JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 1, ISSUE 1, MAY 2010

Systolic Array Technique for Determining
Common Approximate Substrings

Jacqueline E. Rice and Kenneth B. Kent

Abstract—A technique using a systolic array structure is proposed for solving the common approximate substring (CAS)
problem. This approach extends the technique introduced in earlier work from the computation of the edit-distance between two
strings to the more encompassing CAS problem. A comparison to existing work is given, and the technique presented is

validated and analyzed based on simulations.

Index Terms—bioinformatics, FPGAs, reconfigurable hal

rdware.

1. INTRODUCTION
A common problem in bioinformat-
ics is that of determining, within
two or more strings of DNA, a
common approximate substring (CAS) [1],
[2]. A search for a CAS is considered to be
successful if any common string of symbols
is found within all of a given series of se-
quences, allowing for a certain amount of
error. The goal is to investigate the use of
field programmable gate array (FPGA)
technology to combine the flexibility of
software and the acceleration of hardware
in finding a solution for the CAS problem.

This work presents a problem-specific
systolic array implementation designed for
FPGAs. FPGAs are the best choice for our
design as the intent is that the initial DNA
string will be preprocessed into a number
of trees. Each node of these trees will then
be implemented on a FPGA in a design spe-
cifically targetted for this DNA string. In
other works this may be referred to as the
database string. Many other strings (some-
times referred to as query strings) can then
be compared in the search for one or more
CASs. A preliminary version of this work
was presented at ISCAS 2006 [3].

Although the primary contribution in
this work is the proposed architecture, the
work has been verified through simulation
illustrating its feasibility. Results are re-
ported in Section 4.1.

*

2. Background

The problem we wish to solve is that of
determining which, if any, substrings
within a given set of strings are common to
all of the string sequences in a given set.
The problem is made considerably more
complex by allowing the incorporation of
error factors in the matching process.
These factors may include insertions, dele-
tions or replacements of symbols within a
substring. This is a technique used in DNA
sequencing, where the discovery of a sub-
string similar to that found in a known pro-
tein or family of proteins may provide in-
formation about the function of a newly se-
quenced gene [4]. The discovery of ho-
mologous sequences and families begins
with the search for common substrings,
also referred to as signals, or motifs [4], [5].
The goal, or challenge in this problem is to
find similar sequences of symbols, where
the length of the sequence or motif is a
predefined value (m). We should note that
the common string need not appear in the
given set of strings, which is crucial in this

TGACTCGACC
TACTGCCTCG

CTGGCTAATA
ATTCCTGACT

Fig. 1. An example of common approximate sub-
strings of length 5 with an error of 1. Solution motifs
for this example are: TGACT, TGCCT, TGGCT, and
TGACT.

area of work. The search space is a given

set of n DNA strings, or sequences, also of a
defined length (1). Finally, the allowable
number of errors in the match between a
given motif and a substring within a DNA
string is set at d. In this work we limit our

e J. E. Rice is with the Department of Mathematics and Computer
Science at the University of Lethbridge, Lethbridge, AB, Canada,
T1K3M4.

o K. B. Kent is with the Faculty of Computer Science, University of
New Brunswick, Fredericton, NB, Canada, E3B5A3.

© 2010 JCSE
http://sites.google.com/site/jcseuk/

Level 1

GG T
Level 2 I |1
TG GA G} BB
Leve\é/T/ \“\ [‘ ‘
AC.G5 T T....T. T T...T.
o S s e
Level 1 AG7. .. 5..G
Level 2 e A T T
Level 2R N\ A |
XA DG G T T Tl o T T

Fig. 2. An example illustrating how motifs ACT (A)
and CTT (B) generate two distinct forests when d =
1. The shaded areas indicate where full trees, or
complete branches of trees, can be shared.

(A) (B)

Fig. 3. (A) An example of how a level 2 node proc-
esses a character when the character does not
match, and (B) an example of how the node proc-
esses a humber.

allowable error factor to that of a simple
replacement of one symbol with another;
shifts and/or gaps in the sequence are not
permitted, but will be considered in future
work. Fig. 1 illustrates how a motif of
length 5 can be found within 4 DNA strings,
allowing an error of 1. We say that any
common substring, allowing for the error
factor, is a possible solution for the given
sequence of strings. The reader is directed
to [6] in particular Chapter 10 “Parallel Im-
plementations of Local Sequence Align-
ment: Hardware and Software” and Chap-
ter 28 “FPGA Computing in Modern Bioin-
formatics” for further details on DNA se-
quencing and FPGAs.

