
Evaluating the Spatial Indexing of Dense Point Sets
Wendy Osborn

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, Alberta, T1K 3M4
Canada

Email: wendy.osborn@uleth.ca

Marc Moreau
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, T1K 3M4

Canada
Email: marc.moreau@uleth.ca

Abstract—In this paper, we present an evaluation of the mqr-
tree as a spatial access method for handling high-density point
regions, such as world co-ordinates. Although previous work in
spatial access methods focused on indexing objects of arbitrary
size and performing region searches on them, recent applications
that require the management of co-ordinate data also require
that high-density point data be managed effectively by spatial
access methods. The mqr-tree has shown promise in effectively
managing point data. A comparison of the mqr-tree versus the
benchmark R-tree shows that the mqr-tree can index high-
density point regions effectively. In addition, searching dense
point regions using the mqr-tree requires far fewer disk accesses
than the R-tree when point density is very high.

I. INTRODUCTION

A spatial data repository such as a spatial database system
[1], [2] manages objects, such as points, lines, and regions,
which are located in multidimensional space. An important
issue for any spatial data repository is the ability to efficiently
retrieve one or more objects based on their locations. To
facilitate efficient access to spatial data, one can use a spatial
access method [3], [4], [5] to index the objects based on
their location. Historically, research on spatial access methods
has focused on region-query retrieval of arbitrary objects that
are represented with minimum bounding rectangles (MBRs).
However, more recent applications of spatial data management
require the management and retrieval of point data, such as
longitude and latitude co-ordinates. For example, an applica-
tion of exact match location searching comes from a mobile
information system such as a tourist information system [6],
[7]. In a tourist information system, the location of items of
interest, such as historic buildings and other tourist facilities,
are tracked using co-ordinates (i.e. points). If a system is
tracking items of interest in a high-interest area, this can lead
to a very dense set of points that must be managed for efficient
search and retrieval. In addition, as a user (i.e. point query)
moves around, the items of interest that are near them must be
obtained continually so they can be presented. This requires
very efficient processing of point queries, so the user is not
waiting for the information they seek.

Most indexes that have been proposed specifically for han-
dling point data use a recursive space partitioning technique
[8], [9], [10]. Although simple to implement, these approaches
manage space that does not contain any points. Spatial access
methods, on the other hand, only manage subregions of space

that contain objects, and not the entire space [4], [11], [12],
[3], [13], [5]. One drawback of most spatial access methods
is the overlap of these subregions, which can lead to multiple-
path (and therefore, inefficient) searching. This is especially
noticeable when performing point searches (both exact-match
and overlap-point) [13]. However, a recently proposed spatial
access method, the mqr-tree [5], has been shown to efficiently
index point data with zero overlap of the subregions that
contain then. The application of the mqr-tree in a tourist
information system [7] revealed the potential of the mqr-tree
to effectively manage very dense sets of points.

Therefore, this work presents an in-depth evaluation of
the mqr-tree for indexing very dense sets of points so that
efficient exact-match point queries are possible. This work
not only evaluates the number of disk accesses (i.e. page hits)
required by the mqr-tree for exact-match searches in a dense
point set, but also presents some general statistics of the mqr-
tree - specifically, the coverage and overlap of the subregions
managed by the mqr-tree - and relates them to the resulting
page hit values that are obtained from using the mqr-tree.

The remainder of this paper proceeds with some back-
ground on both the mqr-tree and the R-tree, which is used
for comparison purposes in the evaluation. Then, the mqr-
tree is evaluated for effective exact-match point searches. A
discussion of the results of the evaluation is presented before
the paper concludes with future research directions.

II. BACKGROUND

In this work, the mqr-tree is compared against the R-tree.
The R-tree is chosen for comparison because it is considered
a benchmark structure in the area of spatial access methods.
We briefly summarize both data structures here.

A. R-tree

The R-tree [4] was the first approximation-based spatial
access method to be proposed. It is based on the B+-tree [14]
and can index a set of spatial objects that consists of both
points and objects of non-zero size. All nodes of the R-tree
contain entries of the form:

(MBR, ptr)

In a leaf node, MBR is the approximation that represents
a spatial object, and ptr is a pointer to the actual spatial

2013 26th IEEE Canadian Conference Of Electrical And Computer Engineering (CCECE)

978-1-4799-0033-6/13/$31.00 ©2013 IEEE

Fig. 1. Example Dataset (from [3])

Fig. 2. R-tree

Fig. 3. mqr-tree

object on secondary storage. In a non-leaf node, ptr points
to a subtree and MBR is the approximation that encloses all
MBRs in the subtree referenced by ptr.

