm.
We compared our strategy for optimizing a distributed spatial query with the naïve ap-
proach which transfers all unreduced relations to the querysite. First, we present the data
sets and cost formulas used in our evaluation. Then, we present the results and discussion
of our tests.

We simulated a six-site distributed spatial database, where each site contains one
spatial relation. Each spatial relation has one spatial attribute, which consists of four val-
ues(lx, ly, hx, hy) that represent the extents of an MBR. In addition, each spatial rela-
tion has the following non-spatial attributes: identifier,region name, population and a line
slope indicator. Each spatial relation has 100, 200, 400, 600, 800 and 1000 tuples respec-
tively. We opted to use smaller relations for our experiments because of the preliminary
nature of the work and the use of a simulated (and not real) distributed environment.

4.1. Data Transmission Cost Calculation

In our experiments, we estimated the cost of data transmission as the total number of
bytes that are transmitted. We assume that the data transmission rate is constant and
therefore is not added to our calculations. In addition, we assume a integer size of two



bytes, a double-precision floating point size of eight bytes, a long integer size of 8 bytes
and a character size of one byte.

The various costs of data transmission are calculated in thefollowing manner. There
are several calculations required. First, the transmission cost for transmitting an MBR is
equal to the number of bytes used to represent an MBR:

cost (M B R) = 4 ∗ si zeof (double) + si zeof (int) (1)

which encompasses the co-ordinate values(lx, ly, hx, hy) and the tuple identifier. Sim-
ilarly, the cost for transmitting a tuple is:

cost (tuple) = si zeof (M B R) + 20∗ si zeof (char) + si zeof (longint)
+si zeof (int)

(2)

which encompasses the region name, population and line slope indicator. In addition,
1) the cost of transmitting an identifier back to the originalsite from which it came
is cost (I D) = si zeof (int), and, 2) the functionnumber_of _quali f iers(relation)

returns the number of tuples from a relation that participate in the result of a spatial
semijoin operation.

Finally, given spatial attribute X from relation Y (i.e. site Y from the set P above)
that is shipped to relation Z (i.e. site Z from set Q above), the cost of processing the
spatial semijoin is:

cost (X, Y, Z) = number_of _tuples(Y ) ∗ cost (M B R)

+number_of _quali f iers(X) ∗ (cost (I D) + cost (tuple))
+number_of _quali f iers(Z) ∗ cost (tuple)

(3)

The first term is the cost of transmitting the spatial attribute X from site Y to site Z. The
second term is the cost of both transmitting back to Y the corresponding tuple identifiers
for the qualifying MBRs in X, and then transmitting the tuples that correspond to those
tuple identifiers to the query site. Finally, the third term is the cost of transmitting quali-
fying tuples from Z to the query site. This cost is calculatedfor every pair (Y,Z) of sites
that are involved in the query, with all costs summed together to obtain the total cost of
the query.

4.2. Two-Site Query Test

The first set of tests we performed are for distributed queries that involve two sites. Table
1 shows the pairs of relations (i.e. sites) that were evaluated, along with the total cost (in
bytes) of both our optimized strategy (column Optimized) and the naïve approach (col-
umn Naïve). We opted to report the cost of data transmission in bytes so that determining
the number of physical disk blocks in a page of secondary storage would not be required
at this point.

In all cases, our strategy results in a lower data transmission cost over the naïve
approach. In particular, the most significant improvement is achieved when there exists
a significant difference in the size of the spatial relationsbetween the two sites. For
example, when the query involves the sites that contain the 100- and 1000-tuple spatial
relations, we have almost 80% less data that is being transmitted when our strategy is
being used to process the query.



Table 1. Two-Site Query Test

Site 1 Site 2 Optimized Naïve %Improvement

100 400 16010 32000 50

100 600 16270 44800 64

100 800 15750 57600 73

100 1000 14580 70400 79

200 400 32150 38400 17

200 600 31760 51200 38

200 800 32020 64000 50

200 1000 31890 76800 59

Table 2. Four-Site Query Test

Site 1 Site 2 Site 3 Site 4 Optimized Naïve %Improvement

100 200 400 600 52264 83200 37

100 200 800 1000 53410 134400 60

400 600 800 1000 162604 172900 6

4.3. Four-Site Query Test

For our second set of tests, we compared the evaluation of thestrategies for four-site
queries. Table 2 shows the sites involved and the total costsin bytes from both strategies.
Again, we find that our strategy outperforms the naïve approach. In addition, we also
find that in the situation where a significant size differenceexists between the relations -
in this case, 100, 200, 800, and 1000 tuples - the greatest improvement is achieved.