3 APPROACH

The first step in processing the strings from
the database is to preprocess the first
search string. It is necessary to partition
the string into 1-m+1 motifs, and then for
each motif generate all possible motifs that
are distance d errors from the generating
motif. These are then stored as a forest of
trees, where the forest represents all pos-
sible motifs for a given generator. Sharing
of trees is possible in a restricted way. En-
tire paths from top node to leaf node can be
shared, and identical upper portions of
paths can be shared; however, unique
paths must result in unique leaf nodes. An
example is shown in Fig. 2. Note that in
this example the trees are structurally
equivalent, as they would be for any trees
generated in this manner. Thus they can

bit node cument
vector _char _data

Level 1
node

Level 3
node
exit 0001 2
node

siring curent
list sum

a

Fig. 4. An example of a path through a tree with its
exit node recording the value of d, the current sum,
and the 4 input strings for which this path has re-
sulted in a potential CAS solution (currently just
string 1). v e
wvector char data

Level 1
node
Level 2
node
Level 3
node

HH
o

0000

string current
list sum

exit
node

N
a

Fig. 5. The data initially stored in the tree nodes of a
path representing motif ACT

be used to identify any character string
with an error of 1. This means that, pro-
vided the two parameters are maintained,
we can avoid having to repeat the process
of circuit re-creation, synthesis, place and
route, and downloading when we wish to
process new motifs and strings.

3.1 Nodes

Each node in a tree has both processing
and storage capabilities. The storage con-
sists of the following:

e the character value of the node,

¢ a bit vector whose length is equal to
the level on which the node resides, and

e a current piece of data. This may be a
character or a numeric value as alternated
in the input stream. The numeric value will
never exceed 2 times the number of levels
in the trees.

The character value of the node is re-
quired for performing comparisons with
the characters that are streamed into the
nodes. The bit vector is required to record
the number of errors encountered at that
node when performing comparisons; how-
ever, the memory of the bit vector (i.e. the
number of errors to be remembered) is
limited by the level in the tree at which the
node resides. Root, or top nodes are at level
1 while the leaf or final nodes are at level
m. The final piece of data is either a charac-
ter for comparison to the node’s own char-
acter or a numeric value that is used for
summing the errors that have been en-
countered on the motifs’ travel down
through the levels of the tree.

Each node must be able to process either
characters passed into it or numbers. If a
character is passed to a node then the node

T 2
v v
bt node current bt node current
veclor char dala veclor char dala
Level 1 [1 ‘ A ‘ T | Level 1 | 1 ‘ A | 3 |
node node T
Level 2 Level 2 4
mefoofe[| wmr[orfc]Tk
Level 3 Level 3
e [000] T[] 'me’ [oco] T]
exit exit
o [1]oooo [o] e [o000 o]
4 sting current 4 sting current
list sum it sum
T 0
Y A\
Lot a] J[n]alr]
bit node current bit node curent
vector char data vector char data
M v

string current
list sum

(A) B) (©)

Fig. 6. (A)The first character to compare with, T, is
passed into the top node. The characters do not match
so a 1 is shifted into the bit vector.

(B) A 2 is next passed in; T moves to the next node and
the value in the top bit vector is added to the 2 passed
in. A 2 is passed in because we do not yet have a valid
substring; until the length of the substring is >= m the
sum values passed in begin at value d+1.

(C) The next character to compare with, C, is passed
into the top node. The currently stored 3 is passed to
level 2, and the T from level 2 goes to level 3; this is a
match so a 0 goes into the level 3 bit vector.

must first perform a comparison of the
given character to the node’s own charac-
ter. If their values match then a value of 0 is
shifted into the right end of the node’s bit
vector. If their values do not match then a
value of 1 is shifted into the bit vector. An
example of this is shown in Fig. 3 (A). If a
number is passed to a node then the node
adds to it the value of the leftmost bit in the
node’s bit vector. An example of this is
shown in Fig. 3 (B).

