707

Distributed query optimization using reduction filters.

J.M. Morrissey, W.K. Osborn

School of Computer Science
University of Windsor
Windsor, Ontario
Canada N9B 3P4

Abstract
queries in a distributed database management

The optimization of general

system is an important research topic. The
difficulty is to select the database operations
which will process the query and minimize
costs. Traditional solutions include the use of
heuristic strategies based on semijoin or join
operations. Here, we present an approach
for general queries which uses reduction fil-
ters, which are based on Bloom filters, to
minimize data transfers and reduce local pro-
cessing costs. We discuss related work and
present our algorithm — illustrating it with a
simple example. The paper ends with a brief

discussion of current and future work.

Related Work
scribed in [1], and have mostly been used

Bloom filters are first de-

to improve the relational join operation [2,
3, 4, 5, 6].
plied to other relational operations [7, 8, 9]
Mullin
[11, 12] employs Bloom filters to improve

Bloom filters have been ap-

and file processing operations [10].

the semijoin operation. His method is lim-
ited to the case where there are only two sites
involved in the query and it has not been ex-
panded to cater for general queries. Tseng

and Chen [13] present a new relational op-

0-7803-4314-X/98/$10©19981EEE

erator called a hash-semijoin. They propose
a method which will transform a sequence of
semijoins, produced by any existing semijoin-
based algorithm, into a more cost effective
sequence by replacing some of the semijoins
by hash-semijoins. But their approach has
not been experimentally evaluated. In [14]
we presented and evaluated a reduction filter
algorithm, comparing its performance with a
traditional semijoin-based algorithm [15] We
concluded that significant improvement was
possible. Our current approach is novel in
that we are concerned with general queries in-
volving many relations and attributes; we do
not employ any semijoins but use reduction
filters exclusively; and in addition, the evalu-
ation methodology is quite different.

A reduction filter-based algorithm We as-
sume a distributed relational database man-
agement system connected via a point to point
network. There is no fragmentation nor repli-
cation. We consider only select-project-join
(SPJ) querie, each consisting of a number of
relations located at different sites which must
be joined and the result made available at the
query site.

A reduction filter is an array of bits which
functions as a compact representation of the
values of a join attribute in a relation. It
is constructed using a hash function which
The
filter can be used to identify tuples (in other

set bits corresponding to the values.

relations) which cannot belong to the result
and therefore do not need to be shipped. In
essence the reduction filter achieves the same

result as a semijoin but at a much lower cost

Each query is represented by a graph and an
adjacency list. Each relation is usually only
processed once — to minimize data transfers.
However, if a filter changes during use then
certain relations must be processed again —

a queue is used to record this information.

The Algorithm

two phases: during phase one the adjacency

The algorithm consists of

list is used to determine the order in which
the filters are constructed and used.
Phase one:

1. Select the relation with lowest in-degree
for processing.

. Scan adjacency list to see which filters
maust be constructed. If a filter is already
available then concurrently use it to reduce
the relation and produce all required filters.

. If a filter has changed the use the follow-
ing “ filter rule”: if a filter for a relation
changes then add that relation to the queue
only if it has already been processed; it is
not already on the queue; and it is not the

most recently processed relation.

708

4. Use adjacency list to “remove edges” from
query graph — that is, reduce the in-degree
of each relation in the list by 1.

S. Mark relation as processed.

Repeat all steps until each relation has been
processed once.
Phase two:

1. Remove relation from queue.

2. Reduce relation using all appropriate fil-
ters.

3. If a filter changes then use the “filter rule”.

Repeat all steps until the queue is empty.

A simple example: ~ We have the following
relations — the arrows indicate the only tuples

which can be part of the final join at the query

site:
Ri{A|B|C Ro,JA|DJE |F
—{1 (214 —11 (21413
21215 212|515
31316 3131617
4 141719
R3B|D|E R4|C |G Rs |F | H
—|2 12 |4 -4 [2 — |3 14
31316 513 — (317
41419 714 717

The query is processed as follows!

* Ry i1s selected; a filter for attribute C is
produced (4, 5, 7); the in-degree of Ry is

1 The adjacency list is not shown since space
is not available!

reduced by 1 and R4 is marked as pro-

cessed.

* Rs is selected; a filter for attribute F is pro-
duced (3, 7); the in-degree of R; is reduced

by 1 and Rs is marked as processed.

e R; is selected and reduced using the C

filter to produce a new R; and filters for
A, B and C — as shown.

R,

A |B |C
1 12 |4
2 |12 |5

A 1,2
B:2
C:4,5

The filter for C has changed so R4 is

placed on the queue. The in-degrees of R;

and Rj3 are reduced by 1 and R; is marked

as processed.

