
A Strategy for Optimizing a Multi-site Query

in a Distributed Spatial Database

Saad Zaamout and Wendy Osborn

Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, Alberta, T1K 3M4, Canada

Abstract. In this paper, we present a novel strategy for distributed spa-
tial query optimization that involves multiple sites. Most previous work
in the area of distributed spatial query processing and optimization fo-
cuses only on strategies for performing spatial joins and spatial semijoins,
and distributed spatial queries that only involve two sites. We propose a
new strategy, called the Restricted strategy, for optimizing a distributed
spatial query. It uses spatial semijoins and can involve any number of
sites in a distributed spatial database. The Restricted strategy improves
upon an existing strategy by sending group approximations, instead of
sending approximations for all objects, in order to reduce the number of
comparisons between objects and thereby minimize the CPU and data
transmission cost. A performance evaluation of our strategy finds that it
significantly minimizes the number of data comparisons and CPU time
of distributed spatial queries.

Keywords: distributed query processing, spatial data.

1 Introduction

A distributed spatial database system such as a Geographical Information Sys-
tem [13] contains several spatial database sites that are dispersed geographically.
Each site manages its own collection of spatial data, but work collectively for pro-
cessing inter-site queries and transactions. For example, suppose we have three
sites in a province, where one site manages regions of population growth, one
manages regions of Lyme disease, and one manages concentrations of wildlife.
Each site would be managed separately, but could be use collectively to answer
queries such as, ”How many areas of population could be affected in the future
with Lyme disease given animal migration patterns?”.

An important requirement of a distributed spatial database is the ability to
efficiently process a query that requires spatial data from multiple sites. Histor-
ically, research in distributed relational databases focused on generating query
execution plans that minimized the cost of data transmission over the network
[3,11]. However, spatial data is more complex than alphanumeric data, which
thereby increases the complexity of joining spatial relations. CPU and I/O costs
should also be considered when processing a distributed spatial query [13].

Most existing strategies for distributed spatial queries only work for two sites.
One exception to this does not handle spatial joins, while the other exception

S. Liang, X. Wang, and C. Claramunt (Eds.): W2GIS 2013, LNCS 7820, pp. 16–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Strategy for Optimizing a Multi-site Query 17

has only looked at minimizing data transmission cost. Therefore, we propose a
new, improved multi-site distributed spatial query processing strategy. We find
through our performance evaluation significant improvements in the number of
comparisons that take place for a semijoin, which lowers both the CPU and data
transmission costs.

This paper proceeds as follows. Section 2 presents related work in distributed
spatial query processing. Section 3 presents our novel strategy for optimizing
distributed spatial queries. Section 4 presents a performance evaluation of our
strategy versus a recently proposed strategy that works for multiple sites. Finally,
Section 5 concludes the paper and presents directions of future work.

2 Related Work

Previously proposed strategies in distributed spatial query processing focus on
the use of spatial joins, spatial semijoins, and Bloom filters for processing queries.
For all strategies below, with the exception of [6,12], all proposed strategies for
query processing work for two sites only.

2.1 Spatial Join

A spatial join [13] takes two spatial relations R and S, and relates pairs of tuples
between them, using a spatial predicate that is applied to the spatial attribute
values. An example of a spatial join is an overlap spatial join, where each pair
of objects is tested for overlap. Most spatial join algorithms are designed for a
centralized system [7]. One application of a distributed spatial join comes from
Kang et al. [8]. Their parallel strategy has two phases. The first phase is data
redistribution, where on each site, the space that contains objects is partitioned
into regions. A subset of regions is transmitted between sites so that each site
has the same regions for both data sets. This subset is chosen so that the lowest
overall response time is achieved. The second phase is filter and refinement,
where the spatial join is performed on each site. An experimental evaluation
shows that the parallel spatial join technique has a 33% faster response time
over a semijoin-based strategy. One limitation of the strategy is no discussion of
an extension to more than two sites.

2.2 Spatial Semijoin

A spatial semijoin [2] is performed by projecting the spatial attribute from one
relation, transmitting it to the site that contains the other spatial relation, and
performing a spatial join between the spatial projection and relation. Then, the
qualifying tuples from second site are shipped back to the first site for joining.
Existing work in distributed spatial semijoins focuses on modifying the operator
[2,14,10] for a two-site query, with one additional work applying the spatial
semijoin in a multiple-site query [12].