Figure 2 depicts an R-tree that is indexing the set of objects
in Figure 1. As you can see, the left-most leaf node contains
entries that would point to objects m1, m2 and p9, while an
entry in the root node contains the MBR that encloses those
objects. The same situation takes place for the other leaf nodes.

A point search - both exact-match and overlap - takes place
in the following way. First, the query point is tested for overlap
with all MBRs in the root node. For any MBRs that overlap the
query point, the search continues in the corresponding subtrees
in the same manner until zero or more leaf nodes are reached.
For those leaf nodes, the objects are tested for overlap or exact
match with the point, and any that pass the test are retrieved
for the result.

B. mqr-tree

The mqr-tree [5] is a recent addition to research in spatial
access methods. The main difference between the mqr-tree
and the R-tree is that nodes are organized in quadrants
(NW,NE,SE, SW and CENTRE) in the mqr-tree instead of
the linear organization used by the R-tree. This allows for
spatial relationships between objects to be maintained. Groups
of objects are placed in a node based on their relationship to
the centre of the MBR that encompass them. MBRs in non-
leaf nodes are organized in the same manner. Figure 3 depicts
an mqr-tree that is indexing the set of objects in Figure 1.
Note that CENTRE in each node is left out for clarity. Notice
that the objects m1,m2 and p9 are placed in the northwest,
southwest and southeast locations respectively in the node
because their centres are located northwest, southwest and
southeast of the centre of the MBR that contains them. Also
notice for m9,m7,m8 and p5, that m8 and p5 are both southeast
of the centre of the MBR that contains them, therefore they
are placed in a separate node and organized separately.

This organization also provides support for non-linear point
search strategies to be implemented. Because a point query can
only fall into one quadrant (NW,NE,SE,SW and CENTRE),
the MBR that encompasses the objects (or MBRs) can be
partitioned recursively, with the point tested for which part
of the MBR it falls into. This eliminates having to test every
entry for overlap with the point query. Note that this strategy
only works when the mqr-tree is indexing points - it does not
work when indexing objects or querying with regions.

III. EVALUATION

In this section, we present the results of our performance
evaluation of the mqr-tree versus the R-tree. The primary ob-
jective of the evaluation is to compare the two data structures
on the average number of disk accesses (i.e. page hits) it takes
to perform an exact-match point query. It should be noted that
most of the query points used in the evaluation do not exist
in the data sets. Therefore, the queries are being performed to
determine how many disk accesses are required to determine
that the points do not exist in the data sets.

A secondary objective is to determine if any relationships
exist between coverage, overcoverage and overlap of the data
structures, and the number of disk accesses required for
locating a point.

A. Data Sets and Tests

The data used for the evaluations consisted of randomly
generated points that reside in specified square units of space,
between 1x1 units and 100x100 units. Point sets were created
for both constructing the trees and performing the searches.
Overall, 30 sets of 10,000 points were created for index
construction, with 30 more corresponding sets of 20 points
created for performing the searches. Randomly-generated data
sets were chosen for the evaluation, instead of real world
point sets, so that the density of the point sets could be better
controlled.

index 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
mqr-tree 6 6 6 6 6 6 6 6 6 6

r-tree 1705 1242 658 532 363 269 175 156 115 102

Fig. 4. Results for 1x1 to 10x10 Area Size

For each pair of 10,000 and 30 point sets, 100 R-trees and
mqr-trees are constructed. To be able to fairly compare both
data structures, a node size of 5 entries is used in both cases.

For each tree, the coverage, overcoverage, overlap, space
utilization and tree height were recorded. Also for each tree, 20
searches are performed, and the number of disk accesses that
is required for locating a point is recorded. For disk accesses,
the worst case is assumed here - that is, each node is fetched
from secondary storage every time it is required.

