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Abstract

This paper presents a simple technique to convert an
ESOP-based reversible circuit into an online testable cir-
cuit. The technique does not require redesigning the whole
circuit for integrating the testability feature, and no new
garbage outputs are produced other than the garbage out-
puts needed for the ESOP-circuit. With a little extra hard-
ware cost, the resultant circuit can detect online any single-
bit errors. Experimental results show that the proposed
technique can achieve an improvement of up to 58% in
quantum cost and 99% in garbage outputs in average, com-
pared to the previous work.

1. Introduction

Nowadays, reversible logic is gaining popularity because
of its characteristics to dissipate nearly zero energy. Tradi-
tional logic loses information during computation, causing
a certain amount of heat dissipation [11]. This amount of
heat is small at present, but it will become significant in the
near future if Moore’s law remains true. Bennett showed
that a circuit consisting of only reversible gates dissipates
zero energy [4]. According to Frank [8], reversible logic
can recover a fraction of energy that can reach up to 100%.
As there is no limit in reducing the heat dissipation in re-
versible logic, the amount of dissipated heat will become
very close to zero. Research on reversible computing is use-
ful for various technologies such as quantum computing [1],
low power CMOS design [3], optical computing [19], nan-
otechnology [16], and bioinformatics.

A good amount of research work has been carried out in
the area of reversible logic testing. However, there is not
much work in the literature on reversible logic with online
testability, except for the designs in [23, 22, 12, 13, 6, 10].
In this paper, we present a simple but efficient approach
to construct online testable circuits which can detect any
single-bit errors. Our technique works with the ESOP-

based reversible logic synthesis described in [7], and hence
no new synthesis approach is required. The general idea of
our proposal is to add gates and a parity line so that any
single-bit fault is propagated both forward to the end of the
circuit as well as “down” to the parity line. Thus by exam-
ining a single line at the end of the circuit, any single-bit
fault can be detected.

2. Background

2.1. Reversible logic

A reversible gate has the same number of inputs and out-
puts, mapping each input vector into a unique output vector.
A reversible circuit is built using only reversible gates which
are interconnected without feedback and fan out [21].

The most popular reversible gate is the Toffoli gate.
An n-bit Toffoli gate, given in Figure 1(a), maps the in-
put vector [k1, k2, ... , kn] to the output vector [o1, o2,
..., on], where oj = kj (for j = 1, 2, ..., n-1) and on =
k1k2...kn−1⊕kn. The first (n-1) bits are known as controls.
The last bit is the target which is toggled only if all of the
control lines are 1. Another name for a 2-bit (that is, n = 2)
Toffoli gate is the CNOT gate. A negative-control Toffoli
gate has one or more negative controls; in that case, the tar-
get bit is toggled if all positive controls have the value 1 and
the negative controls have the value 0. A 3-bit Toffoli gate
with a single negative control in its first input is shown in
Figure 1(b).

The extended Toffoli gate (ETG) is a multi-target Toffoli
gate proposed in [5]. For our proposed design, we need a
(n+1)-bit ETG with two targets (on and on+1) as shown in
Figure 1(c). This gate has the input vector [k1, k2, ... , kn,
kn+1] and the output vector [o1, o2, ..., on, on+1], where oj
= kj (for j = 1, 2, ..., n-1), on = k1k2...kn−1⊕kn, and on+1

= k1k2...kn−1⊕kn+1.
Gate count is the simplest way to evaluate different re-

versible circuits. If the functionally and size of the gates
used for synthesis are different, then gate count cannot give
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Figure 1. (a) An n-bit Toffoli gate, (b) a 3-bit
negative-control Toffoli gate, and (c) a (n+1)-
bit ETG.

accurate measure [17]. The quantum cost is the most effec-
tive cost metric in this regard since it refers to the number
of elementary (quantum) gates required to implement the
circuit. The quantum cost of a reversible circuit is the sum-
mation of the quantum costs of its gates. To calculate the
quantum cost, we use the costs of gates given in [14]. Costs
of a Toffoli gate and a negative-control Toffoli gate with at
least one positive control are exactly the same. However, if
all controls are negative, an extra cost of 2 is required. For
more information about the quantum cost, please refer to
[15, 2, 6]. Note that the cost of a (n+1)-bit ETG is 2 + the
cost of an n-bit Toffoli gate.

