
On Designing a Ternary Reversible Circuit for Online Testability

Md. R. Rahman and J. E. Rice
Dept. of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

Email: {j.rice; md.rahman7}@uleth.ca

Abstract

Reversible logic has the potential to solve the problems
of energy efficiency that are beginning to create roadblocks
in the continued advancement in complexity and decrease
in component size of today’s computer systems. Multiple-
valued versions of reversible logic can provide even further
advantages, but there is currently in the literature little to
no work on testability of such designs. This paper details
work on designing an online testable block for ternary re-
versible logic. We build on earlier work that introduced the
basic design, and provide some improvements and modifi-
cations. The proposed testable block can be used to imple-
ment most ternary logic operations and is capable of testing
the reversible ternary network in real time (online). Since
all parts of the testable block are constructed of reversible
building blocks, the block is itself reversible and thus mul-
tiple such blocks can be combined to construct complete,
testable ternary reversible circuits.

Keywords: ternary logic, reversible logic, online testable
circuits, two-pair two-rail checker

1 Introduction

The traditional model for today’s circuits is irreversible;
that is, it is not possible to unambiguously reconstruct the
inputs given a particular output. The implication behind this
is that information is lost, and we observe that in the heat
dissipation that must be managed. At the current rate of
technological advancement, this problem may soon cause
us to hit a roadblock in our increasing reduction in the
size of components, as well as the simultaneous increase in
complexity. In order to advance beyond this point, energy-
recovering techniques will be required and eventually re-
quire an increasing amount of reversible logic in digital de-
sign. Reversible computing recovers energy by conserving
information when performing logic, storage, and communi-
cation operations using reversible transformations [5]. This
has been known since the 60s, when Landauer [14] and

later Bennett [1] both proved that reversible logic would be
necessary for lower power dissipation in circuits. More re-
cently researchers have applied these theories to areas such
as supercomputing [2]. While many of us are familiar with
Boolean (binary, two-valued) logic, both in traditional (ir-
reversible) circuit design and reversible models, there are
many advantages to moving to a multiple-valued paradigm,
or at least considering problems using a less restricted
model. Many existing problems have simpler solutions
when approached using a p-valued (p > 2) model [16], and
existing work has shown a variety of ways to implement and
model ternary reversible logic [3, 8, 9]. With all these rea-
sons to investigate reversible multiple-valued logic design,
many researchers are developing logic synthesis and opti-
mization techniques; however there is much less work on
fault detection. As anyone in this industry is aware, fault-
tolerance and testing of computer systems and their com-
ponents is absolutely essential. Works such as [13, 18] and
[22] are beginning to address this area, however the areas of
modeling faults of ternary reversible circuits and real-time
online fault detection have yet to be addressed, despite the
clear significance of these areas.

In this work we build on the ideas first introduced in [19].
We discuss the design of ternary reversible logic blocks that
can be combined to implement most basic ternary logic
functions, and have the ability to test the functions while
the circuit is under operation (online testing). We present
details of the designs and use in Section 3, and discuss
their internal architectures in Section 4. A two-pair two-
rail checker is used to implement a cascade of such testable
blocks; design of this is briefly discussed in Section 4.1.

2 Background
2.1 Ternary Reversible Logic

The ternary reversible blocks in this paper are built using
ternary Toffoli, Feynman, and Muthukrishnan-Stroud (M-
S) gates. Quantum realizations for the ternary Toffoli and
Feynman gates using M-S Gates are discussed in [10], as is
background for the M-S gate. Figure 1 illustrates the basic

F2
A
B

A
A ⊕ B

(a) General operation of the two
input Feynman gate.

A
0

A
A

COR

(b) The copy gate.

Figure 1. The two input ternary Feynman
gate.

Fn

X1
X1 ⊕ X2X2

X1

Xn X1 ⊕ X2 ⊕ ⋅⋅⋅ ⊕ Xn

(a) The n input Feynman gate.

Tofn

X1
X2X2

X1

Xn (X1X2 ⋅⋅⋅ Xn-1) ⊕ Xn

(b) The n input Toffoli gate.

