Multiple-Site Distributed Spatial Query
Optimization using Spatial Semijoins

Wendy OSBORN!, and Saad ZAAMOUT

aDepartment of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, Alberta TIK 3M4, Canada

Abstract. In this paper, we present our strategy for distributed spatiery opti-
mization that involves multiple sites. Previous work in #rea of distributed spatial
query processing and optimization focuses only on strasefgir performing spa-
tial joins and spatial semijoins, and distributed spatignies that only involve two
sites. We propose a strategy for optimizing a distributestiabquery using spatial
semijoins that can involve any number of sites in a distedugpatial database. In
this initial work we focus on minimizing the data transméscost of a distributed
spatial query by identifying and initiating semijoins frattme smaller relations in
order to reduce the larger relations and minimize the codetd transmission. We
compare the performance of our strategy against the najpmagh of shipping
entire relations to the query site. We find that our strategyimizes the data trans-
mission cost in all cases, and significantly in specific situnes.

Keywords. Spatial data, distributed spatial queries, optimizatiparformance,
data transmission cost

1. Introduction

A distributed spatial database system [12] consists ofrakgpatial database sites that
are dispersed geographically. Each site manages its ovectioh of spatial data, but
work collectively for processing inter-site data requiksms. An important requirement
of a distributed spatial database is the ability to effidieptocess a query that requires
spatial data from multiple sites. Historically, reseanaidistributed relational databases
focused on generating query execution plans that minintizedost of data transmission
over the network [3,4,11]. However, spatial data is more glex than alphanumeric
data. This increases the complexity of joining spatialtretes. Therefore, CPU and I/O
costs should also be considered when processing a digtilspatial query [12].

Most existing strategies that process a distributed dpati@ry only work for two
sites. The one exception to this does not handle spatial.jdimerefore, this preliminary
work begins to address this shortcoming by propose a syrdtegrocessing and opti-
mizing a distributed spatial query that handles more thandites. Our strategy focuses
on minimizing the data transmission cost of a query by apyfydpatial semijoins in a
cost-effective manner. An evaluation of our strategy shoedsiction in the data trans-
mission cost over the naive approach (i.e. the approacimti@ves shipping entire rela-
tions directly to the query site). In specific situationss tieduction in cost is significant.

lCorresponding Author

2. Background and Related Work

Most research in distributed spatial query processinggeswn spatial join algorithms,
spatial semijoins algorithms, and the use of Bloom filterpimcessing distributed spa-
tial queries. A spatial join [12] takes two relations R ané&ch with a spatial attribute,
and relates pairs of tuples between R and S based on a spatiitate that is applied
to the spatial attribute values. Examples of spatial pegéi include the overlap, con-
tainment, and adjacency of two spatial attributes. A spaémijoin [2] is performed by
projecting the spatial attribute from one relation, traitsny it to the site that contains
the other spatial relation, and performing a spatial joithaf spatial projection and re-
lation. Then, the qualifying tuples from second site ar@phd back to the first site and
joined with the spatial relation on that site. A Bloom filtd] js a hashed bit array that
provides a compact but imprecise representation of theegadfia joining attribute. A’1’
bit represents the possible existence of a joining atteibatue, while a ’0’ bit represents
the absence of the value.

With the exception of [6], all proposed strategies for pssirg distributed spatial
queries work for a two-site database only. We summarizestihesks below.

2.1. Spatial Join

A significant majority of spatial join algorithms are desgghfor a centralized system
[7]. This section focuses on spatial join strategies fotritigted spatial queries.

Kang et al. [8] propose a parallel spatial join strategy thaidapted to a distributed
spatial database environment. Their strategy has two phdata redistribution, and fil-
ter and refinement. In the data redistribution phase, on sigehthe space that contains
objects is partitioned into regions (i.e. buckets). A stiligeegions is transmitted be-
tween servers so that each server has the same regions ffiodédtat sets. This subset is
chosen by estimating which will result in the lowest overakponse time (although it
is unclear if I/O costs are considered). Then, the filter aafthement phase is carried
out on both sites by performing a spatial join. An experina¢evaluation shows that
the parallel spatial join technique has a significantlydastsponse time — up to a 33%
improvement over a semijoin-based strategy.