Most of the nodes in the system follow
the requirements as given above. However
below the leaf nodes, at level m + 1, there
must also be a special type of node called

an exit node. There is a one-to-one corre-
spondence between each leaf node (at level
m) and each exit node. Exit nodes collect
and compare sums passed out of the above
leaf nodes to d, and record which strings
have found the path represented by that
leaf node to be a potential CAS solution. If a
sum value s is less than or equal to d then
we record in the exit node the number of
the string currently being processed in a bit
vector. The reason for this is that any leaf
nodes that result in any sums of d or less
are satisfiable CAS solutions for the given
string. Leaf nodes that result in potential
CAS solutions for every string are verified
CAS solutions for all strings. Once all
strings have been processed through the
systolic system we can determine which
leaves are terminators for verified CAS so-
lutions by checking which exit nodes have
recorded a ‘1’ bit for all input strings. Fig. 4
illustrates a path with its exit node and the
data currently stored in it.

For example, if we begin with the length
3 motif ACT and allow 1 error then the
clump of trees generated consists of 3 lev-
els, with 10 leaf nodes as shown in Fig. 2
(A). Fig. 5 shows nodes on one path leading
to a leaf node; this path represents the
generating motif ACT. If we now begin
processing an example string TCT then Figs
6 to 8 illustrate how the characters, alter-
nating with digits, are propagated through
the system. This example assumes there is
only a total of 4 input strings.

The algorithm is as follows, assuming n
strings of length 1, and that we are search-
ing for CAS motifs of length m with d per-
mitted errors.
preprocessing step:
with first DNA string
fori=0to 1-m

for motif consisting of characters i to i+m
-1
generate all possible motifs at dis-
tance d
build tree consisting of those motifs
reduce nodes by merging trees with identical roots
processing step:

for j=2 to n
forj=2ton
fork=0tol
(1) input character k from string j to top node(s)
of tree array
pass currently stored data to next node(s) down
(2) if tick count < m set x=d+1
else set x=0
input x to the top node(s) of the tree array
pass currently stored character to next
node(s)down
for k=I to l+m
input - to top nodes in order to propagate final sums
to exit nodes
determine which exit nodes are verified CAS solu-
tions
There are two types of node functionalities that
are described below.
regular nodes:
if character data passed in
if character matches node value
shift 0 into right end of node's bit vector
otherwise
shift 1 into right end of node's bit vector
if numeric data passed in
take the number passed in and add to it the
leftmost bit of node's bit vector
exit nodes:
if numeric data passed in
ifvalueis<d
set bit j representing string j in node's
bit vector to ‘1’
if bit vector is all 1s then output ‘1’

4 Discussion

4.1 Analysis

Based on the size of data to be used we can
draw the following conclusions. There can be at
most m levels in all trees, and at most

> {0 o

i=0 N
leaf nodes in each forest. This is the exact
number of motifs generated for each group
of m characters. For example, for m=10 and
d=2 this results in 436 possible motifs. We
are in this case limiting ourselves to 4 sym-
bols in our alphabet (A, C, T, and G); further
comments on this are given in Section 5
(Future Work).

Regardless of the number of leaves, the
processing of each subsequent string is
performed in constant time, requiring 21 +
m steps for each string. This allows each
character to move through the m levels of
the forest as well as the intermediate nu-
meric values for summing the errors en-
countered.

-~

T
v

node current
wvector char data

<

bit node current bit
vector char data

Level 1
Level 2

node
Level 3
node

-

494 w0
Pl
g
8

exit

string curren

string current
list sum

list sum

ﬂ-
o
S
S
S
32
g
« o
ﬂH
o
<]
S
<)
E

char

string current
list sum

(D) (E) (F)

Fig. 7. (D) A 2 is next passed in, shuffling each of the
pieces of data down to the next levels. Note that because
the characters match a 0 is shifted into the rightmost bit of
the level 2 node's bit vector.

