
Ordering Techniques for ESOP-Based Toffoli Cascade Generation

J. E. Rice and N. M. Nayeem
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

{j.rice, noor.nayeem}@uleth.ca

Abstract

This paper describes three techniques for ordering
ESOP cubes prior to generation of a Toffoli gate genera-
tion. Two of these techniques are from earlier work, while
the third is a new approach. The new approach both re-
orders the cubes and manipulates them to reduce their
size and complexity. Our experiments demonstrate that
the new approach is much more effective than either of the
two previous approaches. We apply template matching as
a post-processing step, which results in even further re-
ductions in the number of Toffoli gates.

1. Introduction

The motivation behind reversible logic is that the laws
of physics limit the energy efficiency of traditional irre-
versible logic, a limit which is likely to be reached within
the next 10 to 20 years. In order to advance beyond this
point circuits will require an increasing amount of re-
versibility in their design. It was demonstrated as early
as the 1960s [7] that reversible logic would be necessary
for lower power dissipation in circuits. Reversible logic
also has connections to quantum computing, and in fact
reversible circuits can be viewed as a special case of quan-
tum circuits [12]. One author notes that “... logic synthe-
sis for classical reversible circuits is a first step toward
synthesis of quantum circuits” [15]. Synthesis techniques
for traditional irreversible logic are of little use when the
goal is a reversible cascade of gates, and thus many re-
searchers are investigating new techniques in this area.

This paper compares the results of using different cost
metric functions for synthesizing Toffoli gate networks
from an initial exclusive-or sum-of-products (ESOP) rep-
resentation of a Boolean function as well as presenting
a new method. The initial function may be reversible or
irreversible; our technique ensures that the final cascade
is reversible. Since the use of templates is a well-known
reversible logic technique that requires the circuit to al-
ready be in reversible form, we compare results of our
cost metrics both before and after applying templates.

2. Background

2.1. ESOP Synthesis

An n-bit generalized Toffoli gate is a reversible logic
gate that has n inputs and n outputs and is described as
(x1, x2, . . . , xn)→ (x1, x2, . . . , (x1 ·x2 · · ·xn−1)⊕xn).
A NOT gate is a special case of a Toffoli gate where n =
1.

An exclusive-or sum-of-products (ESOP) representa-
tion of a switching function is similar to the standard
sum-of-products representation except that ORs are re-
placed with XORs. An ESOP can be used to repre-
sent any Boolean function [16], and a gate-level model
of a reversible circuit may be generated from an ESOP
by simply replacing each cube with a Toffoli gate. The
straightforward method of replacing cubes with Toffoli
gates would require that the circuit have 2n + m input
lines, or qubits;1 one for each inverted literal, one for each
non-inverted literal, and one for each output. To reduce
this to n +m we use a NOT gate to invert the line when
needed; however with a poor ordering of the cubes this
can result in an unnecessary number of gates. It is there-
fore important to use some technique to find a “good”
ordering.

For the first two ordering methods in this work a cost
metric is calculated for each input variable. The input
variable with the lowest cost is chosen, and the ESOP
cubes are sorted such that all cubes containing the non-
negated form of the selected variable appear before all
cubes containing its negated form. This allows a single
NOT gate to divide the negated and non-negated forms.
Where the variable in a cube is a don’t-care (-) the cube is
placed in the non-negated list. The process is continued
for the negated and non-negated lists until all variables
have been selected.

1The technically correct term is, in this area, qubits, since we assume
some future quantum implementation. The reader is referred to [12] for
details on quantum computing.

1

2.2. The Cost Metrics

2.2.1 Alpha-Beta Cost Metric

The following technique was introduced in [3].

costv = α
1∑
|vi|

+ β
∣∣∣∑ vi

∣∣∣ (1)

where

v in cubei

{
v is positive vi = 1

vi = −1
vi = 0

The cost metric described above is computed for each
variable v in turn. The frequency sum (which is multi-
plied by α) determines how often the variable is used in
one form or another over the entire function, while the
balance sum (which is multiplied by β) determines the
absolute value of the difference between the number of
0s and the number of 1s assigned to that variable. Thus if
a variable appears in the function relatively rarely and has
close to an equal number of 0s and 1s its cost is computed
to be lower. Further details of this technique are given in
[3] and [13].