18 S. Zaamout and W. Osborn

Abel et al. [2,14] combine the spatial semijoin operator that with the fil-
ter stage of spatial query processing to reduce the data transmission, I/O and
CPU costs. Two adaptations of the spatial semijoin are proposed. The first is a
”projection” of a set of MBRs (minimum bounding rectangles) from one spatial
relation that is transmitted to the second site and applied to the other relation.
The second is a ”projection” consisting of a single-dimensional mapping that
represents the objects in each relation. A performance evaluation between both
approaches shows that: 1) for datasets with very large spatial descriptions, both
strategies perform the same, 2) for datasets with smaller spatial descriptions,
a semijoin that uses single-dimensional mapping works best, 3) using the R-
tree for retrieving MBRs incurs significant CPU costs, and 4) single-dimensional
mapping causes more false drops than MBRs.

The version from Karam and Petry [10] takes MBRs from different levels of
the R-tree for the spatial semijoin, instead of from the same level. A performance
evaluation shows that their spatial semijoin outperforms the Näıve spatial join
(i.e. the whole relation is shipped to the other site for joining) when applied to
real world data, but not when applied to randomly distributed rectangle sets.
Other limitations of their work are no comparison versus other strategies and
no consideration of CPU time.

Osborn and Zaamout [12] propose a distributed query processing strategy
that works across multiple sites. Their approach is to apply semijoins by ship-
ping smaller spatial projections to the sites of larger relations. A performance
evaluation shows significant improvements in data transmission costs over the
Näıve approach of shipping all relations directly to the query site. However, a
limitation of this work is the lack of CPU and I/O cost evaluation.

2.3 Bloom Filters

A Bloom filter [1] is a hashed bit array that provides a compact but imprecise
representation of the values of a joining attribute. A ’1’ bit represents the possible
existence of a joining attribute value, while a ’0’ bit represents the absence of
the value. Two proposed strategies [9,6] propose augmentations to the Bloom
filter in a distributed environment.

Karam [9] propose a 2-dimensional bit-matrix approach for performing a semi-
join of two relations that focuses on minimizing the data transmission, I/O and
CPU costs. A 2-dimensional space is partitioned into equal-sized regions, with
each region mapping to a bit in a 2-dimensional array. If a region contains ob-
jects, the corresponding bit is set to 1. This bit-matrix is transmitted to the site
containing the other relation, and is applied by testing each region containing
objects for the existence of a ’1’ bit in the bit-matrix. Any qualifying objects are
sent to the first site. A performance evaluation shows that this approach shows
the best improvement when applied to real world data. One Limitation of this
work is no evaluation against the original spatial semijoin.

Hua et al. [6] propose the BR-tree, which is an R-tree augmented with Bloom
filters to support exact-match queries. Along with an MBR, each node contains a
Bloom filter that also represents the same set of objects represented by the MBR.



A Strategy for Optimizing a Multi-site Query 19

In a leaf node, a Bloom filter is created by taking each object and producing k
filter bits. In a non-leaf node, a Bloom filter is created by intersecting the Bloom
filters in its child node. Although the BR-tree supports exact-match queries by
using Bloom filters, it still requires the MBRs for region and point queries. To
process distributed region, point, and exact-match queries, the root of every BR-
tree is duplicated across every site in the distributed database. Any objects that
pass the test against a root node is shipped to the site containing the original
BR-tree. This strategy works for any number of sites. However, a significant
limitation is a lack of support for spatial joins.

3 Restricted Strategy

In this section, we present our strategy for processing and optimizing a dis-
tributed query. The Restricted strategy works for any number of sites, with the
only requirement being that the number of sites must be a multiple of two. In
addition, it improves upon the Optimized strategy [12] by reducing the number
of object comparisons required in order to minimize both the data transmission
cost and the CPU cost of the query. This is achieved by utilizing an optimization
technique from the SpatialJoin2 join algorithm, which is proposed by Brinkhoff
et al. [4]. We first provide a brief summary of both the Optimized strategy and
SpatialJoin2 algorithm before presenting the Restricted strategy.