(E) The final character T is passed in, causing the 3, C, and
3 values to move to the next levels down. The middle 3 be-
comes a 4 as we add the leftmost bit of the bit vector at
level 2.

exit
node

(F)AOiQ T et -
v v
bit node current bit node current
vector char data vector char data
ot [TTAT-] 1
L_z,,e lor]c |-k w2 [o1]c]1] o
e e [00] T T}
[}

0000

sting current
list sum

string current
list sum

i
o
(=]
o
=
.
iz
e
=

bit node current
wveclor char data

Level 1
node

HH
A

Level 2
node
Level 3
node

o
o
H

=

1

string curren
list sum

(G) (H) U]

Fig. 8. In both (G) and (H) a - is passed in, in order to
propagate the sum value for the entire motif down to the
exit node.

exit
node

ﬁ'
o
=1
o

(I) The final data is passed in, and the sum for the motif
TCT reaches the exit node. The sum is equal to d indicat-
ing that TCT is a potential CAS solution.

The big issue for any implementation of

this type of technique is the memory limi-
tations. Each regular node requires
e a maximum of m bits to store a bit vector,
e 2 bits for storing its character data, and
e memory for storing the numeric data (ef-
fectively the count of non-matches previ-
ously seen) to be passed into the node.
It should be noted that this memory does
not need to be stored on chip; in fact it
could be stored in external SDRAM.

If we allow 8 bits for the numeric data
then the maximum sum value is 255, which
should be far greater than will ever be re-
quired, as such a large value would mean
that the motif lengths are 255, which would
likely far exceed the memory capacity of
any type of implementation. Exit nodes re-
quire

a bit vector of length 1 to store the string
list,
memory for storing d, and
memory to store the numeric data passed
in as above.
It is likely that 4 bits would be sufficient to
store d, as that would allow a maximum er-
ror factor of 15.

This is clearly a design intended for
hardware implementation, as each node
will in effect behave as a separate proces-
sor as the data is passed down through the
structure on each clock pulse. The most
important aspects to such a design are the
node structure, as a great number of nodes
are required, and the implementation of
sharing of nodes. Optimization of the node
structure has not yet been considered, as
we have concentrated primarily on how
sharing of the trees can be accomplished.
Shared paths must be identified in the pre-
processing step, which would take place in
software. Finding sharing is accomplished
by traversing a tree with the string to be
added. When the tree "stops" in the middle,
then one adds the remaining nodes. If the
end is reached then the branch is complete.
Once the hardware design is in place it is
possible to compare to any number and
any size of DNA strings desired. An area
requiring some thought is that of careful
selection of the first DNA string, the string
used to generate the systolic array struc-
ture.

Initial implementation work targeting a
Spartan 2E 200 FPGA found that a proces-
sor node implementation requires 8 CLBs
and operates at 166.639 MHz. An exit node
implementation requires 130 CLBs with a
clock rate of 57.991 MHz. An implementa-
tion of the forest illustrated in Fig. 2 (A) (21
processing nodes and 10 exit nodes) re-
sulted in 1452 CLBs operating at 57.991
MHz. However, since the exit nodes are
only required to process every second in-
put, the overall clock speed can be in-
creased through simple clock management.
A revised implementation of Fig. 2 (A) us-
ing a clock divider resulted in 1472 CLBs
with a clock speed 0f 93.032 MHz.

4.2 Comparisons to Previous Work

Perhaps the earliest works related to
this area would be [7], [8], [9] and [10].
The work in [9] introduces a hardware im-
plementation of a systolic array technique
published in [7]. It targets an application-
specific reconfigurable chip referred to as
SPLASH. Around the same time [8] intro-
duced VLSI architectures for string and
pattern matching; however this was before
the advent of FPGAs and so the concept of a
regular structure for this type of processing
was, of itself, a novel concept.

Cheng and Fu [8] also introduced an al-
gorithm for implementation on the new ar-
chitecture. [10] presents the most recent of
these implementations, each of which are
focused primarily on computing the edit-
distance between the reference string and
one or more other strings. Our work re-
moves a number of contraints that these
earlier works are limited by, but loses the
specificity of the results: that is, the loca-
tion, within a particular error factor, of
common motifs can be identified by our
technique, but the edit distance costs for
substitution, deletion and insertion are
each fixed at 1.

