Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering

Shaw Conference Center, Edmonton, Alberta, Canada May 9-12 1999

The effect of collisions on the performance’ of reduction filters.

J.M. Morrissey
School of Computer Science
University of Windsor
Windsor, Ontario N9B 3P4
joan@uwindsor.ca

Keywords: optimization, hash-semijoin,
evaluation.

Topics: Computer networks and communica-
tions, software engineering.

Introduction

The optimization of general queries in a
distributed database management system is
an important research topic. The problem is to
select the best sequence of database operations
that will process the query and minimize
costs. Approaches include algorithms which
are join-based [1, 2], semijoin-based [3, 4,
5,6, 7, 8,9, 10], or a combination of both
[11]. Many algorithms concentrate on special
types of queries [5, 12, 13, 14, 15, 6]. Some
algorithms have been developed which improve

on strategies produced by other heuristics [16, -

17]. However, it has been shown [18, 19] that
finding an optimal solution for-a given general
query is NP-hard so most algorithms aim to
produce an efficient but (perhaps) suboptimal
evaluation strategy. A new approach is to use
hash-semijoins, which employ, reduction filters
(also known as Bloom filters), to reduce costs.
Bloom filters are first described -in [20], and
have mostly been used to improve the relational
join operation {21, 22, 23, 24, 25]. Bloom filters
have been applied to. other relational operations
[26, 27, 28] and file processing operations
[29]. Mullin {30, 31] employs Bloom filters to
improve the semijoin operation. His method
is limited to the case where there are only

0-7803-5579-2/99/$10.00 © 1999 JEEE

W.K. Osborn
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2
osborn@cs.umanitoba.ca

two sites involved in the query and it has not
been expanded to cater for general queries.
Tseng and Chen [32] present a new relational
operator called a hash-semijoin. They propose
a method which will transform a sequence of
semijoins, produced by any existing semijoin-
based algorithm, into a more cost effective
sequence by replacing some of the semijoins
by hash-semijoins. But their approach has not
been experimentally evaluated.

The algorithm

In our recent work [33, 34] we use reduction
filters. Each filter is an array of bits that
functions as a very compact representation of
the values of a join attribute in a relation. A hash
function is used to set bits in the filter. It is then
used to identify tuples (in other relations) which
cannot belong to the result. The relations can
be reduced significantly in size, data transfers
can be reduced and costs minimized.

Our algorithm, which is based on reduction
filters, can process general queries consisting
of an arbitrary number of relations and join
attributes. Each query is represented by a
graph and an adjacency list. Each relation is
usually only processed once — to minimize data
transfers. However, if a filter changes during use
then certain relations must be processed again
— a queue is used to record this information.
The algorithm consists of two phases: during
phase one the adjacency list is used to determine
the order in which the filters are constructed

215

and used.
Phase one:

1. Select the relation with lowest in-degree
for processing.

2. Scan adjacency list to see which filters
must be constructed. If a filter is
already available then concurrently use
it to reduce the relation and produce all
required filters. '

3. If a filter has changed the use the
following “ filter rule”: if a filter for a

~ relation changes then add that relation
to the queue only if it has already
been processed; it is not already on the
gueue; and it is not the most recently
processed relation. - ‘

4. Use adjacency list to “remove edges”
from query graph — that is, reduce the
in-degree of each relation in the list
by 1. :

5. Mark relation as processed.

Repeat all steps until each relation has been
processed once.
Phase two:

1. Remove relation from queue.

2. 'Reduce relation using all appropriate
filters. :

3. If a filter- changes then use the “filter
rule”.

Repeat all steps until the queue is empty.

This work has one serious limitation — we
used a “perfect” hash function which means
that collisions are not possible. Experiments
showed that our algorithm could reduce data
transfers very substantially [33]). However, in
a database collisions in the reduction filter! are
a reality and a problem. Such collisions mean
that the hash-semijoin cannot achieve the same

1 A collision occurs when two attribute values
hash to the same address in the filter.

0-7803-5579-2/99/$10.00© 1999 IEEE

amount of reduction as a traditional semijoin

would. In this paper we investigate the effect
that collisions have on the performance of our
algorithm.

