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Abstract— In recent years ternary reversible logic has gained
more attention because of its enormous potential in different
fields, in particular quantum computing. In order for any future
technologies to be reliable they must be testable, thus developing
testing techniques in this area is of great importance. In this
work we propose a new approach for creating an online testable
ternary reversible circuit. To our knowledge this is the first such
circuit of its type to be proposed. The proposed testable block can
be used to implement almost all of the ternary logic operations
and is capable of testing the reversible ternary network in real
time (online). The error detection unit is also constructed in a
reversible manner, and thus the entire reversible testable block
can be used to construct complete reversible circuits.

Keywords: ternary logic, reversible logic, online testable
circuits, two pair two rail checker

I. INTRODUCTION

The area of fault detection for reversible circuits is fairly
new although works such as [1], [2] and [3] are beginning to
address this area. A great deal of effort has focused on finding
ways to design and build ternary reversible gates and circuits.
However the areas of modeling faults of ternary reversible
circuits and detection of the faults in real time have yet to
be addressed, despite the clear significance of these areas.
There is a great deal of motivation to do so, in particular
since quantum computing is rapidly emerging as an area of
importance. Since quantum logic operations are reversible,
studying how to build online testable ternary reversible circuits
may assist in the development of test methods for quantum
circuits.

In this work we present designs for two ternary blocks:
one to implement basic ternary logic functions and one to
implement online testability to detect any single bit error. In
order to check for flaws in a number of such blocks in a circuit
a two pair two rail checker circuit is also designed using basic
ternary gates.

II. BACKGROUND & MOTIVATION

A. Ternary Reversible Logic

The primary motivation towards reversible computing is
based on the fact that all irreversible logic operations produce
a fundamental amount of waste energy. This leads to the
scenario that the improvement of computer performance will
soon reach its limit, and so reducing energy dissipation is a
major concern. According to Frank [4],

...computers based mainly on reversible logic
operations can reuse a fraction of the signal energy
that theoretically can approach arbitrarily near to
100% as the quality of the hardware is improved...

Bennett’s work suggests that all future technologies must
adopt reversibility to reduce energy dissipation [5], and this
phenomenon holds true whether the logic model used is two-
valued or multi-valued.

Circuits can sometimes show better characteristics if
multiple-valued logic (MVL) concepts are used instead of
traditional binary (two-valued) concepts [6]. [7] introduces
ternary reversible/quantum research as a very new research
area, but with motivation based on both quantum and multiple-
valued computing. [8] discusses the fact that ternary functions
can be easily expressed using Ternary Galois Field Sum of
Product (TGFSOP) expressions, regardless of the number of
input variables. Quantum 1-qudit and 2-qudit gates are also
realizable using existing quantum technology [8].

We introduce the ternary reversible gates used in this work
in Sections III and V. We note that [9] provides an excellent
overview of the notation used in this area as well as further
background and explanation.

B. Fault Models

Recognizing and modeling the behaviour of possible defects
in a circuit is known as fault modeling. [10] discusses how
different levels of abstraction in circuit design can result
in different fault models. We briefly describe these varying
models as discussed in [10].
• Behavioural fault models. Viewing a system from a be-

havioral point of view results in a variety of behavioural
fault models. These types of fault models stem from the
constructs used in a at a behavioural description, such as
a language like VHDL.

• Functional fault models. These focus on the faults in
functional blocks of the system, with the goal of ensuring
fault-free behaviour of the blocks. In RAM, for instance,
a multiple write fault is an example of a type of functional
fault.

• Structural fault models. These deal with faults that occur
at the interconnections of a design. The single stuck-at
fault is a commonly used fault model in this category.

• Switch level fault models. These models focus on the
transistor level of a circuit. Two popular fault models in



this category are stuck-open and stuck-on fault models.
A permanently non-conducting faulty transistor generates
a stuck-open fault while a permanently conducting faulty
transistor results in stuck-on fault.