The average number of disk accesses per search is calculated
over all 100 trees. Then, the average coverage, overcoverage,
overlap, tree height, space utilization, and number of disk
accesses for each data set is calculated.

B. Results
The results for the average number of required disk ac-

cesses will be presented here. Any relationships between disk
accesses and the other statistics will be presented in Discussion
(Section IV). The results for the area sizes of 1x1 to 10x10
are presented first, followed by 11x11 to 20x20, then 10x10
to 100x100.

Figure 4 depicts the search results for the regions of sizes
1x1 to 10x10. Here, we see that the mqr-tree significantly
outperforms the R-tree when searching in very dense point
regions. In particular, when searching in a region of 1 square
unit (1x1) that is indexed with an mqr-tree, the mqr-tree only
requires 5 page hits on average to determine whether or not
the point being searched on is in the index, where the R-tree
requires approximately 1700 page hits to determine whether
a point exists in the index. In addition, where the mqr-tree
maintains a consistent average number of page hits to locate a
point, regardless of the density of the points in the space they
occupy, in the case of the R-tree the average number of page
hits required to locate a point decreases as the density of the
point set decreases.

Figure 5 shows the search results for the regions of sizes
11x11 to 20x20. Here, we observe the same trends as in Figure
4. Specifically, the mqr-tree once again maintains an almost
constant number of page hits to obtain a point (or determine
that it is not in the index), while the R-tree continues its decline
on the number of page hits required to locate a point.

To see if a crossover point exists where the R-tree begins
to outperform the mqr-tree with respect to page accesses, a
few more tests were run. Figure 6 shows the results of the
last set of searches on regions of sizes 10x10 to 100x100.
The results show that after the 30x30 region size, the results
for the r-tree begin to plateau. The average number of disk
accesses required for point queries in the last few regions in
the diagram (i.e. 70x70 to 100x100) is 10.

Tests were also carried out with point sets in regions from
100x100 to 1000x1000. Due to space limitations, the results

Fig. 5. Results for 11x11 to 20x20 Area Size

Fig. 6. Results for 10x10 to 100x100 Area Size

are not included here. However, their results showed the
a similar pattern of 6 required disk accesses for the mqr-
tree, and 9-10 disk accesses required for the R-tree, with no
improvement of the R-tree over the mqr-tree occurring.

IV. DISCUSSION

Through the evaluation above, it is discovered that the mqr-
tree requires a similar number of disk accesses per point
search, regardless of the density of the set of points. Also, that
the number of disk accesses required by the R-tree decreases
until a constant number is reached. In this section, an attempt is
made to identify any relationships between the other statistics
the define the spatial access methods - namely, tree height,
overlap, coverage and overcoverage - and the number of disk
accesses required for performing exact-match point queries.
Figure 7 presents a table of the remaining statistics for the mqr-
tree and R-tree that correspond to the 1x1 to 10x10 area sizes

index height coverage overcov overlap sp.util
mqr-tree 10(7.45) 5.68 1.00 0.00 55

r-tree 6 1683.63 1032.13 1031.13 80
mqr-tree 10(7.45) 22.73 4.00 0.00 55

r-tree 6 5354.06 3063.07 3059.07 80
mqr-tree 10(7.45) 51.02 9.00 0.00 55

r-tree 6 7222.63 3694.12 3685.12 79
mqr-tree 10(7.45) 90.89 16.00 0.00 55

r-tree 6 8260.45 3952.21 3936.21 77
mqr-tree 10(7.44) 141.67 24.99 0.00 55

r-tree 6 8929.46 4097.91 4072.91 77
mqr-tree 10(7.45) 204.09 35.99 0.00 55

r-tree 6 9297.34 4167.27 4131.28 77
mqr-tree 10(7.45) 278.02 48.99 0.00 55

r-tree 6 9567.21 4227.89 4178.90 77
mqr-tree 10(7.45) 364.12 63.97 0.00 55

r-tree 6 9708.18 4252.75 4188.78 77
mqr-tree 10(7.45) 461.26 80.97 0.00 55

r-tree 6 9751.47 4263.62 4182.64 77
mqr-tree 10(7.45) 566.87 99.97 0.00 55

r-tree 6 9771.36 4259.49 4159.52 77

Fig. 7. Statistics for 1x1 to 10x10 Area Size

in Figure 4. This table contains the coverage, overcoverage,
overlap, node space utilization, and height of all trees. For the
tree height of the mqr-tree, the first number is the maximum
height of the tree, while the number in brackets is the average
height (or, the longest path and the average path length,
respectively).