Figure 2. The general formats of the n input
ternary Toffoli and Feynman gates.

two input ternary Feynman gates. The reader will note that
the copy gate, sometimes denoted by a C inside a circle, is
simply the two input Feynman gate with the bottom input
set to 0. The Feynman gate can be extended to n inputs,
as shown in Figure 2. Another popular reversible gate is
the Toffoli gate, which is also illustrated in Figure 2. For
further details we refer the reader to [10] for an excellent
overview of the notation used in this area as well as further
background and explanation.

2.2 Fault Models

Recognizing and modeling the behaviour of possible de-
fects in a circuit is known as fault modeling. [6] discusses
how different levels of abstraction in circuit design can re-
sult in different fault models. Our technique builds on the
method proposed in [21], which characterizes the type of
fault that the proposed circuit will identify as a single bit
error. A single bit error occurs whenever the value of an
output has been changed because of an internal circuit er-
ror. This is referring to a block of output values, within
which the change on any one output line can be identified.
The design detects any single bit error occurs in the gates
within a particular block and propagates the result to the
outputs. This type of fault falls best into Niraj and Gupta’s
functional fault model category: models that focus on the
faults in functional blocks of the system, with the goal of
ensuring fault-free behaviour of the blocks. The reader is
directed to [6] for a discussion of fault models, and [22] for
a beginning in the discussion of fault models as related to
reversible logic.

2.3 Online Testing

Online testability is the ability of a circuit to test a por-
tion of the circuit while the circuit is operating [21]. Detect-
ing a fault in operation, the point of occurrence and in some

cases, attempt to recover from fault are the major focus of
research into online testing [6]. Similar processes for binary
reversible logic have been discussed in [6] and [7]. In tradi-
tional circuit design offline testability is often implemented
in built-in self-test (BIST) structures; however we are not
aware of any investigations towards this for reversible logic.
Niraj and Gupta provide an overview of BIST in [6] should
the reader be interested in further details.

2.4 Related Work

In [21] the authors propose online testable logic blocks
for binary reversible logic. Two gates designated R1 and R2
are used in pairs to implement testable portions of reversible
circuits, which are then cascaded together so that the entire
circuit is checked. Figure 3 illustrates their design. The

(a) R1 gate. (b) R2 gate.

Figure 3. The two gates proposed in [21] for
online testing of reversible circuits.

R1 gate is designed to implement arbitrary Boolean func-
tions; for instance, the OR operation can be implemented
by setting the inputs A = P = 0 which produces output
W = B ⊕ C or output U = A ⊕ C can be directly used.
The R2 gate generates the complement of the input R at S
only if the inputs remain unchanged. The input R is 1 dur-
ing normal operation. Hence, if R = S in any situation,
it represents the presence of a fault in the circuit and thus
detects the flaw. The basic idea is that the R1 gate is used to
implement binary functions while the R2 gate is used to de-
tect faults. [21] also proposes a rail checker circuit to detect
flaws in testable blocks in a larger circuit. The rail checker
takes inputs from multiple R2 blocks and combines the re-
sults so that many parts of the circuit can be checked for
faults. Details are given in [21].

In another related work, authors of [15] propose a univer-
sal reversible logic gate that can be used to construct online
testable circuits. A principle similar to that used in [21] and
[20] to detect the faults in logic blocks is also used in this
approach. The gates used in this approach are shown in Fig-
ure 4. We propose using a similar principle to design online
testable ternary reversible logic blocks.

(a) (b)

Figure 4. The gates proposed in [15] for on-
line testing of reversible circuits.

3 Online Testable Ternary Reversible Logic
Block

We next describe the design for an online testable ternary
reversible logic block. The basic concept is similar to that
described in [21], but we have extended this work to the
ternary case and as well corrected some problems. The on-
line testable ternary reversible logic block, or TR, is com-
posed of two individual blocks as was first described in [19].
In this section we begin with the blocks originally proposed
and then go on to describe the modifications that have re-
cently been made.