• Geometric fault models. These models identify the flaws
in the layout of a chip, or manufacturer defects. Shorted
lines in a chip layout are modeled by the bridging fault
model in this category.

[11] characterizes the type of fault that the proposed circuit
will identify as a single bit error. A single bit error occurs
whenever the value of an output has been changed because of
an internal circuit error. This is referring to a block of output
values, within which the change on any one output line can
be identified. The design detects any single bit error occurs
in the gates within a particular block and propagate the result
to the outputs. This type of fault falls best into the functional
fault model category.

The ternary online testing blocks we propose in this paper
are also designed to identify single bit errors within the testable
blocks in a method similar to that proposed for the binary case
by [11].

C. Online Testing

Online testability is the ability of a circuit to test a portion
of the circuit while the circuit is operating [11]. Detecting a
fault in operation, the point of occurrence and in some cases,
attempt to recover from fault are the major focus of research
into online testing [10]. Similar processes for binary reversible
logic have been discussed in [10] and [12]. In [10] the authors
discuss built-in self-test (BIST) for digital circuits. BIST refers
to the design of a circuit to test itself, but not necessarily
online, i.e. while operating.

In [12] the author discusses the concept of self checking
logic and the necessary categories [13]. It proposes three
categories for self testable circuits: fault secure, self-testing
and totally self testing digital circuits. According to the author,
a fault secure digital circuit should posses the characteristic
that the output will not be affected by any single bit fault. A
self-testing circuit refers to a digital circuit which will result
in invalid output(s) for any fault that occurs inside the circuit.
A totally self-testing circuit must be both fault secure and self
testing [12]. The circuit we propose in this work falls into the
self-testing digital circuit category.

D. Related Work

In [11] the authors propose online testable logic blocks
for binary reversible logic. They propose two gates called
R1 and R2, to be used in pairs cascaded together for the
design of testable reversible logic circuits. The R1 gate is
designed to implement arbitrary Boolean functions. During
normal operation the input P is set to 0. The OR operation
can be implemented by setting the inputs A = P = 0 which
produce outputs V = B+C and W = B⊕C . By setting the
inputs C = 1 and P = 0, the EXNOR and NAND functions
can be obtained in the outputs such that U = A′, V = (AB)′

and W = (A ⊕ B)′. The NOR and AND operations can be

obtained by cascading two R1 gates in configurations which
are shown and discussed in [11].

The R2 gate is designed to have the online testability
features integrated into it. Beside duplicating inputs, the R2
gate also generates the parity of the input pattern in S. It
generates the complement of the input R at S only if the
inputs remain unchanged. The input R is 1 during normal
operation. Hence, if R = S in any situation, it represents the
presence of a fault in the circuit and thus detects the flaw.
Details are given in [11], but the basic idea is that the R1 gate
is used to implement binary functions and the R2 gate is used
to detect faults in gates R1 and R2 itself. Figure 1 shows the
gates proposed in [11].

[11] also proposes a rail checker circuit to detect flaws in
testable blocks in a larger circuit. The rail checker takes inputs
from multiple R2 blocks and combines the results so that many
parts of the circuit can be checked for faults. Details are given
in [11].

Fig. 1. The two gates proposed in [11] for online testing of reversible circuits.

In another related work, authors of [14] propose a universal
reversible logic gate that can be used to construct online
testable circuits. A principle similar to that used in [11] and
[15] to detect the faults in logic blocks is also used in this
approach. The authors propose two steps. In the first step,
a new (n + 1) ∗ (n + 1) reversible gate called D RG(G)
is constructed from every reversible gate G. This new gate
must have the the functionality of the original gate G. In the
second step, a testable version of G is produced by cascading
D RG(G) with an identity gate. This identity gate is an
n*n reversible gate which is deduced by mapping all inputs
identically to the outputs. The resultant (n + 2) ∗ (n + 2)
block is called a testable reversible cell (TRC) [14]. These
gates are shown in Figure 2. The TRC has two fault detection
properties, aimed at detecting a single bit error. The first is that
if Pia = Pib the output indicates an error if output Poa and Pob

are complementary. The other property is that if Pia = P ib

then Poa = Pob indicates an error.
We propose using a similar principle to design online

testable ternary reversible logic blocks.