In reversible circuits, some outputs are required to main-
tain the reversibility property but behave neither as the fi-
nal results nor are they used for further calculations. These
outputs are called garbage outputs. A challenging task in
designing a reversible circuit is to minimize the number of
garbage outputs.

Since the existing online testable designs and our pro-
posed design use different types of gates, we evaluate the
circuits in terms of quantum cost and garbage outputs.

2.2. ESOP-based synthesis

The ESOP-based reversible logic synthesis proposed
in [7] works with the ESOP representation of a function and
uses only Toffoli gates to design the circuit. The resultant
circuit has p input lines and q output lines, where p is num-

ber of input variables and q is the number of output variables
of a function, and the input lines passing through the Toffoli
gates remain unchanged. The synthesis is very simple. The
circuit initially has an empty cascade with p + q lines. A
Toffoli gate is cascaded for each ESOP term of each output.
In other words, every term is mapped into a Toffoli gate.
For example, given a function in the ESOP form, f = abc⊕
cd, a 4-bit Toffoli gate and a 3-bit Toffoli gate are required
to realize the function as shown in Figure 2. The controls of
the first Toffoli gate are the input lines a, b, and c; its target
line is the output line f . Similarly, for the second Toffoli
gate, controls are c and d; the target line is f . Note that if
the ESOP term contains at least one variable in its comple-
mented form, we then use the negative-control Toffoli gate
as suggested by [20].
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Figure 2. An ESOP-based reversible circuit.

3 Related work

Researchers have worked on various topics of reversible
logic testing, such as fault modeling [9], test pattern gen-
eration [18], and many other areas. Here, we review the
implementation of testable reversible circuits as reported in
the literature.

In [23, 22], Vasudevan et al. proposed a design method-
ology to construct a reversible circuit with online testability.
Three 4×4 reversible gates R1, R2, and R were proposed.
The first gate R1 is used to realize NAND, OR, EXOR, and
XNOR operations by setting different values on inputs. One
of the outputs of R1 is the parity output. In R2, the first three
outputs are exactly same as its first three inputs, whereas
the last output is the parity outputs. In order to construct
a testable block, the gates R1 and R2 are cascaded by con-
necting the first three outputs of R1 to the first three inputs
of R2. Thus a testable block contains two parity outputs.
These two parity outputs are then compared to determine
whether a fault has occurred or not. The testable blocks are
used to realize the reversible circuit. A checker circuit, built
using R gates, is also required to test the parities of all the
blocks. The R gate [22], proposed as R3 gate in [23], is a
new 3×3 gate that can be used both to invert and duplicate
a signal.

The authors in [12, 13] extend the above idea to easily



convert a given circuit into an online testable circuit. An
improved version of checker circuit was also proposed.

In a dual rail coding approach [6], a set of 4×4 dual rail
reversible gates were proposed for online fault detection.
Each dual rail gate has two pairs of inputs. Two inputs of
each pair are given in dual rail form, i.e. two inputs that
are the complement of each other (either 01 or 10). If the
outputs appear in dual rail form, then there is no error. How-
ever, a non-dual rail form (either 11 or 00) represents a sin-
gle fault. These dual rail gates are cascaded to generate the
testable circuit. A fault in the circuit propagates to the end
of the circuit. Thus the fault is detected by checking the out-
puts of the circuit. As a result, no checker circuit is required
to test the intermediate gates.

Recently, Kole et al. [10] proposed an online-testing
technique to detect a single missing gate. Although this ap-
proach does not produce any garbage outputs, the quantum
cost for adding the testability feature is quite high.