2.2.2 AC Cost Metric

The autocorrelation (AC) transform, based on Equation 2,
can be used to transform a function from the traditional
Boolean domain to the spectral domain. The resulting
data can be used to perform an analysis of the relative
dependency of the function on its variables.

Bfg(τ) =

2n−1∑
v=0

f(v) · g(v ⊕ τ) (2)

The AC transform is obtained when f and g in Equa-
tion 2 are the same function. Applying the AC transform
provides a value of how a function compares with itself
at a “shift” of some value, given by τ . This shift corre-
sponds in effect to inverting the inputs corresponding to
values of 1 in the binary expansion of τ . Of the result-
ing AC coefficients, only first-order coefficients (where a
single variable is inverted) are used in this cost metric as
it allows a measurement of the function’s dependency on
that variable. Theoretically, a higher value for a coeffi-
cient indicates less of a dependency, thus a variable with
a low coefficient should be chosen first for generating an
ordering. An example is shown in Figure 1. Coefficients
for multiple-output functions can be computed by apply-
ing the AC transform to each output separately and then
combining the results for all outputs. Further details and
examples are given in [14].

x3x2x1 f(X)

000 0
001 1
010 0
011 1
100 0
101 1
110 1
111 1

(a) Truth table.

τ B(τ)

000 5
001 2
010 4
011
100 4
101
110
111

(b) First order AC coeffs.

Figure 1: The AC coeffs for f(X) = x1 ⊕ x3x2x1.

2.3. Related Work

There are a variety of synthesis techniques for re-
versible logic in the literature, for instance [15, 9, 4] and
[6]. We briefly mention a few of these techniques which
use an ESOP or similar representation.

Gupta et al. [4] present a reversible logic synthesis
technique based on a related representation, the positive-
polarity Reed-Muller (PPRM) expansion. This work uses
a tree structure to investigate all possible factors of each
term, allowing the construction of a circuit that shares fac-
tors. However the PPRM representation is a special type
of ESOP with a more rigorous definition, and thus will
almost always have more terms than the ESOP represen-
tation used in our work.

The techniques suggested by Perkowski et al. in [6]
and an earlier work [11] also have some relation to the
general ESOP-based approach. The more recent of these
works requires a factorization of each of the ESOPs repre-
senting the multiple outputs, and a new class of reversible
gates is introduced. This method reported achieving good
results in terms of gate numbers, but appears to require a
large number of garbage outputs.

More recently Hamza and Dueck [5] have suggested
a linear programming approach to ESOP cube ordering.
Further comparisons to this work are given in Section 5.

2.4. Template Optimization

One of our investigations involved the application of
templates in order to further optimize the circuit sizes.
According to [2] a template is used to replace a sequence
of gates within a Toffoli network with a different se-
quence of gates without altering a newtork’s function. In
addition the replacement sequence should be smaller than
the replaced sequence. Due to lack of space we direct the
reader to [2] for further details.

2

3. Proposed New Method

The previous two ordering methods for ordering ESOP
cubes in preparation for generating a Toffoli-gate cascade
can be improved upon, and in this Section we propose a
new method. This method has two steps: in the first step
a number of rules are applied to the ESOP cube-list, and
in the second step the list is then ordered to minimize the
number of NOT gates. Unlike the previous two methods,
in which the only improvement can be reduction of the
number of NOT gates, the purpose of the following rules
is to reduce the both the number of NOT gates and/or the
size of the Toffoli gates.

3.1. Rules

For Rules 1 and 2 we consider the following cube:

x1x2 . . . xn → f1f2 . . . fm (3)

• Rule 1 If the cube contains only don’t care values,
i.e. x1 = x2 = . . . = xn = −, then for every output
fp = 1, where p ∈ {1, 2, . . . ,m}, the qubit of the
corresponding output line is inverted and the cube is
removed from the cube-list. Usually, output lines are
initialized with a 0 qubit. The purpose of this rule is
to remove the NOT gates required for this cube and
complement the initial values of the corresponding
output lines.