III. PROPOSED DESIGN OF ONLINE TESTABLE TERNARY
REVERSIBLE LOGIC BLOCK

The testable blocks that we are proposing are designed using
ternary reversible building blocks, thus the resultant blocks
are also reversible. We do not show the garbage outputs in
order to reduce complexity of the figures and since they do not
affect the operation. In this paper both basic ternary Toffoli



Fig. 2. The gates proposed in [14] for online testing of reversible circuits.

and Feynman gates as well as Muthukrishnan-Stroud (M-S)
gates are used. Quantum realizations for the ternary Toffoli
and Feynman gates using M-S Gates are discussed in [9], as
is background for the M-S gate.

Briefly, the M-S gate is a 2-qudit multivalued gate which
can be realized using ion-trap technology. The M-S gate can be
represented by the symbol shown in Figure 3. The value of the
input X1 controls the value of Y 2, which is the Z transform
of X2 whenever X1 = 2, where Z ∈ {+1,+2, 12, 01, 10};
otherwise Y 2 = X2 [9].

Fig. 3. Symbol for ternary Muthukrishnan-Stroud (M-S) Gate.

Other than the fact that our work is based on ternary
reversible logic and the previous proposals were for binary
reversible logic, there are two major differences between the
design proposed in [11] and our ternary reversible logic blocks.
The first is that in order to extend from the binary case to
ternary the successor operation is used instead of complement,
as will be shown in Section III-C. The second is that, as shown
in III-A our components consist of multiple gates rather than
individual gates.

A. The TR1 Block

We first describe the TR1 block. This is the ternary re-
versible testable block that is used to implement the logic
needed for the functionality of the circuit.

a) Design of the TR1 Block: The 4*4 TR1 block can be
defined as I = (A,B,C, P ) and O = (L = AB ⊕ C,M =
A ⊕ B,N = 2AB,Q = P ⊕ A ⊕ B ⊕ C), where I and
O are input and output sets respectively. The block is shown
in Figure 4. This block is used to implement the five basic
functions of two-place and unary ternary operators.

b) Use of the TR1 Block: The TR1 block can be used
to implement any of the basic ternary operations: AND, OR
(EXOR), successor, negation/complement and mod-difference.
The unary operation called successor (−→x ) is defined as (x +
1)modp [6] where x is the input and p is the cardinality of
the logic value (in this case, 3).

Fig. 4. Configuration of the TR1 Gate.

To implement the successor operation, inputs C and P are
set to 0 and A and B are set as the operands of the successor
operation i.e. A = x and B = 1. M provides the desired
output. For ternary, where p = 3, the truth table of successor
is as illustrated in Table I. Figure 5 shows the configuration
of the TR1 block to implement the successor operation.

Fig. 5. The successor operation in the TR1 block.

TABLE I
THE SUCCESSOR OPERATION IN THE TR1 BLOCK.

x −→x = x⊕ 1
0 1
1 2
2 0

c) Example: As an example, let x = 1 and assume we
wish to find −→x . Setting inputs A = 1, B = 1, C = 0, P = 0
in TR1 produces the desired result, M = A⊕B = 2.

B. The TR2 Block

The TR2 block incorporates the online testing features. The
4 ∗ 4 TR2 block can be defined as I = (D,E, F,R) and
O = (U = D,V = D ⊕ E,W = F, S = R ⊕D ⊕ E ⊕ F ),
where I and O are input and output sets respectively. Outputs
U and W are the copies of inputs D and F , can be used in
the circuit if necessary. Figure 6 shows the block diagram of
the TR2 block. Output S is the EXOR of the inputs of TR2
block. This output is used to detect any single bit error when
TR2 is cascaded with a TR1 block to form an online testable
circuit. In an online testable design the TR2 block receives the
first three outputs of the TR1 block as its inputs.