3.1 The TR1 Block

The TR1 block is the ternary reversible testable block
that is used to implement the logic needed for the function-
ality of the circuit. The 4*4 TR1 block can be defined as
I = (A,B,C, P) and O = (L = AB ⊕ C,M = A ⊕
B,N = 2AB,Q = P ⊕A⊕B⊕C), where I and O are in-
put and output sets respectively. The block is shown in Fig-
ure 5. This block is used to implement the five basic func-

Figure 5. Ternary TR1 gate.

tions: AND, OR (EXOR), successor, negation/complement
and mod-difference. The unary operation called successor
(−→x) is defined as (x+1)modp [16] where x is the input and
p is the cardinality of the logic value (in this case, 3). As an
example, let x = 1 and assume we wish to find −→x . Setting
inputs A = x = 1, B = 1, C = 0, P = 0 in TR1 produces
the desired result, M = A⊕B = x⊕ 1 = 2 = −→x .

3.2 The TR2 Block

The TR2 block incorporates the online testing features.
The 4 ∗ 4 TR2 block can be defined as I = (D,E, F,R)

and O = (U = D,V = E,W = F, S = R ⊕ D ⊕ E ⊕
F), where I and O are input and output sets respectively.
Outputs U , V and W are the copies of inputs D, E and F ,
which provide these values for further use in the circuit if
necessary. Figure 6 shows the block diagram of the TR2
block (shown as a sub-component of the encompassing TR
block). Output S is used to detect any single bit error when
TR2 is cascaded with a TR1 block to form an online testable
circuit.

3.3 The Online Testable Block

To construct an online testable ternary reversible block
(TR), the TR1 and TR2 blocks are cascaded together. When
the TR1 and TR2 blocks are used to construct an online
testable block, input P of the TR1 block and input R of the
TR2 block are set so that P =

−→
R . For normal operation we

simply set P = 0 and R = 1. Figure 6 shows the compo-
sition of the TR block. TR1 takes ternary logic values at A,

Figure 6. Configuration of the online testable
ternary reversible block TR.

B, C as its inputs and we set P = 0. The inputs A, B and C
are a set depending on the required operation as discussed
in Section 3.1. At its Q output, TR1 explicitly generates
the value of the expression P ⊕ A⊕ B ⊕ C where P = 0.
A⊕B ⊕ C should be equal to L⊕M ⊕N only if no flaw
occurs inside TR1 and the inputs remain unchanged. TR2
is used to transfer the input values D, E, F to outputs U , V
and W where D = L, E = M , F = N as well as generate
the error-detecting bit at the output S which should be the
successor of Q if no flaw occurs in TR2 or in TR1.

The error detection principle used by the online testable
block is relatively simple. The values at output S should be
the successor of Q’s value if all other inputs of the blocks
remain unchanged.

For example, let A = 0, B = 1 and C = 2. The outputs
of TR1 would be L = AB ⊕ C = 2, M = A ⊕ B = 1,
N = 2AB = 0 and Q = P ⊕ A ⊕ B ⊕ C = 0. Since
TR2 receives the outputs L, M , N of TR1 as its inputs i.e.
D = L = 2 , E = M = 1, F = N = 0 and, the output S
would be S = R ⊕ D ⊕ E ⊕ F = 1. Therefore, S is the
successor of Q since it is assumed there is no change in the
inputs anywhere in the middle of operation. Let’s say that,
in the middle of operation in TR1, input A is changed to 2
due to an error. Input values for computing L, M , N will

be changed to A = 2, B = 1 and C = 2 whereas for Q, it
is still A = 0, B = 1 and C = 2. Therefore, the outputs
of TR1 become L = 1, M = 0, N = 1 and Q = 0. Since
TR2 will take the flawed L, M , and N outputs as its inputs,
it will generate S = 0 which violates the condition of the
error free circuit S =

−→
Q since here S is not a successor of

Q. Hence the presence of a fault is assumed.

3.4 Single bit error detection policy

Any single bit error in the input combination must gen-
erate a result of different pattern in outputs from the pattern
that would be generated for the combination of inputs be-
fore the error occurs. The result or output (Q) for the single
bit error must never be the same as the result for the error-
free situation, as otherwise the fault cannot be detected.
This condition is the core of the single bit error detection
policy. [19] elaborates further on how the TR block oper-
ates in accordance with this policy. This principle is the one
that is suggested in [21], however in their work it is possi-
ble to determine certain input combinations that differ by a
single bit and yet do not result in a change in the output.
This could result in the failure to detect faults for those in-
put combinations. We have developed our TR block design
such that there are no input combinations that differ by a
single bit but give the same output.