3.1 Background

The Optimized algorithm [12] uses spatial semijoins to reduce the data trans-
mission cost and I/O cost of a distributed spatial query. This is accomplished by
sending smaller projections of spatial attributes to larger relations for semijoin
processing. To reduce I/O costs, the spatial projection is obtained by traversing
the leaf level of an R-tree [5], which is used to index the spatial attribute of the
relation on the site. This is significantly cheaper in terms of I/O than retrieving
the entire relation and obtaining the spatial attribute from each tuple.

Given n sites that each contains a spatial relation, the Optimized strategy has
four main steps [12]:

1. Sorting and grouping by increasing spatial attribute cardinality. After sorting
all participating relations by increase spatial attribute cardinality, two groups
of relations is formed - one containing the smaller cardinality relations, and
the other containing the larger cardinality relations.

2. Transmission of spatial attributes. The spatial attribute with the smallest
cardinality relation from the first group is sent to the site with the smallest
cardinality relation from the second group. This strategy is further applied
to the next smallest cardinality relations in both sets, and so on until all
relations are processed.

3. Semijoin execution. Next, spatial semijoins are performed in parallel, and
the identifiers of the spatial projection that qualified in the spatial semijoin
are sent back to the originating site.



20 S. Zaamout and W. Osborn

Fig. 1. Intersection Region

4. Transmission of qualifying tuples to query site for the final join and process-
ing. From all sites, all tuples that qualified in their respective semijoins are
shipped to the query site for final processing.

The algorithm SpatialJoin2 utilizes the concept of intersection regions. Given two
leaf nodes and the corresponding minimum bounding rectangles (MBRs) that
contain the objects in each leaf node, the intersection region is the area that
is overlapped by both MBRs. The idea is that any object in either leaf node
must overlap the intersection region in order to potentially qualify for a join
with any other object. This can significantly reduce the number of comparisons
between objects between different sites that must take place. Figure 1 depicts
an intersection region with the rectangles that do, and do not, overlap with it.

3.2 Restricted Strategy

Given n participating sites, where each contains one spatial relation, we have
the following steps:

1. Sorting and grouping by spatial attribute cardinality,
2. Creation and Transmission of MBRs that bound subsets of objects,
3. Calculation of intersection regions,
4. Identification of objects that intersect the intersection regions,
5. Transmission of qualifying tuples to query site for the final join.

Steps 1 and 5 are the same as those in the Optimized Strategy. We include them
in the overall description for completeness.

First, the relations are ordered by increasing cardinality of their spatial at-
tributes, and then are grouped into sets P (lower half of ordering, smaller spatial
attribute cardinality) and Q (upper half of ordering, larger spatial attribute car-
dinality). Second, for each relation in P and Q, a set of MBRs is created for each
subset of spatial objects in the relation.

If the spatial attribute is indexed with an R-tree, then the set of MBRs from
each leaf node (which can be obtained from the parent node) can be used for the
required set of MBRs. Figure 2 depicts an R-tree that is indexing the given set
of objects (from [5]). In the Optimized strategy [12], the leaf-level entries (MBRs
and identifiers) would be obtained and used as the required spatial projection.
In the new Restricted Strategy, the non-leaf-level entries (in the example, the
entries in the root node), are the ones obtained and sent as the set of MBRs



A Strategy for Optimizing a Multi-site Query 21

Fig. 2. Obtaining Spatial Projections from R-tree

that bound subsets of objects. In the example, we see that bounding box R1
contains the objects m1, m2 and p9. Similarly, R2 and R3 bound the objects in
their respective leaf nodes. Therefore, the set of R1, R2 and R3 are selected as
the set of MBRs that represent all objects.

Then, this set of MBRs from each site in P is transmitted to a site in Q in
the following manner:

– The MBR set from the relation with the smallest spatial cardinality in P is
sent to the relation with the smallest spatial attribute in Q,

– The MBR set from the relation with the next smallest spatial cardinality in
P is sent to the relation with the next smallest spatial attribute in Q,

– and so on... until,
– The MBR set from the relation with the largest spatial cardinality in P is
sent to the relation with the largest spatial attribute in Q.