* R, is selected and reduced using the A and

F filters to produce a new R; and filters for
A, D, E and F — as shown.

R,

A

D

E

1

2

4

Al
D: 2
E: 4
F: 3

The filters for A and F have changed so

R; and Rs are placed on the queue. The

in-degree of R3 is reduced by 2 and R; is

marked as processed.

* R3 is selected and reduced using the B,

D and E filters to produce a new Rz and
filters for B, D and E — as shown.

R3

B

D

E

2

2

4

B:2
D:2
E: 4

709

No filters have changed, so no relation is
added to the queue. All relations have
been processed so phase one is complete.
¢ The queue contains R4, R; and Rs. Each is
processed in turn to produce the following

reduced relations:

RjA|B|C| R4C|G| Rs|F|H

fu—
N
LN
S
[\®]

During processing no filter is altered, the

queue is emptied and the algorithm stops.

We are currently evaluating the algorithm and
initial results are promising. To evaluate, we
compare our method not against another algo-
rithm but against the effects of a “full reducer”
— an algorithm which reduces the relations to
just those tuples which can be part of the fi-
nal result. In our example, the algorithm does
fully reduce the relations. We believe that this
method is more objective and gives a better
assessment of the utility of the algorithm.

We are currently investigating how collisions
affect the operation of the algorithm. We
are also testing the use of multiple reduction
filters, where each is based on a different
hash function, as a method of eliminating the
unfavorable consequences of collisions.

Full details of the algorithm and the results of
the evaluation and all related experiments will
be presented at conference time.

References

(1]

(2]

[3]

(4]

[5]

[6]

[7]

[8]

B. Bloom, “Space/time tradeoffs in hash
coding with allowable errors,” Comm.
ACM, vol. 13(7), pp. 422-426, 1970.

D. DeWitt, S. Ghandeharizadeh,
D. Schneider, A. Bricker, H. Hsiao, and
R. Rasmussen, “The GAMMA database
machine project,” IEEE Transactions
on Knowledge and data engineering,
pp. 44-62, 1990.

G. Z. Qadah, Filter-based join algo-
rithms on uniprocessor and distributed-
memory multiprocessor database ma-
chines, vol. 303 of Lecture Notes in Com-
puter Science, pp. 388—413. Springer-
Verlag, 1988.

G. Z. Qadah and K. Irani, “The join al-
gorithms on a shared-memory multipro-
cessor database machine,” IEEE Transac-

tions on Software Engineering, pp. 1168—
1683, 88.

P. Valduriez and G. Gardarin, “Join and.

semijoin algorithms for a multiprocessor
database machine,” ACM Transactions on
database systems, pp. 133-161, 1984.

J. Mullin, “Estimating the size of a
relational join,” Information Systems,
vol. 18(3), pp. 189-196, 1993.

G. Graefe and K. Ward, “Dynamic query
evaluation plans,” in ACM SIGMOD,
pp- 358-366, 1989.

G. Graefe, “Query evaluation techniques
for large databases,” ACM computing sur-
veys, pp. 73-170, 1993.

710

91

[10]

[11]

[12]

[13]

[14]

[15]

C. Mohan, D. Haderle, Y. Wang, and
J. Cheng, Single table access using mul-
tiple indexes: optimization, execution and
concurrency control techniques., vol. 416

of Lecture Notes in Computer Science,
pp- 29-43. Springer-Verlag, 1990.

D. Severance and G. Lohman, “Differen-
tial files: their application to the mainte-
nance of large databases,” ACM Transac-
tions on database systems, pp. 257-267,
1976.

J. Mullin, “(1983) A second look at bloom
filters,” Comm. ACM, vol. 26(8), pp. 570—
571, 1983.

J. Mullin, “Optimal semijoins for dis-
tributed database systems,” IEEE trans.

on software eng., vol. 16(5), pp. 558-560,
1990.

J. Tseng and A. P. Chen, “Improving
distributed query processing by hash-
semijoins,” Journal of Information Sci-
ence and Engineering, vol. 8, pp. 525-
540, 1992.

J. Mormissey and W. Osborn, “Experi-
ments with the use of reduction filters in
distributed query optimization,” in Pro-
ceedings of the 9th IASTED International
Conference on Parallel and Distributed
Systems, (Georgetown University, Wash-
ington), pp. 327-330, 1997.

J. Morrissey and W. Bealor, “Minimizing
data transfers in distributed query process-
ing: a comparative study and evaluation,”
The Computer Journal, vol. 39(8), 1997.