4 Our Approach

Consider an ESOP-based circuit which is generated from
a function with p input variables and q output variables.
For designing an online testable circuit from a given ESOP-
based circuit, we need some CNOT gates and a parity line
L which is initialized by a 0. The procedure is as follows:

Every n-bit Toffoli gate in the given circuit is replaced
by a (n+1)-bit ETG. The connections of the first n bits of
the ETG remain the same as that of n-bit Toffoli gate. The
last, i.e. (n + 1st) bit of the ETG is connected to L. After
replacing all Toffoli gates, CNOT gates are inserted from all
the output lines to the L line, requiring q more gates. In or-
der to test the input lines, we add CNOT gates from each of
the input lines to L before and after the whole circuit. This
step requires 2p CNOT gates. Now in the resulting circuit,
if a single fault occurs in any of the input lines, output lines
or even in L, the value of L will be changed to 1. If no fault
occurs, L will remain 0. It is important to note that this
technique can also be applied for the ESOP-based circuit
consisting of inverted-control Toffoli gates.

This process of converting a circuit can be best described
by an example. For a given 4-input (I1, I2, I3, I4), 2-output
(I5, I6) ESOP-based circuit shown in Figure 3(a), the corre-
sponding online testable circuit generated by the proposed
technique is shown in Figure 3(b). We can see that Toffoli
gates (t1, t2, t3, and t4) are replaced by ETGs (e1, e2, e3,
and e4). CNOT gates c1-c10 are added to test the input and
output lines.

4.1 Analysis

This section proves that the proposed technique can de-
tect any single-bit faults. Lemma 1 shows the characteris-
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Figure 3. (a) An ESOP-based circuit, (b) On-
line testable reversible circuit.

tics of the ETG, which is used in Lemma 2 to prove the
correctness of our technique. Two examples are also given
to illustrate the propagation of a fault and the detection of
such fault at the end of the circuit.

Lemma 1: Consider an (n+1)-bit ETG (see Figure 1(c))
which maps the input vector [k1, k2, ..., kn−1, kn, kn+1] to
the output vector [o1, o2, ..., on−1, on, on+1], where oj = kj
(for j =1, 2, ..., n-1), on = f ⊕ kn, on+1 = f ⊕ kn+1, and
f = k1k2 ... kn−1. If an error in any input bit between the
first and (n − 1st) bit affects the last two outputs, then on
= f⊕kn and on+1 = f⊕kn+1. If an error occurs in the nth

bit, then on = f ⊕ kn ⊕ 1 and on+1 = f⊕kn+1. �
Proof: Consider a fault in kj , for j = 1, 2, ..., n-1. This

fault affects the calculation of function f only if km = 1,
∀ m ∈ {1, 2, ..., n-1} - {j}. If this condition holds, then
the fault has impact on the last two outputs as both outputs
compute f . Thus on = f ⊕ kn and on+1 = f ⊕ kn+1.

Now, assume a fault occurs in the nth bit; i.e. in kn. This
fault does not propagate to on+1 since on+1 is independent
of kn. However, due to the fault, on = f ⊕ kn = f ⊕ kn ⊕
1. �

Lemma 2: If any single fault occurs on any line, the
value of L changes to 1 and the fault is detected. �

Proof: Consider an online testable circuit generated by
the proposed technique which has N ETGs, p input lines, q
output lines, and a parity line L. Let G = {g1, g2, ..., gN}
be the set of ETGs used in the circuit, and let I1, I2, ...,
Ip be the input lines and Ip+1, Ip+2, ..., Ip+q be the output
lines. All output lines and L are initialized by 0. Given an
(n+1)-bit ETG gi ∈ G and the input vector [k1, k2, k3, ...,



kn−1, kn, kn+1], the output vector is [k1, k2, k3, ..., kn−1,
fgi ⊕ kn, fgi ⊕ kn+1], where fgi = k1k2...kn−1, and n
can be at most p+1. In order to prove this lemma, consider
the following three cases:

Case 1: Assume that a single fault occurs on any input
line, say Iz (for z = 1,2,...,p), which affects a set of gates, X
= {x1, x2, ..., xu} ⊆ G. Consider another set of gates, Y =
{y1, y2, ..., yv} which is not affected by the fault. We have
G = X∪Y , and X or Y can be empty.