C. The Online Testable Block

To construct an online testable ternary reversible block (TR),
the TR1 and TR2 blocks are cascaded together. When the TR1
and TR2 blocks are used to construct an online testable block,
input P of the TR1 block and input R of the TR2 block are set



Fig. 6. The TR2 block.

so that P =
−→
R . For normal operation we simply set P = 0

and R = 1. Figure 7 shows the configuration and Figure 8
shows the block diagram. TR1 takes ternary logic values at

Fig. 7. Configuration of the online testable ternary reversible block TR.

Fig. 8. Online testable ternary reversible block TR.

A, B, C as its inputs and we set P = 0. The inputs A, B and
C are set depending on the required operation as discussed
in Section III-A. At its Q output, TR1 explicitly generates
the value of the expression P ⊕ A ⊕ B ⊕ C where P = 0.
A ⊕ B ⊕ C should be equal to L ⊕M ⊕ N only if no flaw
occurs inside TR1 and the inputs remain unchanged. TR2 is
used to transfer the input values D, E, F to outputs U , V
and W where D = L, E = M , F = N as well as generate
the error detecting bit at the output S which should be the
successor of Q if no flaw occurs in TR2. S is the EXOR of
the inputs of TR2 when R = 1.

The error detection principle used by the online testable
block is relatively simple. The values at output S should be
the successor of Q’s value if all other inputs of the block are
unchanged.

d) Example: Let us say X = A ⊕ B ⊕ C and Y =
D⊕E⊕F . Then Q = P⊕X = 0⊕X and S = R⊕Y = 1⊕Y
since P = 0 and R = 1 during normal operation. If the inputs
of the block remain unchanged all through the operations, X
would be equal to Y , i.e. X = Y , which results in S =

−→
Q .

Otherwise, if any single bit error has occurred in the inputs,
it results in S 6= −→Q which in turns detects the existence of
flaws in the circuit.

If the fault occurs to any of the inputs within the TR1 block,
the values of the inputs will be different in calculating L, M ,N
than Q. Because of the internal structure of the TR1 block,
L, M and N will use the flawed input value, whereas Q will
use the original value provided at the very beginning, or vice
versa. The result will be that the outputs Q and S are not
successor, indicating a flaw. The relevant portion of the truth
tables of the TR1 and TR2 are shown in Table II.

TABLE II
A SUBSET OF THE TRUTH TABLES FOR (A) TR1 BLOCK AND (B) TR2

BLOCK.

Input Output
A B C P L M N Q
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
0 0 2 0 2 0 0 2
0 1 0 0 0 1 0 1
0 1 1 0 1 1 0 2
0 1 2 0 2 1 0 0
0 2 0 0 0 2 0 2
0 2 1 0 1 2 0 0
0 2 2 0 2 2 0 1
1 0 0 0 0 1 0 1
1 0 1 0 1 1 0 2
1 0 2 0 2 1 0 0
2 0 0 0 0 2 0 2
2 0 1 0 1 2 0 0
2 0 2 0 2 2 0 1
1 1 0 0 1 2 1 0
1 2 0 0 2 0 1 0
1 1 1 0 2 2 2 0
1 1 2 0 0 2 2 1
1 2 1 0 0 0 1 1
1 2 2 0 1 0 1 2
2 1 0 0 2 0 1 0
2 1 1 0 0 0 1 1
2 1 2 0 1 0 1 2
2 2 0 0 1 1 2 1
2 2 1 0 2 1 2 2
2 2 2 0 0 1 2 0