• Rule 2 If xi = 0 and xk = −, ∀k ∈ {1, 2, . . . , n} −
{i}, then for every output fp = 1 where p ∈
{1, 2, . . . ,m}, the qubit of the corresponding output
line is inverted and xi is set to 1. The purpose of this
rule is to complement xi.

x1 x2 f1 f2
- - 1 0
0 - 1 1

(a) Cube-list

x1
x2

f1
f2

1
0

(b) After applying
Rule 1.

x1
x2

f1
f2

0
1

(c) After applying
Rules 1 and 2.

Figure 2: An example of applying Rules 1 and 2 to gen-
erate a Toffoli gate cascade from an ESOP cube-list.

An example is shown in Figure 2.
The following illustrates the labeling used for explana-

tion of the next four rules:

Cube1 x1x2 . . . xi−1xixi+1 . . . xj−1xjxj+1 . . . xn
→ f1f2 . . . fp−1fpfp+1 . . . fm

Cube2 y1y2 . . . yi−1yiyi+1 . . . yj−1yjyj+1 . . . yn
→ g1g2 . . . gp−1gpgp+1 . . . gm

• Rule 3 If xi = 0, xj = −, yi = −, yj = 0, xk = yk,
∀k ∈ {1, 2, . . . , n} − {i, j}, and fp = gp = 1 for
any p ∈ {1, 2, . . . ,m}, then Cube1 and Cube2 can
be transformed into the following four cubes.

Cube1′ x1x2 . . . xi−1 1 xi+1 . . . xj−1 − xj+1 . . . xn
→ 00 . . . 010 . . . 0 (fq = 0 ∀ q 6= p)

Cube2′ y1y2 . . . yi−1 − yi+1 . . . yj−1 1 yj+1 . . . yn
→ 00 . . . 010 . . . 0 (gq = 0 ∀ q 6= p)

Cube3 x1x2 . . . xi−1 0 xi+1 . . . xj−1 − xj+1 . . . xn
→ f1f2 . . . fp−1 0 fp+1 . . . fm

Cube4 y1y2 . . . yi−1 − yi+1 . . . yj−1 0 yj+1 . . . yn
→ g1g2 . . . gp−1 0 gp+1 . . . gm

The objective of applying this rule is to complement
both xi and yj . We note that this rule can create two more
cubes, however if fq = gq = 0 ∀q ∈ {1, 2, . . . ,m}−{p}
then the last two cubes are not required since the output
parts of these cubes are all zero. In order to avoid creat-
ing any new cubes unnecessarily this rule is only applied
when fp = gp ∀p ∈ {1, 2, . . . ,m}. An example is shown

x1 x2 x3 f1 f2
0 - 1 1 1
- 0 1 1 1

(a) The initial cube-list.

x1 x2 x3 f1 f2
1 - 1 1 1
- 1 1 1 1

(b) The result of applying Rule 3.

x1
x2

f1
f2

x3
0
0

(c) Circuit generated
by creating Toffoli
gates for each cube in
Figure 3a.

x1
x2

f1
f2

x3
0
0

(d) Toffoli cascade
for the cube-list in
Figure 3b.

Figure 3: Example of applying Rule 3.

in Figure 3.

• Rule 4 [1] If xi = 1, xj = 1, yi = 0, yj = 0, and
xk = yk ∀k ∈ {1, 2, . . . , n}−{i, j}, and fp = gp =
1 for any p ∈ {1, 2, . . . ,m}, then Cube1 and Cube2
can be transformed into the following five cubes.

Cube1′ x1x2 . . . xi−1 1 xi+1 . . . xj−1 − xj+1 . . . xn
→ 00 . . . 010 . . . 0 (fq = 0 ∀ q 6= p)

Cube2′ y1y2 . . . yi−1 − yi+1 . . . yj−1 1 yj+1 . . . yn
→ 00 . . . 010 . . . 0 (gq = 0 ∀ q 6= p)

Cube3 y1y2 . . . yi−1 − yi+1 . . . yj−1 − yj+1 . . . yn
→ 00 . . . 010 . . . 0 (gq = 0 ∀ q 6= p)

Cube4 x1x2 . . . xi−1 1 xi+1 . . . xj−1 1 xj+1 . . . xn
→ f1f2 . . . fp−1 0 fp+1 . . . fm