As described before, the last two outputs of a gate gi ∈G
computes the same function fgi. A gate yr in Y computes
fyr, for r = 1, 2, ..., v. However, from Lemma 1, due to the
fault, each gate x in X computes fxs, for s = 1,2,...,u.

After the last gate in G, the line Iz has the faulty value
Iz , and L is I1⊕I2⊕ ... ⊕Iz⊕ ... ⊕Ip⊕fy1⊕fy2⊕ ...
⊕fyv⊕fx1⊕fx2⊕ ... ⊕fxu. When all output lines are
EXORed to L at the end, L becomes

I1⊕I2⊕...⊕Iz⊕...⊕Ip⊕fy1⊕fy2⊕...⊕fyv⊕fx1⊕fx2

⊕ ... ⊕fxu⊕fy1⊕fy2⊕ ... ⊕fyv⊕fx1⊕fx2⊕ ... ⊕fxu

= I1⊕I2⊕ ... ⊕Iz⊕ ... ⊕Ip
Finally, when all input lines are EXORed to L, the fault

on Iz is propagated to L, and L becomes
I1⊕I2⊕ ... ⊕Iz⊕ ... ⊕Ip⊕I1⊕I2⊕ ... ⊕Iz⊕ ... ⊕Ip
= Iz⊕Iz = 1.
Since at the end, the line L contains 1, the circuit can

detect the fault.
Case 2: Now consider that a single fault occurs on an

output line Ip+z at any point, where z = 1, 2, ..., q. From
Lemma 1, gates, which have connections with line Ip+z af-
ter the occurrence of the fault, have the faulty values in its
next to last output, but these gates produce the fault free
values on L. For example, a (n+1)-bit ETG will produce
the faulty value in on due to the fault on Ip+z but fault free
value in on+1.

Consider a set of gates, X = {x1, x2, ..., xu} ⊆ G which
have connections with line Ip+z after the fault occurs. Con-
sider another set of gates, Y = {y1, y2, ..., yv} such that Y
= G −X . Each gate xs in X computes fxs, for s = 1,2,...,u.
Similarly, each gate yr in Y computes fyr, for r = 1,2,...,v.

The fault on Ip+z propagates to the end of the line.
Using Lemma 1, the value of the line Ip+z at the end is
fx1⊕fx2⊕ ... ⊕fxu⊕1. As a result, when output and in-
put lines are EXORed to L at the end, the faulty value of
Ip+z appears at L. Thus L becomes

I1⊕I2⊕ ... ⊕Ip ⊕fx1⊕fx2⊕ ... ⊕fxu ⊕fy1⊕fy2⊕
... ⊕fyv⊕I1⊕I2⊕ ... ⊕Ip ⊕fx1⊕fx2⊕ ... ⊕fxu

⊕fy1⊕fy2⊕ ... ⊕fyv⊕1 = 1
Case 3: A fault can also occur on L. This causes L to

have the value 1.
Hence, for any of these cases, the circuit detects the

fault. �
The following two examples describe how this technique

can detect a single fault.

Example 1: For a given 4-input (I1, I2, I3, I4), 2-output
(I5, I6) online testable circuit shown in Figure 4, consider a
single fault on input line I2 just before the first ETG. For the
faulty lines, output values are given in the form [fault-free
value/ faulty value] after each gate. For other lines, only
the fault free values are shown. As can be seen from the
figure, the fault on I2 causes another fault on output line
I5. However, the fault is detectable since the value of L
changes to 1. This example illustrates that the circuit is able
to detect a fault even though it propagates to multiple lines.