2.2. Spatial Semijoin

Abel et al. [2,13] propose a spatial semijoin operator that combinesctinventional
semijoin operator with the filter stage of spatial query gsging in order to reduce the
data transmission, I/0O and CPU costs. Their work exploresadaptations of the spa-
tial semijoin. In the first, a "projection” of a set of MBRs froone spatial relation is
transmitted to the second site and applied to the otheriwalatsing a spatial join. In
the second, the "projection” is a single-dimensional magphat represents the objects
in each relation. A performance evaluation between thepeoaghes shows that 1) for
datasets with very large spatial descriptions, both graseperform the same, 2) for
datasets with smaller spatial descriptions, a semijoibhubas single-dimensional map-
ping works best, 3) using the R-tree for retrieving MBRs irscsignificant CPU costs,
and 4) single-dimensional mapping causes more false dnajpsMIBRs.
Karam and Petry [10] propose a spatial semijoin, which diffeom [2,13] in that

MBRs from different levels of the R-tree are chosen for thatsyh semijoin, instead of

requiring that all come from the same level. A performanca@ation shows that their
spatial semijoin outperforms the naive spatial join (he.whole relation is shipped to the
other site for joining) when applied to real world data, bat when applied to randomly
distributed rectangle sets. Limitation of their work arg:nb comparison versus other
strategies, 2) no consideration of CPU time.

2.3. BloomFilters

Karam [9] propose a 2-dimensional bit-matrix approach ferf@rming a semijoin of
two relations that focuses on minimizing the data transimisd/O and CPU costs. A
2-dimensional space is partitioned into equal-sized regiwith each region mapping to
a bitin a 2-dimensional array. If a region contains objeitts,corresponding bit is set to
1. This bit-matrix is transmitted to the site containing tither relation, and is applied
by testing each region containing objects for the existarice’1’ bit in the bit-matrix.
Any qualifying objects are sent to the first site. A perforroaevaluation shows that this
approach shows the best improvement when applied to redtiwlata. Limitation of
this work are: 1) an evaluation against the spatial join, motdversus a spatial semijoin,
which in functionality is a closer match to the bit-matrixapach, and 2) no compression
of the bit-matrix — a bit-matrix that contains many zerogit sansmitted in its entirety.

Hua et al. [6] propose the BR-tree, which is an R-tree thatiggr@ented with Bloom
filters to support exact-match queries. Each node entraiogil) a minimum bounding
rectangle (MBR) that approximates an object or a subset jgfctd) and 2) a Bloom
filter that also represents one or more objects. In a leaf n@d&doom filter is created
by taking each object and producing k bits in the filter usiiffgcent hash functions. In
a non-leaf node, a Bloom filter is created by intersectingBleom filters in its child
node. Although the BR-tree supports exact-match queriashg Bloom filters, it still
requires the MBRs for region and point queries. A strategypimcessing distributed
region, point, and exact-match queries is proposed. Tharighgn duplicates the root of
every BR-tree across every site in the database. Any objeatass the test against a
root node is shipped to the site containing the original Bf-t This strategy works for
any number of sites. A significant limitation is a lack of sopgfor spatial joins.

3. Distributed Spatial Query Processing Strategy

In this section we present our algorithm for processing tibisted spatial query. The fo-
cus is to reduce the cost of data transmission over the nktwousing spatial semijoins.
In the future we will also consisder 1/0 and CPU costs.

3.1. Preiminaries

We apply spatial semijoins by shipping the smaller spatitiibaites to other sites and
applying them to the larger relations in order to eliminasggmificant amount of data that
will not participate in the final result. We utilize a modifigdrsion of the approximation-
based spatial semijoin that is proposed in [13].

In our implementation of the spatial semijoin, we use théofeing approach. We
have two sites R and S that each contain a spatial relaticst, e obtain the projection
of the spatial attribute from R. Then, the spatial relatistransferred to S and joined

with the spatial relation on S. Our semijoins differs afteistpoint. Instead of sending
the qualifying tuples from S back to R for the final join, we ddrack to R the identifiers
from the spatial projection, which are used to select tufstas the relation on R to ship
to the final query site. In addition, the tuples on site S thetlifjed in the semijoin are
also shipped to the query site. Using this semijoin strasglgyvs us to incorporate more
than two sites when processing a distributed query.