Cube5 y1y2 . . . yi−1 0 yi+1 . . . yj−1 0 yj+1 . . . yn
→ g1g2 . . . gp−1 0 gp+1 . . . gm

The purpose of this rule is to reduce the size of the Tof-
foli gates when transforming the cubes into gates. This

3

rule can create three extra cubes, which is not at all desir-
able. Like Rule 3, if fq = gq = 0 ∀q ∈ {1, 2, . . . ,m} −
{p}, then the last two cubes are not required. For exam-

x1 x2 x3 f1 f2 f3
1 1 1 1 1 1
0 0 1 1 1 0

(a) An initial cube-list.

x1
x2

f1
f2

x3
0
0

f30

(b) Circuit generated by
creating Toffoli gates
for each cube in Fig-
ure 4a.

x1 x2 x3 f1 f2 f3
1 - 1 1 1 0
- 1 1 1 1 0
- - 1 1 1 0
1 1 1 0 0 1

(c) A cube-list equivalent to Figure 4a.

x1
x2

f1
f2

x3
0
0

f30

(d) Toffoli cascade for
the cube-list in Fig-
ure 4c.

Figure 4: Example of applying Rule 4.

ple, we can apply Rule 4 to the cubes shown in Figure 4a.
Only outputs f1 and f2 contain both cubes. As the output
f3 does not include the second cube, application of this
rule will generate two extra cubes as shown in Figure 4c.

• Rule 5 If xi = 1 or 0, yi = − and xk = yk
∀k ∈ {1, 2, . . . , n} − {i}, and fp = gp = 1 for
any p ∈ {1, 2, . . . ,m}, then Cube1 and Cube2 can
be transformed into the following three cubes.

Cube1′ x1x2 . . . xi−1xixi+1 . . . xj−1xjxj+1 . . . xn
→ 00 . . . 010 . . . 0 (fq = 0 ∀ q 6= p)

Cube3 x1x2 . . . xi−1xixi+1 . . . xj−1xjxj+1 . . . xn
→ f1f2 . . . fp−1 0 fp+1 . . . fm

Cube4 y1y2 . . . yi−1 − yi+1 . . . yj−1yjyj+1 . . . yn
→ g1g2 . . . gp−1 0 gp+1 . . . gm

This rule eliminates one cube but may create two extra
cubes. If fq = gq = 0 ∀q ∈ {1, 2, . . . ,m}−{p}, then the
latter two cubes are not generated. Similar to Rule 4, this
rule helps reduce the size of required Toffoli gates. For

x1 x2 x3 f1 f2
1 1 1 1 1
- 1 1 1 1

(a) An example cube-list.

x1 x2 x3 f1 f2
0 1 1 1 1

(b) The result of applying Rule 5.

x1
x2

f1
f2

x3
0
0

(c) Circuit for Fig-
ure 5a.

x1
x2

f1
f2

x3
0
0

(d) Circuit for
Figure 5b.

Figure 5: Example of applying Rule 5.

example, consider the cube-list given in Figure 5a. We

apply Rule 5 to generate the modified cube-list as shown
in Figure 5b, which consists of only one cube. Since two
functions f1 and f2 have both cubes, one cube from the
original cube-list (Figure 5a) can be removed and no more
cubes are generated.

Applying the rules in different order can change the
results. We have found through experimentation that ap-
plying the rules in the order 4, 5, 1, 2 and 3 produces
better results for a number of benchmark circuits. Further
investigation and experimentation into this is required.

3.2. Ordering

After applying the rules, a greedy approach is used to
reorder the cubes. All the input variables initially have
positive polarity. A sequence with the length of number
of input variables is used to determine the current polarity
of each variable. This sequence is initialized with all 1s
and changed after reordering each cube (adding a NOT
gate) which alters the polarity. The algorithm begins with
the cube which has the least number of 0s i.e., the highest
number of 1s and don’t care values. The sequence is then
updated, and the distance between this sequence and each
of the remaining cubes is calculated. The term distance
refers to the Hamming Distance, or the count of the num-
ber of variables with positive polarity in one cube and
negative polarity in the other. The cubes with distance
zero are reordered without changing the sequence, and
hence no more NOTs are needed for these cubes. Next
the cube with the minimum positive distance is consid-
ered due to the requirement of the fewest possible NOT
gates when this cube will be transformed into a Toffoli
gate. If two or more cubes have the same distance then
the cube with more don’t care values is selected. The
process is repeated until all cubes are processed.