For many years a basic local alignment
search tool (BLAST) [4] has been com-
monly used; however to our knowledge the
implementation of BLAST in [4] is strictly a
software solution. Subsequent works such
as [11] propose a number of algorithms for
parallel string matching, but requires a
specific type of reconfigurable mesh archi-
tecture for these algorithms. [12] intro-
duces a bit-vector algorithm for approxi-
mate string-matching which uses dynamic
programming, but again, assumes that a
software implementation will be used. [13]
discusses the FASTA3 program package,
which offers a variety of algorithms im-
plemented for string similarity searching,
and later [14] and [15] use a hashing tech-
nique to index into portions of the DNA
string and speed searches, but all imple-
ment only in software.

Since these earlier publications, other
researchers have suggested the use of
FPGAs in solving this problem. For in-
stance, [16] suggests a dynamic program-
ming technique implemented on a FPGA;
however their approach requires run-time
reconfiguration of the FPGA. In [17] an-
other FPGA implementation of a systolic
array technique is proposed, but this pro-
posal also requires one or more reconfigu-
ration phases before a solution can be
found. [18] investigates a FPGA implemen-

tation of the general case of the Smith-
Waterman algorithm, which appears to be
promising, but without any optimization of
the programming elements or of the data
storage, both of which are introduced in
our work. As well, our work differs in that
we design a solution beginning with a spe-
cific string to which we can then compare
other strings. There is an upfront cost in
our approach as opposed to a general ap-
proach such as [18], but it allows a more
optimal design that we assume would al-
low the additional cost to be ammortized
over repeated comparisons. Another FPGA
implementation is suggested in [19]; they
emulate portions of the well-known BLAST
on a FPGA. Like our work, only a single
pass is required for performing any com-
parison, and a tree structure allowing for
parallel processing is utilized. Again, how-
ever, the intent of ours is to optimize for a
specific problem, while this option is not
factored into the work in [19].

Although it is very difficult to give a fair
comparion amongst many of these works, a
rough guide based on performance num-
bers reported in [19] is interesting. Table 1
gives the performance, in seconds, for two
implementations reported on in that work,
one hardware and one software. Like our
solution their FPGA implementations also
require some preprocessing time and this
is not included in these numbers. Our
numbers are generated by taking the ob-
served achievable clock speed of our clock-
divided implementation and using this to
compute values based on the worst case
number of steps that would be required for
the given query length. We are not given a
motif length to compare to, and so this
value is left out of our equation; however
as we can see in Table 1 a value of m = 4 or
even m = 100 is not going to make a great
deal of difference. As mentioned earlier,
however, it is very difficult to perform a
fair comparison; the reader is reminded
that our technique does not, as yet, incor-
porate indels into the matching process,
and is somewhat limited by the fact that we
need a set motif length to search for. The
system to which we are comparing is ad-
mittedly far more mature and complete.

One aspect that might be commented on
is that of scoring. Many of the other de-
scribed systems identify matching motifs
with certain scores associated to the
matches; these scores refer to the number
of errors encountered in identifying the
match. This is particularly important in
many of the systems that work on heuris-

TABLE 1
TIMES IN SEC. FOR PROCESSING VARYING
LENGTH QUERIES USING METHODS ARE RE-
PORTED IN[19].

Pla Query Length
tfor
m
2 5 1 2
0 0 0 0
0 0 0 0
0 0
He 2 5 1 2
rbo . 0 0
rdt 5
be
st
FP
GA
He 4 1 1 3
rbo 9 1 6 2
rdt + 0 3 4
BL 3 + + +
AS 6 7 9
T
sof
tw
are
our . . .
wo 0 0 0 0
rk 0 0 0 0
(co 0 0 0 0
mp 0 0 0 0
ute 0 1 2 4
d 4 0 1 3
tim 3 7 5 0
es) 0

tics and are not guaranteed to find the best
matches. In our system we also have a scor-
ing system inherent in the value of d that is
both used to generate the forest of allow-
able motifs, as well as to keep track of
whether a query string has a CAS solution.
In our currently implementation we iden-
tify a CAS solution by identifying exit nodes
that have sum values of d. A sum value of 0
might be achieved in some special case
where the motif ‘AAA’ is matched with a
query string of ‘AAA’, but we assume that
this is unlikely to happen with any regular-
ity. In most cases the sum value will be ex-
actly d.