We make the following assumptions in our work:

1. Every spatial object is represented using its minimumnioing rectangle
(MBR).

2. Every site that participates in the distributed spatiedig has one spatial relation.
If a site contains other relations that are required for thery, it is assumed that
all local processing has taken place and one spatial rakatEmains.

3. All spatial relations have one spatial attribute.

4. All objects (and corresponding MBRS) in all spatial &itites are drawn from the
same “spatial domain” (i.e. same region of space).

5. The cardinality of each spatial attribute is equal to tamber MBRs in the rela-
tion. That is, we assume that all MBRs in a spatial attribugedistinct.

6. The number of sites participating in the distributed spaguery is a multiple of
two. The reason for this will be made clear when the algorithpresented.

7. The spatial attribute for every spatial relation is atheadexed by an R-tree (or
a similar index that places the minimum bounding rectanigleall objects in its
leaf level).

3.2. The Algorithm

Given n sites that will be participating in processing arilisited query, where each site
has one spatial relation, our strategy has four main steps:

1. Sorting and grouping by spatial attribute cardinality,

2. Transmission of spatial attributes,

3. Semijoin execution,

4. Transmission of qualifying tuples to query site for thefijpin and processing.

Each step is described next. First, the sites will be ordéseihcreasing spatial
attribute cardinality. After ordering, the first/2 sites of the ordered list are placed in a
set P, while the remainingy/2 sites are placed in a set Q.

Then, the spatial attribute from the relation on each site are transmitted to a site
in Q in the following manner:

e The attribute from the site with the smallest spatial caatiip in P is sent to the
site with the smallest spatial attribute in Q,

e The attribute from the site with the next smallest spatiaticelity in P is sent to
the site with the next smallest spatial attribute in Q,

e and so on... until,

e The attribute from the site with the largest spatial cartifypan P is sent to the
site with the largest spatial attribute in Q.

Next, on each site in Q, a spatial semijoin is performed betwtbe existing spatial
relation and the spatial attribute sent from the correspansite in P. The results of of

the semijoin are: 1) the set of tuples on the site that qualitiie semijoin, and 2) a set
of identifiers from the spatial attribute whose MBRs alsolify&n the semijoin. The set
of identifiers is sent back to the corresponding site in P.

Finally, for all sites in P, the tuples whose identifiers nhatee ones obtained from Q
are shipped to the query site. In addition, for each site ih€xet of tuples that qualified
in the semijoin are sent to the query site. At the query dite final join is performed.

3.3. Example

Suppose we have a distributed spatial database with s& Eeh site contains a spatial
relation with 100, 200, 400, 600, 800, and 1000 tuples respmdy. Our strategy for pro-
cessing a query that involves these sites proceeds as ®lkivst, our sites are ordered
by increasing spatial attribute cardinality. Then, theiBdivided into the two sets. The
set P will contain the sites with the 100-, 200- and 400-tuplations, while the set Q
will contain the sites with the 600-, 800-, and 1000-tuplatiens.

Next, the spatial attributes from the sites in set P are sesités in Q in the fol-
lowing manner. First, the spatial attribute from the sitateining 100 tuples is sent to
the site that contains 600 tuples. Similarly, the spati@itatte from the 200-tuple sites
is set to the 800-tuple site, and the spatial attribute frioen400-tuple site is sent to the
1000-tuple site. Then, on the 600-, 800-, and 1000-tupds sé semijoin is performed
between the local spatial relation and the spatial atteiliat was shipped to it. During
this process, the identifiers that correspond to the MBRi@rspatial attribute that qual-
ify for the semijoin are sent back to originating site. Foample, on the 600-tuple site,
the identifiers for the qualifying MBRs are sent back to th8-tlple site, and are used
to select the corresponding tuples. Finally, all qualifyinples from all sites are shipped
to the query site.

4. Experimental Evaluation

Here, we present our empirical evaluation of our distribgaery processing algorithm.
We compared our strategy for optimizing a distributed spajuery with the naive ap-
proach which transfers all unreduced relations to the gsiéey First, we present the data
sets and cost formulas used in our evaluation. Then, weprgszresults and discussion
of our tests.