The experiments

We have an experimental framework consisting
of a collection of software to generate random
queries with certain characteristics. Software
is also used to generate the relations needed to
execute each query. We assume a distributed
relational database management system con-
nected via a point to point network. There is
no fragmentation nor replication. We consider
only select-project-join (SPJ) queries, each
consisting of a number of relations located at
different sites which must be joined and the
result made available at the query site. To
evaluate, we compare our method not against
another algorithm but against the effects of a

" “full reducer” — an algorithm which reduces

the relations to just those tuples which can be
part of the final result. We believe that this
method is more objective and gives a better
assessment of the performance of the algorithm.

We designed a set of experiments to test the
performance with different collision rates;
specifically 0% through 9% and then 10%
through 60% collisions. (Our framework allows
us to specify and guarantee a certain percentage
of collisions in the filter. For full details see
[35]). At each collision rate we generated
and executed 600 random queries, where each
relation has between 200 and 600 tuples; the
active domains had between 150 and 250
values; the selectivity of each attribute was set
between 0.5 and 0.95; and each relation had
approximately 75% of the joining attributes.
For convenience the queries are grouped by
type, where type 3—-2 means that the query has

216

three relations and two join-attributes. The
result tables are presented below:
Type | 0% 1% 2% 3% 4%
3-2 83.54 | 8348 84.60 | 8493 84.69
3-3 95.34 | 97.38 9395 19248 |95.15
3-4 99.26 | 100 100 99.81 99.60
4-2 91.51 | 9237 94.92 | 95.69 94.88
4-3 99.05 199.09 98.66 | 97.21 98.29
4-4 100 | 100 100 99.87 100
5-2 99.55 196.72 97.59 | 98.55 9691
5-3 100 100 99.85 |99.82 99.96
5-4 100 100 100 100 100
6-2 98.55 | 98.92 98.74 |98.98 |99.03
6-3 100 100 99.97 [99.99 100
6-4 100 100 100 100 100
Avg 9723 199.33 97.36 |[97.27 - |97.38
Tab_le ‘1 Average reduction: 0% - 4%
Type 5% 6% 7% 8% 9%
32 83.87 | 84.19 81.94. 81.59 83.36
3.3 9395 |95.56 93.07 1} 96.15 92.95
34 |100 |100 | 100 ~ [99.51 | 100
4-2 9497 }93.03 90.57 |91.85 |91.68
4.3 98.89 |97.96 99.36 |98.52 |99.21
4-4 100 99.72 99.77 | 100 100
5-2 97.87 196.40 96.75 | 97.68 96.86
5-3 99.99 1|99.84 98.70 | 98.65 99.98
5-4 100 100 100 100 100
6-2 99.67 |99.11 99.12 }198.30 | 98.11
6-3 100 99.76 99.74 100 99.93
6-4 100 100 100 100 100
Avg 9743] 97.13 96.59 | 96.85 96.84

Tab_le 2 Average reduction: 5% - 9%

0-7803-5579-2/99/$10.00 © 1999 IEEE

Type | 10% | 20% |30% |40% |50% | 60%
3-2 85.26 | 80.11 | 75.21 [73.31 | 72.74 | 69.56
3-3 19575 [93.15 | 87.27 | 90.53 | 86.10 | 88.58
3-4 199.55)99.02 | 98.95 | 97.92 | 98.58 | 97.11
4-2 19354 [92.13 | 89.29 | 86.25 | 87.43 | 81.23
4-3 197.45]97.83 | 96.41 | 98.34 | 94.53 | 96.62
4-4 100 100 100 100 99.63 | 98.31
52]96.01 §96.39 | 9539 | 92.22 | 91.21 | 89.37
5-3 | 99.64 | 98.38 | 98.98 | 96.56 | 98.72 | 98.10
5-4 100 100 100 100 100 99.77
6-2 |99.28 | 97.88 | 96.53 | 98.55 | 97.41 | 95.81
6-3 100 100 99.58 | 99.13 | 99.59 | 99.44
6-4 100 100 100 100 100 100
Avg |97.21 | 96.24 | 94.80 [94.40 | 93.83 | 92.82