The first observation that can be made is that the number
of disk accesses required by the mqr-tree is less than both the
average and maximum height of the tree. Because no overlap
of subregions exists for any mqr-tree, the conclusion can be
drawn that a one-path point search is achieved. Although the
height of the R-tree is smaller than that of the mqr-tree in all
cases, the ratio of the number of disk accesses to tree height for
the R-tree is significantly higher, which is a result of the search
having to traverse multiple paths to locate a point (or not find
it!). Therefore, although the mqr-tree has a higher maximum
height, it is less than 2x the height of the R-tree but results in
a significantly improved number of pages accesses.

With respect to the other statistics, it appears that the
decrease in the number of disk accesses required by the R-tree
is directly related to the increase in coverage, overcoverage and
overlap of its subregions. At first glance, this may not make
any sense. However, a closer look at the coverage and overlap
shows that for the smaller area sizes, the difference between
and coverage and overlap is smaller than the difference be-
tween these values in the larger area sizes. This means that
more covered area in the smaller area sizes is actually covered
multiple times, which leads to more multiple-path searching
than in the R-trees that have more covered area that is not
subjected to overlap.

V. CONCLUSION

In this paper, we present an evaluation of the mqr-tree
as a spatial access method for handling high-density point
regions. Although previous work in spatial access methods
focused on indexing objects of arbitrary size and performing
region searches on them, recent applications that require the
management of co-ordinate data require that high-density point
data be managed effectively by spatial access methods as well.
The mqr-tree has shown promise in this regard. A comparison
of the mqr-tree versus the benchmark R-tree shows that the
mqr-tree can index dense point regions effectively. In addition,
searching dense point regions using the mqr-tree requires far
fewer disk accesses than the R-tree when point density is very
high.

A future direction of research based on this work is the
following. It was noted that most exact-match point searches
do not actually find a matching point. This is due to the
fact that in a mobile application such as a tourist information
provider, the user (i.e. point query) is not standing on top of
the item of interest. Therefore, an extension of the mqr-tree
to support nearest-neighbour queries is desirable, so that the
mqr-tree can be more useful for such mobile applications in
the future.

REFERENCES

[1] S. Shekhar and S. Chawla, Spatial databases: a tour. Prentice Hall,
2003.

[2] P. Rigaux, M. Scholl, and A. Voisard, Spatial databases: with applica-
tion to GIS. Morgan-Kauffman, 2001.

[3] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys, vol. 30, pp. 170–231, 1998.

[4] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1984, pp. 47–57.

[5] M. Moreau and W. Osborn, “mqr-tree: a 2-dimensional spatial access
method,” Journal of Computer Science and Engineering, vol. 15, pp.
1–12, 2012.

[6] A. Hinze, A. Voisard, and G. Buchanan, “Tip: Personalizing information
delivery in a tourist information system,” J. of IT & Tourism, vol. 11,
no. 3, pp. 247–264, 2009.

[7] W. Osborn and A. Hinze, “TIP spatial index: efficient access to digital
libraries in a context-aware mobile system,” in Proceedings of the 23rd
Australasian Database Conference, 2012.

[8] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, pp. 509–517, 1975.

[9] J. Bentley and J. Friedman, “Data structures for range searching,” ACM
Computing Surveys, vol. 11, pp. 397–409, 1979.

[10] J. Nievergelt, H. Hintenberger, and K. Sevcik, “The grid file: an
adaptable, symmetric multikey file structure,” ACM Transactions on
Database Systems, vol. 9, pp. 38–71, 1984.

[11] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R∗-
tree: an efficient and robust access method for points and rectangles,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1990, pp. 322–31.

[12] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: a dynamic
index for multi-dimensional objects,” in Proceedings of the 13th Inter-
national Conference on Very Large Data Bases, 1987.

[13] W. Osborn, “The 2DR-tree: a 2-dimensional spatial access method,”
Ph.D. dissertation, University of Calgary, University of Calgary, 2005.

[14] D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11,
pp. 121–37, 1979.