4.4. Six-Site Query Test

Finally, we performed one test that compares our strategy with the naïve approach when
all six sites are involved. We found the transmission cost from the query optimization
strategy to be 127,456 bytes and that from the naïve strategyto be 198,400. This gives
an improvement of approximately 36%.

4.5. Discussion

In all cases, we discovered a lower data transmission cost from our strategy over the naïve
approach. In addition, we discovered the following trends.First, the queries with the
largest difference in the number of tuples between the participating relations, the greater
the reduction that our strategy achieves. Second, we discovered that as the difference in
the number of tuples between participating relations increases, the improvement that our
strategy achieves increases as well.

5. Conclusion and Future Work

In this paper, we propose a strategy for optimizing queries in a distributed spatial
database that involves relations on multiple sites. Our strategy focuses on minimizing
the cost of data transmission by applying spatial semijoins. Smaller spatial attributes are



chosen for transmission and application to larger relations so that overall data transmis-
sion costs are reduced. A empirical evaluation of our strategy against the naïve approach
shows that our strategy achieves a reduction in the data transmission cost in all cases. In
particular, as the size difference between relations increases, the savings achieved by our
strategy over the naïve strategy are very significant.

As mentioned, one important direction of future work that weare currently explor-
ing is the resulting I/O and CPU costs from our optimization strategy. It is important to
determine if the I/O and CPU costs are minimal or outweigh anybenefits of our strategy.
Other directions of future work include the following. One is to create a real distributed
database system with multiple sites, which will provides a means for better evaluation
of our strategy. Another is to evaluate the two-site versionof our strategy (i.e. when
only two sites are involved) versus other existing strategies. Although the focus of this
work was to extend the number of sites involved in a distributed spatial query, evaluat-
ing the efficiency of our algorithm in the two-site case versus existing strategies is also
important and would better identify if our strategy is superior in this situation. A final
research direction is to develop and evaluate other strategy for processing and optimizing
a distributed spatial query. As discussed, very limited work has been proposed, which
leads to many exciting opportunities for research in the area of distributed spatial query
processing.

References

[1] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,Communications of the ACM
13 (1970), 422–426.

[2] D.J. Abel, B.C. Ooi, K.-L. Tan, R. Power and J.X. Yu, Spatial join strategies in distributed spatial DBMS,
Proceedings of the 4th International Symposium on Advances in Spatial Databases, 1995.

[3] P.M.G. Apers, A.R. Hevner and S.B. Yao, Optimization algorithms for distributed queries,IEEE Trans-
actions on Software Engineering 9 (1983), 57–68.

[4] P. Bodorik, J.S. Riordon and J.S. Pyra, Deciding to correct distributed query processing,IEEE Transac-
tions on Knowledge and Data Engineering 4 1992, 348–357.

[5] T. Brinkhoff, H.-P. Kriegel and B. Seeger, Efficient processing of spatial joins using R-trees,Proceedings
of the 1993 ACM Sigmod International Conference on Managment of Data, New York, USA, pp. 237–
246, 1993.

[6] Y. Hua, B. Xiao and J. Wang, BR-Tree: a scalable prototypefor supporting multiple queries of multidi-
mensional data,IEEE Transactions on Computers 58 (2009), 1585–1597.

[7] E. Jacox and H. Samet, Spatial join techniques,ACM Transactions on Database Systems 34 (2007),
1–44.

[8] M.-S. Kang, S.-K. Ko, K. Koh and Y.-C. Choy, A parallel spatial join algorithm for distributed spatial
databases,Proceedings of the 5th International Conference on Flexible Query Answering Systems, pp.
212–225, 2002.

[9] O. Karam,Optimizing Distributed Spatial Joins using R-trees, Ph.D. Thesis, Tulane University, 2001.
[10] O. Karam and F. Petry, Optimizing distributed spatial joins using R-trees,Proceedings of the 43rd ACM

Southeast Regional Conference, pp. 222-226, 2006.
[11] M.T. Özsu and P. Valduriez,Principles of Distributed Database Systems, Springer, New York, 2011.
[12] S. Shekhar and S. Chawla,Spatial Databases: A Tour, Prentice Hall, New Jersey, 2003.
[13] K.-L. Tan, B.C. Ooi and D.J. Abel, Exploiting spatial indexes for semijoin-based join processing in

distributed spatial databases,IEEE Transactions on Knowledge and Data Engineering 12 (2000), 920–
937.