4 Internal Designs
The TR1 block is built from basic Toffoli and Feynman

gates, and three 2-input Feynman gates are used to imple-
ment the TR2 block. Figure 7 shows the TR1 block while
Figure 8 illustrates the TR2 block.

Figure 7. Internal diagram of the TR1 block.

Figure 8. Internal diagram of the TR2 block.

4.1 Two Pair Two Rail Checker Circuit

Error checking and correcting is often implemented us-
ing one of two main techniques: parity codes and two rail

checkers [17]. Two pair rail checkers compare the outputs
from more than one identical system. We use a ternary re-
versible two pair two rail circuit in this work to cascade
TR blocks in order to build an entire testable circuit. This
concept has also been used in the reversible context by
other authors such as in [4] and [21]. Our rail checker
circuit is designed using ternary 1-qudit permutative gates
and ternary controlled-controlled gates. Figure 9a shows
the rail checker block diagram, and full details are given
in [19]. The rail checker circuit is designed in such a way
that if the inputs are successors of each other, i.e. y0 =

−→
x0

and y1 =
−→
x1, the rail checker will generate X3 = 1 and

X4 = 2, so that X4 =
−→
X3, otherwise it generates the com-

binations where X4 6= −→X3. For example, let us say x0 = 1,

(a) Block diagram of two pair two rail checker.

B0 B1 X3 X4
True True 1 2
True False 1 0
False True 0 2
False False 0 0

(b) Truth table for the possi-
ble input states and the corre-
sponding outputs of block B0
and B1.

Figure 9. Two pair two rail checker.

y0 = 2, x1 = 0 and y1 = 1. Then the two pair two rail
checker will produce X3 = 1 and X4 = 2 as its output.
Again let us assume x0 = 1, y0 = 2, x1 = 2 and y1 = 1;
then the two pair two rail checker will produce X3 = 1 and
X4 = 0 as its output. Since in this case y1 6= −→x1, the rail
checker generates X4 6= −→X3.

The internal architecture of the rail checker consists of
an upper block to compare x0 and y0 and a lower block to
compare x1 to y1. We label the upper block B0 and the
lower block B1. The table in Figure 9b demonstrates that
the rail checker circuit produces X3 = 1 and X4 = 2, (i.e.
X4 =

−→
X3) at the output only when both of the input sets

have successive (y0 =
−→
x0 and y1 =

−→
x1) values. The table

uses the value True if the inputs of a block are successors of
each other, and False otherwise.

5 Sample Design
In [21] the author implemented the NAND-NAND form

of the Sum of Product (SOP) expression F = ab + cd us-
ing the proposed testable blocks. In ternary, a Galois Field
Sum of Product (GFSOP) expression can be directly im-
plemented in a similar way by a ternary reversible circuit.
Thus as an example we will implement the same function,
i.e. F = ab + cd, to demonstrate that the proposed blocks
in this paper can successfully implement a GFSOP expres-
sion. Figure 10 shows the implementation of F using the
proposed online testable ternary reversible blocks. Use of

TR1 TR2 TR1 TR2

TR1 TR2

Two Pair Two

Rail Checker

Two Pair Two

Rail Checker

a

b

0

P = 0

L = ab

Q

U =ab

c

d

0

x

P = 0

L = cd

Q

 R=1 R=1

 R=1

QP = 0

U=cd

1

cd

L = ab+cd
 ab+cd

S

S

S

x0
x0

x1 x1

y0
y0

y1 y1

X3

X4

Figure 10. Online testable ternary reversible implementation of function F = ab+ cd.

variables more than once can be implemented by duplicat-
ing variables using duplicating ciruits which can also be im-
plemented by the proposed TR block. The final output of
the second rail checker can be used if the function needed
to be extended; i.e. if additional logic were to be added.

6 Modifications

This work was introduced as preliminary work in [19].
Since that time small modifications to the designs have been
made. In particular the TR1 and TR2 blocks have modified
outputs to allow for more efficient and flexible implemen-
tation of circuits using the testable blocks, and the internal
designs of each of these gates have been improved. Here we
provide some discussion of the modifications to the internal
designs.