One might also assume that the size of
the query might be an issue; however this
is not the case for our technique. Instead, it
is the size of the motif and the number of
allowed errors that cause greater sizes
(and numbers) of trees to be built. To the
authors' knowledge, this is not necessarily
information that is available when first
searching for CASs amongst a database of
strings. To overcome this problem, we
might suggest computing an arbitrarily
large motif size and error factor, such that

all reasonable CAS solutions would be iden-
tified.

Unfortunately, one clear problem with
this approach is the size requirements. Let
us provide some numbers to demonstrate.
One of the more recent FPGAs from Xilinx
has approximately 50000 slices, which
translates to about 13000 CLBs [20]. A mo-
tif of size m = 10 with allowable error fac-
tor d = 2 would result in at most 436 leaf
nodes, as computed using Equation 1. As-
suming no sharing of paths this would re-
sult in 4360 processor nodes and 436 exit
nodes. At 8 CLBs per processor and 130
CLBs per exit node we end up requiring
34880 CLBs for processor nodes alone, and
56680 CLBs for the exit nodes. Clearly this
has far outstripped the capability of the Xil-
inx Virtex 5 to which we previously re-
ferred! However, one must remember that
we are using a form of decision diagram to
share paths, and so there should be consid-
erably fewer than 436 leaf nodes. The the-
ory behind decision diagrams, and in par-
ticular ordered binary decision diagrams
(OBDDs) gives us some ideas as to how we
can reduce this number. In the usual type
of ordered decision diagram, any two
nodes with identical labeling and identical
subtrees (i.e. trees below these nodes on
the path from root to leaf) can be shared,
thus removing one of the nodes and redi-
recting incoming paths from the removed
node to the other. The reader is directed to
[21] for further details on OBDDs. However
in our application although we can share
some nodes, we have more stringent shar-
ing rules. For instance, in a “regular” deci-
sion diagram, there are only p leaf nodes
where p is the size of the alphabet used (or
in other words, the number of possible val-
ues the node may be assigned). In our ap-
plication entire paths from top node to leaf
node can be shared, and identical upper
portions of paths can be shared; however,
unique paths must result in unique leaf
nodes.

A final comment on motifs may be rele-
vant. We note that on the Web BLAST web
page National Center for Biotechnology In-
formation [22] information seems to indi-
cate that common word sizes are 2 or 3,
thus indicating the sufficiency of very small
motifs.

5. Future Work

There are many aspects to DNA match-
ing that we have not yet designed into this
system. These include identifying reverses

and repeats of motifs, possibly using algo-
rithms such as those introduced in [23],
[24] and [25].

We note also that on Web BLAST Na-
tional Center for Biotechnology Informa-
tion [22] the nucleic codes supported in-
clude A (adenosine), C (cytidine), G (gua-
nine), and T (thymidine). However it goes
on to allow N (any of A, G, C or T) and U
(uridine), as well as a limited number of
other degenerate nucleotide codes. It
would not be a dificult matter to adjust our
system to include these, although of course
it would increase the size of the trees and
forests to be implemented. For amino acid
codes there is a considerably longer list of
accepted codes; again, our system could be
manipulated to manage this, but we have
not yet attempted to do so and cannot
comment on the impact it may have.

One possible technique to deal with in-
dels might be to use a software wrapper to
drive the matching process. We might re-
cord in a database, possibly using the on-
board SRAM if available with the FPGA,
where each motif is found. The preprocess-
ing step must assign a unique id for each
leaf node generated by a given motif, and
then we can use a hash table to hash leaf
ids to locations in the original string. Be-
cause our system performs so quickly we
can then identify longer motifs with indels
by using a software wrapper to do the fol-
lowing:

search for motifs of size m, distance d;
record all possible CAS solutions and their
locations in the query string; and

based on these CAS solutions match motifs
that are a certain distance apart, resulting
in motifs that may be found close to each
other in the database string.

Another alternative might be to use a
special character to encode insertions, such
as - (as used on webBLAST). Deletions are
more difficult, but a deletion in the query
string can be considered to be an insertion
in the database string, and so any system
allowing for insertions in either the query
or database string will cover this possibil-
ity as well.