Example 2: For a given 4-input (I1, I2, I3, I4), 2-output
(I5, I6) online testable circuit shown in Figure 5, consider
a single fault on output line I5 between the first and second
ETGs. Notice that the fault propagates to the end of I5. Due
to the fault, L becomes 1 and hence the fault is detected.

5 Experimental results

A number of benchmark circuits have been collected
from [24]. Table 1 compares our proposed approach to the
earlier reported approaches [23, 22, 6, 12, 13] in terms of
quantum cost and garbage outputs. In the table, columns
QC and GO represent the quantum cost and the number of
garbage outputs, respectively.

It can be seen from the table that our approach achieves
a huge reduction in quantum cost and garbage outputs for
every circuit. Our design produces 21.1 garbage outputs
on average, whereas the best reported approach [12, 13]
requires 799.9 (see Table 1). The average minimization
of garbage amount is 99%, 98%, and 97% with respect to
[23, 22], [6], and [12, 13], respectively.

We compute the improvement in quantum cost to be on
average 50% (over [23, 22]), 58% (over [6]), and 21% (over
[12, 13]).

6 Conclusion

The proposed online testable reversible design has sev-
eral advantages over the existing designs. The designs
in [23, 22, 6] require new synthesis approach to redesign
the non-testable circuit in order to make it testable whereas
our technique is rather simple since it works on top of the
ESOP-based circuit, adds some CNOT gates and replaces
the Toffoli gates with ETGs. Unlike [23, 22, 12, 13], our
design does not need any checker circuit. One important
feature of our design is that gates added for testing the cir-
cuit do not produce any new garbage. Garbage outputs of
our circuit come from the ESOP-based circuit, which are
negligible comparing with the previous work. Experimen-
tal results also show the efficiency of our design in reducing
the quantum cost (up to 58% reduction in average). In fu-
ture, online detection of multiple errors will be investigated.
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I1
I2
I3

0

I4
0

0

I5
I6
L

1

1

1

1

1

1/0

0

1

1

1

1

0

0/1

0

1

1

1

1

1

1/0

0

1

1

1

1 0 1 0

0

0

1

1

1

1

0

1/0

1

1

1/0

1/0

1

0/1

1

1/0 0/1 1/0 0/1

1/0

1

1

1

1

1

Figure 5. A single fault on output line I5.

Table 1. Experimental results

Circuit Approach in [23, 22] Approach in [6] Approach in [12, 13] Our approach
QC GO QC GO QC GO QC GO

9symml 25598 5952 32220 532 12148 139 11052 9
apex5 195061 45362 213843 3518 68460 1557 53917 117
apla 17815 4142 20574 334 5293 185 3954 10
bw 19019 4422 25140 386 8146 620 4847 5
cm82a 2163 502 2823 50 331 45 159 5
con1 1647 382 1929 38 287 30 180 7
cu 5560 1292 6234 110 1782 82 1326 14
dk17 10376 2412 11478 186 2385 95 1781 10
ex2 1733 402 2241 42 250 23 166 5
ex5p 84852 19732 98898 1540 37476 1518 26838 8
f51m 128927 29982 164889 2670 41842 937 33155 14
frg2 218109 50722 247332 4048 260116 5073 205890 143
max46 15321 3562 19314 326 5501 114 4627 9
misex3 141354 32872 174732 2816 148975 2987 117202 14
rd73 16482 3832 20583 342 1750 140 1052 7
sqn 11236 2612 14256 240 2917 122 2193 7
sqrt8 5689 1322 7086 122 979 76 624 8
sym9 24652 5732 31890 528 12148 139 11052 9
table3 223054 51872 265566 4294 110751 2019 87874 14
z4ml 3883 902 5070 88 1035 97 596 7
Average 57626.55 13400.5 68304.9 1110.5 36128.6 799.9 28424.25 21.1
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