Both ternary Toffoli and Feynman gates can be imple-
mented either using Generalized Ternary Gates (GTG) or
M-S gates. GTGs are discussed in [12] and [9]. According
to these works, GTGs provide an easy quantum realization
using technologies such as ion-trap. However the design
of a single Toffoli gate requires at least 8 GTGs [9]. Our
design for the TR1 block requires two Toffoli gates and 9
Feynman gates, resulting in 25 GTGs. The TR2 block re-
quires 3 Feynman gates, and therefore requires 3 GTGs. In
total, 28 GTGs are needed. The count can be further re-
duced to 26 by replacing the two Feynman gates used to
generate 2AB in Figure 7 by a 1*1 dual-shift-gate, as pro-
posed in [11]. This is a very simple gate that implements
x→ 2x.

A smaller solution can be achieved by using 3-qutrit gen-
eralized Toffoli gates, as proposed in [10], and M-S gates to
implement the Feynman gates. 3-qutrit generalized Toffoli
gates can be used to realize GFSOP minterms of an arbitrary
ternary function. The total number of M-S gates required to
construct the TR1 block can be easily calculated. There are
two 3*3 Toffoli gates, each requiring 28 M-S gates and nine
2*2 Feynman gates, each requiring 4 M-S gates [10]. This
results in a total of 92 M-S gates. The output A is not con-
sidered as garbage since it is a primary input of the block.

Hence there are only four garbage outputs.1

Further improvements can be achieved by reusing the A,
B, and AB outputs of the Toffoli gates to generate A ⊕ B,
2AB and AB ⊕ C. Output AB must be copied by a Feyn-
man gate because of the fan out limitation. One of the
copies is EXORed with C to generate AB ⊕ C and the
other copy is passed through a dual shift gate to generate
2AB. We can further reduce the cost by excluding the copy
gates and reorganizing the Feynman gates. Since we are
using only one Toffoli gate and use mostly Feynman gates
and one dual shift gate, the cost will be dramatically re-
duced. Figure 11 shows the new design of the TR1 block.
Figure 12 shows the realization of the TR1 block using a

Figure 11. Upgraded design of TR1.

generalized Tofolli gate, five Feynman gates and one dual
shift gate. The cost to realize this design is 28 M-S gates to
build the Toffoli gate, 4 M-S gates for each Feynman gate,
and one M-S gate for the dual shift gate, for a total of 49 M-
S gates. Therefore the cost is reduced by 55.4% in the new
design. The most significant achievement, however, is the
fact that we have reduced the number of garbage lines to 0.
This is a remarkable improvement, as nearly all reversible
implementations require garbage lines.

7 Conclusion

The testable blocks described in this paper use basic
ternary building blocks to incorporate online testing fea-
tures for ternary reversible circuits. We describe two gates

1According to [12] the quantum cost of a M-S gate is one, so we use the
count of M-S gates for comparison of the original and improved designs.

Figure 12. Realization of upgraded TR1 block

to be used in conjunction; the first gate is used to implement
the desired functionality, while the second incorporates on-
line testing to check for correct functionality at all times.
These two gates can be used to build small parts of a ternary
reversible circuit, and then these parts can be cascaded to-
gether using a dual-rail circuit (described in [19]) so that
the entire circuit will be checked. The underlying concepts
are based on that introduced in [21], although their work is
strictly binary while we have extended it to the ternary case.
As far as we are aware this is the only online testable design
currently in the literature for ternary reversible logic. These
are the first such combination to be proposed for ternary
reversible logic. Work is continuing in a number of areas,
including improved implementations for the TR1 and TR2
gates, analysis of overhead requirements and the develop-
ment of synthesis approaches utilizing our gates.

Acknowledgment
This research was funded by a grant from the Natu-

ral Sciences and Engineering Research Council of Canada
(NSERC).

References

[1] C. H. Bennett. Logical reversibility of computation. IBM
Journal of Research and Development, 6:525–532, 1973.

[2] E. P. DeBenedictis. Reversible logic for supercomputing.
In Proceedings of the 2nd ACM Conference on Computing
Frontiers, pages 391–402, 2005. May 4–6, Ischia, Italy,
ACM Press.