6. CONCLUSION

This paper presents a design for a sys-
tolic type of structure intended for use in
determining common approximate sub-
strings amongst many DNA strings in a
search set. This design is intended to use
software for the preprocessing step, which
will then generate a hardware description

for implementation in a reconfigurable de-
vice. The implementation phase of this
work is not yet completed, although pre-
liminary results for each type of node are
reported in Section 4.1. The authors have
also been able to simulate an implementa-
tion for the forest of nodes shown in Fig. 2
(A), illustrating the feasibility of the design.
Work in this area is continuing, and will ul-
timately result in a complete implementa-
tion which will be compared to previous
work such as [26]. Results obtained thus
far by this solution are positive.

There are a number of important differ-
ences between this and previous work.
Many researchers suggest the use of a re-
configurable device in their solution but
require multiple reconfiguration phases
[16] or either processing in multi direc-
tions or a back-tracking phase [11], [26]. In
our solution data progresses in one direc-
tion through the structure, thus giving us a
fixed and constant time for determining
CAS solutions. This work is also intended
for use on an off-the-shelf FPGA, rather
than a hybrid grid structure or any other
specialized type of hardware.

A very important result of this work is
that, in comparison to other techniques,
this is the first and only technique to sug-
gest the building of a forest in which por-
tions of the component trees can be shared.
As introduced by Bryant [21] structures re-
ferred to as Reduced Ordered Binary Deci-
sion Diagrams have come to be widely used
in many areas due to the efficiency of ap-
plying operations on them and to the fact
that they provide a unique representation
for any given binary function. It is upon this
concept that the notion of our forest of
trees is built, and we anticipate that our
work may be able to leverage many of the
advances from recent studies into decision
diagrams. We should note that [24] dis-
cusses a weighted suffix tree in this con-
text, but to our knowledge this has not
been used in a hardware implementation.

In addition to the above contributions,
we also note that we did not find any other
work in the literature that attempted to de-
sign a solution optimal to a particular prob-
lem instance, with a view to amortizing the
extra cost over multiple uses. Given the in-
tended use of our design; that is, to be used
in finding common approximate substrings
in multiple DNA sequences, we feel that
this approach is likely to have a lower
overall cost than many general approaches.

While our initial proof-of-concept testing
has shown very favourable results, future

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

work must involve further implementation
and thorough testing. We hope to incorpo-
rate other algorithms that include consid-
ering repeats of motifs and reverses of the
motif(s) in question. We also plan to incor-
porate other error factors in determining
common motifs, such as gaps and deletions,
into this work.

7. ACKNOWLEDGEMENT

This work was supported in part by a grant
from the Natural Sciences and Engineering
Research Council of Canada. Software and
hardware used in this work was provided
by the Canadian Microelectronics Corpora-
tion (CMC).

8. REFERENCES

A. D. Smith, "Common Approximate Substrings,"

2003.

P. A. Evans, A. D. Smith, and H. T. Wareham, "On

the Complexity of Finding Common Approximate

Substrings," Theoretical Computer Science vol. 306, pp.

407--430, 2003.

J. E. Rice and K. B. Kent, "Systolic Array Techniques

for Determining Common Approximate Substrings,"

in Proceedings of the International Symposium on

Circuits and Systems (ISCAS), 2006, p. CDROM paper

1480.pdf.

S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and

D. J. Lipman, "Basic Local Alignment Search Tool,"

Journal of Molecular Biology vol. 215, pp. 403--410,

1990.

P. Pevzner and S. H. Sze, "Combinatorial
Approaches to Finding Subtle Signals in DNA
Sequences,”" in Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology
(ISMB), 2000, pp. 269--278.

A. Y. Zomaya, Parallel Computing for Bioinformatics
and Computational ~ Biology: ~ Models, Enabling
Technologies and Case Studies: John Wiley & Son, 2006.
R. J. Lipton and D. Lopresti, "A Systolic Array for
Rapid String Comparison," in Proceedings of the
Chapel Hill Conference on VLSI, 1985, pp. 363--376.

H. D. Cheng and K. S. Fu, "VLSI Architectures for
String Matching and Pattern Matching," Pattern
Recognition vol. 20, pp. 125--141, 1987.

D. T. Hoang and D. P. Lopresti "FPGA
Implementation of Systolic Sequence Alignment," in
Field-Programmable Gate Arrays: Architectures and
Tools for Rapid Prototyping, 2nd International Workshop
on Field Programmable Logic, G. Herbert and W. H. L.
H. Reiner, Eds., 1992, pp. 183--191.