" Table 3 Average reduction: 10% — 60%

Conclusions

The results show that when the collision rate is
between 0% and 10% then we can achieve, on
average, a 97% reduction in the relations, and in
approximately 83% of all queries the relations
were fully reduced?. It would appear that the
query type has more of an influence on the
reduction rate than the percentage of collisions.
This is not an unexpected result since, as the
number of joining attributes increases we use
more filters on a relation and this reduces the
impact of the collisions.

When we looked at collision rates in the range
10% to 60% we found that we could still achieve
95% reduction on average, and approximately

68% of all queries were fully reduced.

The conclusions of this paper are very sig-
nificant. To our knowledge no one has
ever examined the effect of collisions on the
performance of a hash-semijoin based algorithm.

2 The relations had been reduced to just those
tuples which can participate in the final join.

217

Our main conclusion is that the collisions, even
at 60%, do not significantly affect performance.

A full discussion of the results will be presented
at conference time.

References

[1]

[2]

(3]

[4]

{5}

(6]

(71

(8]

J. Ahn and S. Moon, “Optimizing joins
between two fragmented relations on a
broadcast local network.,” Info. Syst.,
vol. 16(2), pp. 185-198, 1991. _
P. Legato, G. Paletta, and L. Palopoli,
“Optimization of join strategies in
distributed databases,” Info. Syst., vol. 16(4),
pp. 363-374, 1991. v

P. Bemstein, N. Goodman, E. Wong,

C. Reeve, and J. Rothnie, “Query processing
in a system for distributed databases (SDD-
1),” ACM Trans. on Database Systems,
vol. 6(4), pp. 105-128, 1981. .

P. Black and W. Luk, “A new heuristic
for generating semi-join programs for
distributed query proqéssing,” IEEE
COMPSAC, vol. 581-588, 1982.

P. Apers, A. Hevner, and S. Yao,
“Optimization algorithms for distributed
queries,” IEEE Transactions on Software
Engineering, 9(1), pp. 51-60, 1983.

L. Chen and V. Li, “Improvement
algorithms for semi-join query processing
programs in distributed database systems.,”
IEEE Trans. on Computers, vol. 33(11),
pp- 959-967, 1984.

H. Kang and N. Roussopoulos, “Using
2-way semi-joins in distributed query
processing,” in Proc. 3rd Int. Conf. on Data
Engineering, pp. 644650, 1987.

N. Roussopoulos and H. Kang, “A pipeline

n-way join algorithm based on the 2—
way semi-join program,” IEEE Trans. on
Knowledge and Data Engineering, vol. 3(4),
pp. 486495, 1991.

0-7803-5579-2/99/$10.00 © 1999 IEEE

91

[10]

[11]

(12]

[13]

(14]

[15]

[16]

(17]

218

L. Chen and V. Li, “Domain-specific semi-
join: a new operation for distributed query
processing,” Info. Sci., vol. 52, pp. 165-
183, 1990.

C. Wang, V. Li, and A. Chen, “Distributed
query optimization by one-shot fixed
precision semi-join execution,” in Proc. 7th
Int. Conf. on Data Engineering, pp. 756~
763, 1991. ' -

M. Chen and P. S. Yu, “Combining join
and semi-join operations for distributed
query processing,” IEEE Transactions on
Knowledge and Data Engineering, vol. 5(3),
pp. 534-542, 1993. '

D. Chiu, P. Bernstein, and Y. Ho, .
“Optimizing chain queries in a distributed
database system,” Siam Journal of
Computing, vol. 13(1), pp. 116-134, 1984.