[3] G. Epstein. A summary of investigation into three and four
valued logic. In Proceedings of the 8th International Sympo-
sium on Multiple-Valued Logic, page 257, 1978. Rosemont,
Illinois, United States.

[4] N. Farazmand, M. Zamani, and M. B. Tahoori. Online fault
testing of reversible logic using dual rail coding. In Proceed-
ings of the IEEE 16th International On-Line Testing Sympo-
sium (IOLTS), pages 204–205, 2010. Corfu, 5-7 July.

[5] M. P. Frank. Introduction to reversible computing: motiva-
tion, progress, and challenges. In Proceedings of the 2nd
Conference on Computing Frontiers, pages 385–390, New
York, NY, USA, 2005. ACM.

[6] N. Jha and S. Gupta. Testing of Digital Systems. The Press
Syndicate of the University of Cambridge, 2003.

[7] B. W. Johnson. Design and Analysis of Fault-tolerant Digi-
tal Systems. Prentice-Hall International, 1985.

[8] M. Khan. Design of reversible/quantum ternary comparator
circuits. Engineering Letters, 16:2:178–184, May 2008.

[9] M. H. A. Khan. Quantum realization of ternary toffoli gate.
In Proceedings of the 3rd International Conference on Elec-
trical and Computer Engineering, 28-30 December, 2004.

[10] M. H. A. Khan and M. A. Perkowski. Quantum ternary par-
allel adder/subtractor with partially-look-ahead carry. Jour-
nal of Systems Architecture, 53:453–464, 2007.

[11] M. H. A. Khan, M. A. Perkowski, and P. Kerntopf. Multi-
output Galois field sum of products synthesis with new
quantum cascades. In Proceedings of the 33rd International
Symposium on Multiple-Valued Logic (ISMVL), pages 146–
153, 2003. M 16–19, Tokyo.

[12] M. H. A. Khan, M. A. Perkowski, and M. R. Khan. Ternary
Galois field expansions for reversible logic and Kronecker
decision diagram for ternary GFSOP minimization. In Pro-
ceedings of the 34th International Symposium on Multiple-
Valued Logic, pages 58–67, 2004. Toronto, Canada, 19-22
May.

[13] D. K. Kole, H. Rahman, D. K. Das, and B. B. Bhattacharya.
Synthesis of online testable reversible circuit. In Proceed-
ings of the IEEE 13th International Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems
(DDECS), pages 277 – 280, 2010. Vienna, 14–16 April.

[14] R. Landauer. Irreversibility and heat generation in the com-
puting process. IBM Journal of Research and Development,
5:183–191, 1961.

[15] S. N. Mahammad and K. Veezhinathan. Constructing online
testable circuits using reversible logic. IEEE Transactions
on Instrumentation and Measurement, 59(1):101–109, Jan-
uary 2010.

[16] D. Miller and M. Thornton. Multiple Valued Logic: Con-
cepts and Representations. The Morgan and Claypool Pub-
lishers, 2008.

[17] D. Nikolos. Self-testing embedded two-rail checkers. Jour-
nal of Electronic Testing: Theory and Applications, 12(1–
2):69–79, Feb./April 1998.

[18] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes. A family
of logical fault models for reversible circuits. In Asian Test
Symposium, pages 422–427, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[19] M. R. Rahman and J. E. Rice. Online testable ternary re-
versible circuit. In Proceedings of the Reed-Muller Work-
shop, 2011. accepted for presentation May 25–26, Tuusula,
Finland.

[20] D. Vasudevan, P. K. Lala, J. Di, and J. P. Perkerson. Online
testable reversible logic circuit design using NAND blocks.
In Proceedings of the 19th IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems (DFT’04),
pages 325–330, 2004.

[21] D. P. Vasudevan, P. K. Lala, J. Di, and J. P. Perkerson. Re-
versible logic design with online testability. IEEE Transac-
tions on Instrumentation and Measurement, 55(2):406–414,
April 2006.

[22] J. Zhong and J. C. Muzio. Analyzing fault models for re-
versible logic circuits. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pages 2422–2427,
2006. Vancouver, BC.