We simulated a six-site distributed spatial database, evkach site contains one
spatial relation. Each spatial relation has one spatigbate, which consists of four val-
ues(lx, ly, hx, hy) that represent the extents of an MBR. In addition, each alpalia-
tion has the following non-spatial attributes: identifiegion name, population and a line
slope indicator. Each spatial relation has 100, 200, 400, 800 and 1000 tuples respec-
tively. We opted to use smaller relations for our experirsdrgcause of the preliminary
nature of the work and the use of a simulated (and not redbjlaised environment.

4.1. Data Transmission Cost Calculation
In our experiments, we estimated the cost of data transomiss$ the total number of

bytes that are transmitted. We assume that the data trasiemisate is constant and
therefore is not added to our calculations. In addition, s®&uane a integer size of two

bytes, a double-precision floating point size of eight byéeeng integer size of 8 bytes
and a character size of one byte.

The various costs of data transmission are calculated ifotlesving manner. There
are several calculations required. First, the transmissst for transmitting an MBR is
equal to the number of bytes used to represent an MBR:

cost(MBR) = 4 « si zeof (doubl e) + si zeof (int) (2)

which encompasses the co-ordinate val{igsly, hx, hy) and the tuple identifier. Sim-
ilarly, the cost for transmitting a tuple is:

cost (tuple) = sizeof (MBR) + 20« si zeof (char) + si zeof (Iongint) @
+si zeof (i nt)

which encompasses the region name, population and line shalicator. In addition,
1) the cost of transmitting an identifier back to the origisdé from which it came
is cost (1 D) = sizeof (int), and, 2) the functiomumber_of qualifiers(relation)
returns the number of tuples from a relation that parti@pat the result of a spatial
semijoin operation.

Finally, given spatial attribute X from relation Y (i.e. sitY from the set P above)
that is shipped to relation Z (i.e. site Z from set Q aboveg, tbst of processing the
spatial semijoin is:

cost(X,Y, Z) = number _of _tuples(Y) * cost(MBR)
+number _of _qualifiers(X) = (cost(l D) + cost (tuple)) (3)
+number_of _qualifiers(Z) = cost(tuple)

The first term is the cost of transmitting the spatial atti@o) from site Y to site Z. The
second term is the cost of both transmitting back to Y theesponding tuple identifiers
for the qualifying MBRs in X, and then transmitting the tupklat correspond to those
tuple identifiers to the query site. Finally, the third tesrthe cost of transmitting quali-
fying tuples from Z to the query site. This cost is calculaf@devery pair (Y,Z) of sites
that are involved in the query, with all costs summed togetihebtain the total cost of
the query.

4.2. Two-Site Query Test

The first set of tests we performed are for distributed qsdtiat involve two sites. Table
1 shows the pairs of relations (i.e. sites) that were evatlialong with the total cost (in
bytes) of both our optimized strategy (column Optimized) #me naive approach (col-
umn Naive). We opted to report the cost of data transmissibgties so that determining
the number of physical disk blocks in a page of secondarag®would not be required
at this point.

In all cases, our strategy results in a lower data transomssost over the naive
approach. In particular, the most significant improvemsraidhieved when there exists
a significant difference in the size of the spatial relatibesween the two sites. For
example, when the query involves the sites that contain @®e 4nd 1000-tuple spatial
relations, we have almost 80% less data that is being trateshwhen our strategy is
being used to process the query.

Table 1. Two-Site Query Test

Sitel Site2 Optimized Naive %Improvement

100 400 16010 32000 50
100 600 16270 44800 64
100 800 15750 57600 73
100 1000 14580 70400 79
200 400 32150 38400 17
200 600 31760 51200 38
200 800 32020 64000 50
200 1000 31890 76800 59

Table 2. Four-Site Query Test

Sitel Site2 Site3 Site4 Optimized Naive %Improvement

100 200 400 600 52264 83200 37
100 200 800 1000 53410 134400 60
400 600 800 1000 162604 172900 6

4.3. Four-Ste Query Test

For our second set of tests, we compared the evaluation dftthtegies for four-site
queries. Table 2 shows the sites involved and the total aobtges from both strategies.
Again, we find that our strategy outperforms the naive apgroln addition, we also
find that in the situation where a significant size differeexists between the relations -
in this case, 100, 200, 800, and 1000 tuples - the greatespuament is achieved.

4.4, Sx-Ste Query Test

Finally, we performed one test that compares our strateg}y the naive approach when
all six sites are involved. We found the transmission casitnfthe query optimization

strategy to be 127,456 bytes and that from the naive strateg 198,400. This gives
an improvement of approximately 36%.