4. Experiments

The following process was used to generate the final
benchmark test results: 1. generate an ESOP represen-
tation for each benchmark using EXORCISM-4 [10]; 2.
generate a Toffoli gate cascade using each of the different
ordering and/or cube manipulation approaches; 3. convert
the synthesized circuits into a form usable by the template
optimization algorithm; and 4. perform template opti-
mization on each of the reformatted synthesized circuits.
Comparisons among the approaches were performed both
before and after templates were applied. All experiments
were performed on a 3.00GHz Intel(R) Pentium(R) 4 ma-
chine with 1GB RAM running CentOS release 5.3. The
benchmarks used are listed in Table 2.

4

avg % reduction num. of smaller
gate count circuits generated

AB vs AC 18% 56 out of 77
AB+t vs AC+t 2% 47 out of 77

NM vs AB 91% 70 out of 77
NM vs AB+t 11% 61 out of 77

NM+t vs AB+t 14% 63 out of 77

Table 1: Comparisons between the various ESOP order-
ing and optimization methods.

5. Results & Discussion

The AB and AC approaches were first compared in
[14], although this previous work did not report com-
parisons after applying template optimization. Our tests
show that even with the application of templates the AB
cost metric still outperforms the AC method.

The proposed new method (NM) of sorting ESOP
cubes prior to generating a Toffoli gate cascade proved
to be very effective. We have restricted our comparisons
to the AB cost metric method, as that was the better of
the prior two methods tested. For these comparisons we
use the best result generated by all values of alpha for
each of the 77 benchmarks. Without applying template
optimization, the NM resulted in a 90% average reduc-
tion in gates, and generated a smaller circuit on 70 out
of 77 of the benchmarks tested. After applying template
optimization to both methods we still obtained improve-
ments of an average 81% reduction in gates and a smaller
circuit on 63 out of 77 benchmarks. Table 1 summarizes
the results. The notation “+t” indicates that template op-
timization was used as a post-processing step. It is inter-
esting to note that template optimization is able to reduce
67 of the benchmarks by an average of 19 gates when
applied after the AB method, while for the new method,
template optimization only improves the resulting circuit
for 40 benchmarks, and for those 40 there is an average
reduction of 5 gates.

We briefly discuss our work in comparison to the work
by Dueck and Hamza [5] which also looks at a more ef-
fective ordering approach combined with attempting to
reduce cube sizes. The most significant difference lies in
our pre-application of rules to minimize the number and
sizes of the Toffoli gates, which does not take place in the
Dueck and Hamza approach. It is difficult to make ac-
curate comparions between their work and ours as there
is a relatively small overlap of benchmarks, and we also
suspect that benchmarks that appear to be the same are
not necessarily so. Future work will involve generating
a common list of benchmarks, likely from the Revlib li-
brary [17], in order to carry out a thorough comparison
between our two efforts. In order for the readers to exam-

ine our results for themselves we have included in Table 2
the list of benchmarks used in this work, as well as both
gate count and quantum cost results. The quantum costs
are based on values for Toffoli gates as given in [8];

6. Conclusions and Future Work

This paper introduces a new technique for manipulat-
ing and ordering ESOP cubes prior to generating a cas-
cade of Toffoli gates from the ESOP list. In addition we
apply template optimization to results from our new tech-
nique as well as two previously published techniques, in
order to determine whether any technique might be better
or worse suited to post-application of template optimiza-
tion. We found that the AC cost metric is generally the
least effective, while the AB cost metric with α = 0 was
more effective. Application of templates improved the re-
sults from both of these approaches, but we still found the
AB results to be better than the AC results. However, the
proposed new rule-based method achieved better results
than even of the two previously introduced methods, be-
fore and after templates were applied. Work on the new
proposed method is still in its preliminary phases, and
can benefit from further experimentation and in particu-
lar comparisons to results such as those reported by [4, 6]
and in particular [5].