A. Chen and V. Li, “A method for
interpreting tree queries into optimal
semijoin expressions,” in ACM SIGMOD,
1980.

D. Chiu and Y. Ho, “Optimizing star queries
in a distributed database system,” in VLDB,
pp- 959-967, 1984.

C. Yu, Z. Ozsoyoglu, and K. Kam,
“Optimization of distributed tree queries,”
J. Comp. Sys. Sci., vol. 29(3), pp. 409-445,
1984.

P. Boderick, J. Pyra, and J. Riordan,
“Correcting execution of distributed
queries,” in Proc. of 2nd Int. Symp. on
Databases in Parallel and Distributed
Systems, pp. 192-201, 1990.

P. Boderick, J. Riordan, and J. Pyra,
“Deciding to correct distributed query
processing,” IEEE Trans. on Knowledge
and Data Engineering, vol. 4(3), pp. 253-
265, 1992.

(18]

[19]

[20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

A. Hevner, The optimization of quéry
processing in distributed database systems.
PhD thesis, Perdue University, 1980.

C. Wang and M. Chen, “On the complexity
of distributed query optimization,” tech.
rep., IBM Technical Report RC 18671,
1993.

B. Bloom, “Space/time tradeoffs in hash
coding with allowable errors,” Comm. ACM,
vol. 13(7), pp. 422-426, 1970.

D. DeWitt, S. Ghandeharizadeh,

D. Schneider, A. Bricker, H. Hsiao, and
R. Rasmussen, “The GAMMA database
machine project,” IEEE Transactions on
Knowledge and data engineering, pp. 44—
62, 1990.

G. Z. Qadah, Filter-based join algorithms
on uniprocessor and distributed-memory
multiprocessor database machines, vol. 303
of Lecture Notes in Computer Science,
pp. 388—413. Springer-Verlag, 1988.

G. Z. Qadah and K. Irani, “The

join algorithms on a shared-memory
multiprocessor database machine,” IEEE
Transactions on Software Engineering,
pp. 1168-1683, 88.

P. Valduriez and G. Gardarin, “Join and
semijoin algorithms for a multiprocessor
database machine,” ACM Transactions on
database systems, pp. 133-161, 1984.

J. Mullin, “Estimating the size of a relational
join,” Information Systems, vol. 18(3),
pp- 189-196, 1993. '
G. Graefe and K. Ward, “Dynamic query
evaluation plans,” in ACM SIGMOD,

pp. 358-366, 1989.

G. Graefe, “Query evaluation techniques for
large databases,” ACM computing surveys,

0-7803-5579-2/99/$10.00 © 1999 IEEE

(28]

[29]

[30]

(31]

[32]

[33]

(34]

[35]

219

pp. 73-170, 1993.

C. Mohan, D. Haderle, Y. Wang, and

J. Cheng, Single table access using multiple
indexes: optimization, execution and
concurrency control techniques., vol. 416
of Lecture Notes in Computer Science,
pp. 29—43. Springer-Verlag, 1990.

D. Severance and G. Lohman, “Differential
files: their application to the maintenance
of large databases,” ACM Transactions on
database systems, pp. 257-267, 1976.

J. Mullin, “(1983) A second look at bloom
filters,” Comm. ACM, vol. 26(8), pp. 570-
571, 1983.

J. Mullin, “Optimal semijoins for distributed
database systems,” IEEE trans. on software
eng., vol. 16(5), pp. 558-560, 1990.

J. Tseng and A. P. Chen, “Improving
distributed query processing by hash-
semijoins,” Journal of Information Science
and Engineering, vol. 8, pp. 525-540, 1992.
J. Morrissey and W. Osborn, “Distributed
query optimization using reduction filters,”
in Proceedings of the IEEE Canadian
Conference on Electrical and Computer
Engineering, (University of Waterloo, May
1998), pp. 707-710.

J. Morrissey and W. Osborn, “Experiments
with the use of reduction filters in distributed
query optimization,” in Proceedings of the
9th Internaltional Conference on Parallel
and Distributed Computing and Systems
(PDCS’97), (Washington, D.C., October
1997), pp. 327-330.

W. Osborn, “The use of reduction filters
in distributed query optimization,” Master’s
thesis, The University of Windsor, 1998.