4.5, Discussion

In all cases, we discovered a lower data transmission aastdur strategy over the naive
approach. In addition, we discovered the following trerfsst, the queries with the
largest difference in the number of tuples between the @pdiing relations, the greater
the reduction that our strategy achieves. Second, we disedithat as the difference in
the number of tuples between participating relations iases, the improvement that our
strategy achieves increases as well.

5. Conclusion and Future Work
In this paper, we propose a strategy for optimizing queries idistributed spatial

database that involves relations on multiple sites. Oateyy focuses on minimizing
the cost of data transmission by applying spatial semijénsaller spatial attributes are

chosen for transmission and application to larger relat®mthat overall data transmis-
sion costs are reduced. A empirical evaluation of our sisaggainst the naive approach
shows that our strategy achieves a reduction in the datartrigsion cost in all cases. In
particular, as the size difference between relations as®s, the savings achieved by our
strategy over the naive strategy are very significant.

As mentioned, one important direction of future work thatave currently explor-
ing is the resulting I/O and CPU costs from our optimizatitmategy. It is important to
determine if the I/O and CPU costs are minimal or outweighlzaryefits of our strategy.
Other directions of future work include the following. Oreeto create a real distributed
database system with multiple sites, which will provideseans for better evaluation
of our strategy. Another is to evaluate the two-site versibrour strategy (i.e. when
only two sites are involved) versus other existing strategAlthough the focus of this
work was to extend the number of sites involved in a distedugpatial query, evaluat-
ing the efficiency of our algorithm in the two-site case versuisting strategies is also
important and would better identify if our strategy is supein this situation. A final
research direction is to develop and evaluate other syydtegrocessing and optimizing
a distributed spatial query. As discussed, very limitedkmMoas been proposed, which
leads to many exciting opportunities for research in tha afedistributed spatial query
processing.

References

[1] B.H. Bloom, Space/time trade-offs in hash coding witlowhble errorsCommunications of the ACM
13(1970), 422-426.

[2] D.J.Abel, B.C. Ooi, K.-L. Tan, R. Power and J.X. Yu, Spéjdin strategies in distributed spatial DBMS,
Proceedings of the 4th International Symposium on Advances in Spatial Databases, 1995.

[3] P.M.G. Apers, A.R. Hevner and S.B. Yao, Optimizationalthms for distributed querie$EEE Trans-
actions on Software Engineering 9 (1983), 57-68.

[4] P.Bodorik, J.S. Riordon and J.S. Pyra, Deciding to adrdéstributed query processint;EE Transac-
tions on Knowledge and Data Engineering 4 1992, 348-357.

[5] T.Brinkhoff, H.-P. Kriegel and B. Seeger, Efficient pessing of spatial joins using R-tre€spceedings
of the 1993 ACM Sigmod International Conference on Managment of Data, New York, USA, pp. 237—
246, 1993.

[6] Y. Hua, B. Xiao and J. Wang, BR-Tree: a scalable prototigzesupporting multiple queries of multidi-
mensional datd EEE Transactions on Computers 58 (2009), 1585-1597.

[7] E. Jacox and H. Samet, Spatial join techniqué&M Transactions on Database Systems 34 (2007),
1-44.

[8] M.-S. Kang, S.-K. Ko, K. Koh and Y.-C. Choy, A parallel $ighjoin algorithm for distributed spatial
databasesProceedings of the 5th International Conference on Flexible Query Answering Systems, pp.
212-225, 2002.

[9] O. Karam,Optimizing Distributed Spatial Joins using R-trees, Ph.D. Thesis, Tulane University, 2001.

[10] O. Karam and F. Petry, Optimizing distributed spatih$ using R-treeRroceedings of the 43rd ACM
Southeast Regional Conference, pp. 222-226, 2006.

[11] M.T. Ozsu and P. ValduriePrinciples of Distributed Database Systems, Springer, New York, 2011.

[12] S. Shekhar and S. Chawlgpatial Databases: A Tour, Prentice Hall, New Jersey, 2003.

[13] K.-L. Tan, B.C. Ooi and D.J. Abel, Exploiting spatialdexes for semijoin-based join processing in
distributed spatial databaséEEE Transactions on Knowledge and Data Engineering 12 (2000), 920—
937.