For the third step, for each relation in Q, all MBRs from the transmitted set are
intersected with the MBRs from the local set to create the set of intersection
regions. Readers can refer back to Figure 1 for an example intersection region.

In the fourth step, the spatial objects from the relation in Q are tested for
overlap with the appropriate intersection region. At the same time, the intersec-
tion regions are sent back to the relation from P that sent the original MBR set.
Then, for each relation in P, each object is tested for overlap with the appropriate
intersection region.

Finally, in the fifth step, the tuples of all objects that overlapped with an
intersection region are shipped to the query site for the final join.



22 S. Zaamout and W. Osborn

Table 1. Two-site Restricted Query vs. Optimized Query

Site 1 Site 2 TT-O TT-R %Imp TC-O TC-N %Imp

100 400 1876 183 90.24 40000 9650 75.87
100 600 2847 260 90.86 60000 11642 80.59
100 800 3868 317 91.80 80000 11007 86.24
100 1000 4619 316 93.15 100000 7689 92.31
200 400 3782 1460 61.39 80000 51250 35.93
200 600 5635 1526 72.91 120000 47829 60.14
200 800 7447 1163 84.30 160000 47179 70.51
200 1000 9526 1133 88.10 200000 40407 79.79

4 Evaluation

In this section, we present our experimental methodology and results of our per-
formance evaluation of the Restricted strategy. Our evaluation compares the Re-
stricted strategy against the Optimized strategy [12] to determine which achieves
both the lowerCPUcost and the lower thenumber of object comparisons.Although
we do not directly compare the data transmission costs between the two strategies,
the fact that the Restricted strategy is transmitting fewer representative MBRs
instead of entire spatial attributes can lead to data transmission cost savings.

Our experimental framework consists of a simulated distributed spatial
database. For the purpose of our experiments, we used six relations. Each rela-
tion contains 100, 200, 400, 600, 800, and 1000 tuples respectively. Each tuple
consists of a spatial object (in the form of a square), and some non-spatial at-
tributes. Also, each relation is indexed with an R-tree [5], which uses nodes that
can hold 50 entries. Each relation will be its own ‘site’ in our simulated system.

Our evaluation criteria will be evaluated using the following. The CPU time
will be tracked using the system clock for all semijoin operations. The number
of comparisons made during all semijoin operations will be tracked up to (but
not including) the final query site join.

4.1 Two-Site Restricted Query Test

The first set of comparisons of our Restricted strategy is for distributed queries
involving two sites. Table 1 shows the pairs of relations that were evaluated,
along with the total number of comparisons that were made (column TC-O for
Optimized, column TC-R for Restricted), and the total CPU cost (column TT-
O for Optimized, column TT-R for Restricted). We also record the percentage
improvement in the Restricted strategy over the Optimized strategy for both
cost factors.

Results show that a very significant improvement is achieved by the Restricted
strategy in both the number of comparisons that are being performed and the
CPU time of the distributed query. For both the CPU time and comparison
count, the improvement is more significant when there exists a significant differ-
ence in the size of the spatial relations between the two sites. In addition, when



A Strategy for Optimizing a Multi-site Query 23

Table 2. Four-Site Restricted Query vs. Optimized Query

Site 1 Site 2 Site 3 Site 4 TT-O TT-N %Imp TC-O TC-N %Imp

100 200 400 600 7497 1388 81.49 160000 57479 64.08
400 600 800 1000 43361 22942 47.09 920000 501520 45.49
100 200 800 1000 13117 1578 87.97 280000 51414 81.64

the smaller of the two sites contains only 100 spatial objects, the improvement in
CPU time is always over 90%. The improvements in the number of comparisons
that are being carried out are smaller than the CPU time improvements, but
are still very significant nonetheless.

4.2 Four-Site Restricted Query Test

For our second set of tests, we compared the evaluation of the strategies for
four-site queries. Table 2 shows the sites involved and the CPU times and total
number of comparisons. Again, we find that the Restricted strategy outperforms
the Optimized strategy in both CPU time and the number of comparisons. We
also find in the situation where a significant size difference exists between the
relations - again, 100, 200, 800, and 1000 tuples - the greatest improvement is
achieved for both factors.