Acknowledgment

This research was funded by a grant from the Natural
Sciences and Engineering Research Council of Canada
(NSERC). The authors would like to thank J. Zaretski for
his aid in generating some of the data for this paper.

References
[1] D. Brand and T. Sasao. Minimization of AND-EXOR ex-

pressions using rewrite rules. IEEE Transactions on Com-
puters, 42(5):568–576, 1993.

[2] G. W. Dueck, D. M. Miller, and D. Maslov. Toffoli
network synthesis with templates. IEEE Tranactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 24(6):807–817, June 2005.

[3] K. Fazel, M. Thornton, and J. E. Rice. ESOP-based Tof-
foli gate cascade generation. In Proceedings of the IEEE
Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), pages 206–209, 2007.
Aug. 22–24, Victoria, BC, Canada, IEEE Press.

[4] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm
for synthesis of reversible logic circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 25(11):2317–2330, Nov. 2006.

[5] Z. Hamza and G. W. Dueck. Near-optimal ordering of
ESOP cubes for Toffoli networks. In Proceedings of the
2nd Annual Workshop on Reversible Computation (RC),
2010. July 2–3 Bremen, Germany.

5

Table 2: Benchmarks used, along with results from each
of the AC, AB, and NM approaches. All results are after
template matching.

[6] M. H. A. Khan and M. A. Perkowski. Multi-output ESOP
synthesis with cascades of new reversible gate family. In
Proceedings of the 6th International Symposium on Rep-
resentations and Methodology of Future Computing Tech-
nology (RM), pages 144–153, 2003.

[7] R. Landauer. Irreversibility and heat generation in the
computing process. IBM Journal of Research and De-
velopment, 5:183–191, 1961.

[8] D. Maslov and G. W. Dueck. Improved quantum cost
for n-bit Toffoli gates. Electronics Letters, 39(25):1790–
1791, Dec 2003.

[9] D. M. Miller, D. Maslov, and G. W. Dueck. A transfor-
mation based algorithm for reversible logic synthesis. In
DAC ’03: Proceedings of the 40th Cconference on Design
Automation, pages 318–323, New York, NY, USA, 2003.
ACM.

[10] A. Mishchenko and M. Perkowski. Fast heuristic mini-
mization of exclusive sum-of-products. In Proceedings of
the 5th International Reed-Muller Workshop (RM), pages
242–250, 2001. August 10–11, Starkville, Mississippi.

[11] A. Mishchenko and M. Perkowski. Logic synthesis of
reversible wave cascades. In Proceedings of the Interna-
tional Workshop on Logic Synthesis (IWLS), pages 197–
202, 2002. June 4–7, New Orleans, USA.

[12] M. A. Nielsen and I. L. Chuang. Quantum Computation
and Quantum Information. Cambridge University Press,
2000.

[13] J. E. Rice, K. B. Fazel, M. A. Thornton, and K. B. Kent.
Toffoli gate cascade generation using ESOP minimization
and QMDD-based swapping. In Proceedings of the In-
ternational Symposium on Representations and Method-
ology of Future Computing Technologies (RM), pages 63–
71, 2009.

[14] J. E. Rice and V. Suen. Using autocorrelation coefficients-
based cost functions in ESOP-based Toffoli gate cascade
generation. In Proceedings of the 23rd IEEE Cana-
dian Conference on Electrical and Computer Engineering
(CCECE), pages 1–6, 2010. May 2–5, Calgary, Canada.

[15] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes.
Synthesis of reversible logic circuits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 22(6):710–722, June 2003.

[16] B. Steinbach and A. Mishchenko. SNF: a special nor-
mal form for ESOPs. In Proceedings of the International
Symposium on Representations and Methodology of Fu-
ture Computing (RM), pages 66–81, 2001.

[17] R. Wille, D. Große, L. Teuver, G. W. Dueck, and
R. Drechsler. Revlib: an online resources for reversible
functions and reversible circuits. In Proceedings of the
38th International Symposium on Multiple-Valued Logic
(ISMVL), pages 220–225, 2008. May 22–23, Dallas,
Texas.

6