R. Sastry and N. Ranganathan, "A Systolic Array for
Approximate String Matching," in Proceedings of the
IEEE International Conference on Computer Design
(ICCD), 1993, pp. 402--405.

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

H. Lee and F. Ercal, "RMESH Algorithms For Parallel
String Matching," in Proceedings of the 3rd
International Symposium on Parallel Architectures,
Algorithms and Networks (I-SPAN’97), 1997, pp. 223--
226.

G. Myers, "A Fast Bit-vector Algorithm for
Approximate String Matching Based on Dynamic
Programming," Journal of the ACM, vol. 46, pp. 395--
415,1999.

W. R. Pearson, "Flexible Sequence Similarity
Searching with the FASTA3 Program Package,"
Methods in Molecular Biology, vol. 142, pp. 269--278,
2000.

A. Califano and I. Rigoutsos, "FLASH: a Fast Look-
up Algorithm for String Homology," in Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 1993, pp. 353--
359.

I. Rigoutsos and A. Califano, "Searching in Parallel
for Similar Strings," IEEE Computational Science and
Engineering vol. 1, pp. 60--75, 1994.

Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A.
Konagaya, "High Speed Homology Search Using
Run-Time Reconfiguration," in Proceedings of Field-
Programmable Logic and Applications (FPL) 2002. vol.
2438, 2002, pp. 281--291.

R. P. Jacobi, M. Ayala-Rincon, L. G. A. Carvalho, C.
H. Llanos, and R. W. Hartenstein, "Reconfigurable
Systems for Sequence Alignment and for General
Dynamic Programming," Genetics and Molelcular
Research vol. 4, pp. 543--552, 2005.

S. Dydel and P. Bala, "Large Scale Protein Sequence
Alignment Using FPGA Reprogrammable Logic
Devices," in Proceedings of the 14th International
Conference on Field Programmable Logic and Application
(FPL). vol. 3203/2004, 2004, pp. 23--32.

M. C. Herbordyt, J. Model, B. Sukhwani, Y. Gu, and T.
VanCourt, "Single pass streaming BLAST on
FPGAs," Parallel Computing vol. 33, pp. 741--756,
2007.

Xilinx, "Virtex5 Family Overview," 2009.

R. Bryant, "Graph-Based Algorithms for Boolean
Function Manipulation," IEEE Transactions on
Computers vol. C--35, pp. 677--691, 1986.

NCBI, "NCBI BLAST," 2009.

C. S. lliopoulos, C. Makris, Y. Panagis, K. Perdikuri,
and E. Theodoridis, "The Weighted Suffk Tree: An
Efftient Data Structure for Handling Molecular
Weighted Sequences and its Applications,”
Fundamenta Informaticae, vol. 71, pp. 259--277, 2006.
C. lliopoulos, K. Perdikuri, E. Theodoridis, and A. T.
a. n. K. Tsichlas, "Algorithms for Extracting Motifs
from Biological Weighted Sequences," Journal of
Discrete Algorithms, vol. 5, pp. 229--242, 2007.

I. Lee, C. Iliopoulos, and K. Park, "Linear Time
Algorithm for the Longest Common Repeat
Problem," Journal of Discrete Algorithms vol. 5, pp.
243--249, 2007.

K. B. Kent, J. E. Rice, S. V. Schaick, and P. A. Evans,
"Hardware-Based Implementation of the Common

Approximate Substring Algorithm," in Proceedings of
the Euromicro Symposium on Digital System Design:
Architectures, Methods and Tools (DSD), 2005, pp. 314--
320.

J. E. Rice is currently an Associate Professor with the
Department of Mathematics and Computer Science at the
University of Lethbridge. She is a member of the |IEEE
and the IEEE Computer Society. Her research interests
include reversible logic, representations of Boolean func-
tions, and multiple-valued logic, as well as FPGAs and
reconfigurable hardware.

K. B. Kent is currently an Associate Professor with the
Faculty of Computer Science at the University of New
Brunswick. He is a member of the IEEE and the IEEE
Computer Society. His research interests include Hard-
ware/Software Co-Design, Reconfigurable Computing,
Software Engineering, and Embedded Systems