4.3 Six-Site Restricted Query Test

Finally, we performed one test that compares the Restricted strategy and the
Optimized strategy when all six sites are involved. We found that the Restricted
strategy performed 204,777 comparisons in 8.7 seconds, while the Optimized
strategy required 620,000 comparisons and 24.7 seconds to perform them. There-
fore, the restricted strategy required 66% fewer comparisons and 70% less time
than the original Optimized strategy.

5 Conclusion

In this paper, we propose a new strategy for performing distributed spatial query
processing that involves more than two sites. The Restricted strategy improves
upon the existing Optimized strategy [12] by applying a technique for minimizing
the number of object comparisons that must be carried out, which in turn reduces
both CPU and data transmission costs. A performance evaluation studied the
improvement of the Restricted strategy over the Optimized strategy with respect
to CPU and comparison costs for two-, four- and six-site queries. Results show
that the Restricted strategy outperforms the Optimized strategy with respect to
the number of comparisons and CPU cost in all cases. In particular, when there is
a significant size difference between the participating relations, the improvements
CPU costs and the number of comparisons are the most significant.



24 S. Zaamout and W. Osborn

Some of our directions of future research include the following. The first is
investigating the performance (with respect to the number of comparisons) of
the Restricted strategy with different numbers of MBRs in the MBR sets. It is
probable that sending fewer representative MBRs may result in more savings
in CPU and data transmission costs. The second is deriving more strategies
for distributed spatial query processing that work for an arbitrary number of
sites. In particular, we want to study the use of Bloom filters for reducing the
data transmission, CPU and I/O costs of a distributed spatial query. This work
will ultimately lead to the best future strategies for processing and optimizing
distributed spatial queries.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13, 422–426 (1970)

2. Abel, D.J., Ooi, B.C., Tan, K.-L., Power, R., Yu, J.X.: Spatial Join Strategies
in Distributed Spatial DBMS. In: Egenhofer, M., Herring, J.R. (eds.) SSD 1995.
LNCS, vol. 951, pp. 348–367. Springer, Heidelberg (1995)

3. Apers, P.M.G., Hevner, A.R., Yao, S.B.: Optimization algorithms for distributed
queries. IEEE Transactions on Software Engineering 9, 57–68 (1983)

4. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using
R-trees. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, New York, USA, pp. 237–246 (1993)

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pp. 47–57 (1984)

6. Hua, Y., Xiao, B., Wang, J.: BR-Tree: a scalable prototype for supporting multiple
queries of multidimensional data. IEEE Transactions on Computers 58, 1585–1597
(2009)

7. Jacox, E., Samet, H.: Spatial join techniques. ACM Transactions on Database
Systems 34, 1–44 (2007)

8. Kang, M.-S., Ko, S.-K., Koh, K., Choy, Y.-C.: A Parallel Spatial Join Algorithm
for Distributed Spatial Databases. In: Andreasen, T., Motro, A., Christiansen, H.,
Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 212–225. Springer,
Heidelberg (2002)

9. Karam, O.: Optimizing Distributed Spatial Joins using R-trees. Ph.D. Thesis, Tu-
lane University (2001)

10. Karam, O., Petry, F.: Optimizing distributed spatial joins using R-trees. In: Pro-
ceedings of the 43rd ACM Southeast Regional Conference, pp. 222–226 (2006)

11. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
New York (2011)

12. Osborn, W., Zaamout, S.: Multiple-Site Distributed Spatial Query Optimization
using Spatial Semijoins. In: Proceedings of the 10th International Baltic Conference
on Databases and Information Systems, Vilnius, Lithuania (2012)

13. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, New Jersey
(2003)

14. Tan, K.-L., Ooi, B.C., Abel, D.J.: Exploiting spatial indexes for semijoin-based
join processing in distributed spatial databases. IEEE Transactions on Knowledge
and Data Engineering 12, 920–937 (2000)


	A Strategy for Optimizing a Multi-site Query in a Distributed Spatial Database
	Introduction
	Related Work
	Spatial Join
	Spatial Semijoin
	Bloom Filters

	Restricted Strategy
	Background
	Restricted Strategy

	Evaluation
	Two-Site Restricted Query Test
	Four-Site Restricted Query Test
	Six-Site Restricted Query Test

	Conclusion
	References