Input Output
D E F R U V W S
0 0 0 1 0 0 0 1
1 0 0 1 1 1 0 2
2 0 0 1 2 2 0 0
0 1 0 1 0 1 0 2
1 1 0 1 1 2 0 1
2 1 0 1 2 0 0 1
0 2 0 1 0 2 0 0
1 2 0 1 1 0 0 1
2 2 0 1 2 1 0 2
0 1 0 1 0 1 0 2
1 1 0 1 1 2 0 0
2 1 0 1 2 0 0 1
0 2 0 1 0 2 0 0
1 2 0 1 1 0 0 1
2 2 0 1 2 1 0 2
1 2 1 1 1 0 1 1
2 0 1 1 2 2 1 1
2 2 2 1 2 1 2 1
0 2 2 1 0 2 2 2
0 0 1 1 0 0 1 2
1 0 1 1 1 1 1 0
2 0 1 1 2 2 1 1
0 0 1 1 0 0 1 2
1 0 1 1 1 1 1 0
1 1 2 1 1 2 2 2
2 1 2 1 2 0 2 0
0 1 2 1 0 1 2 1

(a) (b)

e) Example: Let A = 0, B = 1 and C = 2. The outputs
of TR1 would be L = AB ⊕ C = 2, M = A ⊕ B = 1,
N = 2AB = 0 and Q = P ⊕ A ⊕ B ⊕ C = 0. Since
TR2 receives the outputs L, M , N of TR1 as its inputs i.e.
D = L = 2 , E = M = 1, F = N = 0 and, the output
S would be S = R ⊕ D ⊕ E ⊕ F = 1. Therefore, S is the
successor of Q since it is assumed there is no change in the
inputs anywhere in the middle of operation. Let’s say that,
in the middle of operation the TR1 input A is changed to 2
due to an error. Input values for computing L, M , N will be
changed to A = 2, B = 1 and C = 2 whereas for Q, it is
still A = 0, B = 1 and C = 2. Therefore, the outputs of
TR1 become L = 1, M = 0, N = 1 and Q = 0. Since TR2
will take the flawed L, M , and N outputs as its inputs, it will
generate S = 0 which violates the condition of the error free
circuit S =

−→
Q since here S is not a successor of Q. Hence

the presence of a fault is assumed. The inputs and outputs for
the testable block in both cases is shown in Figure 9.



(a)

(b)
Fig. 9. (a) Values on the TR1 and TR2 lines during fault free operation. (b)
Values on the TR1 and TR2 lines during faulty operation, i.e. in the presence
of an error.

f) Single bit error detection policy: Any single bit error
in the input combination must generate a result of different
pattern in outputs from the pattern than would be generated
for the combination of inputs before the error occurs. The
result/output (Q) for the single bit error can never be the
same as the result/output (Q) for the error-free inputs, since
otherwise the fault cannot be detected. This condition is the
core of the single bit error detection policy.

From the above truth tables we can see that in the patterns
listed a single bit change in any input pattern in TR1 will result
into a different pattern which in turn generates a new result
in Q that is different from the original one. For example, let
us set inputs A = 1, B = 1 and C = 1. The output is Q = 0
for this combination. If a single bit error changes A to 2 then
the new combination is A = 2, B = 1 and C = 1. For this
input combination Q = 1 which is different from the original
output Q = 0. This feature is important to generate an output
on S in TR2 that is not a successor of Q to detect a flaw.

It is worth noting that in [11] where the same principle has
been followed to detect a single bit error in the logical block, it
appears that the above-mentioned feature was not maintained
for some combinations. This results in the failure to detect
faults for those input combinations.

IV. INTERNAL DESIGNS

A. TR1

Basic Toffoli and Feynman gates are used to design the
internal block of TR1. 2 and 4 input Feynman gates are
used to implement the blocks. The 2 input Feynman gate
was discussed in [16]. The notation/block diagram used in
the circuit design and realization using M-S gates is shown
in Figure 10. The TR1 block is implemented using the Feyn-
man gates illustrated in Figure 10 and basic 3-input Toffoli
gates. The internal architecture of the TR1 block is shown in
Figure 11.

B. TR2

Three 2-input Feynman gates are used to implement the
TR2 block as shown in Figure 12.

Fig. 12. Internal diagram of the TR2 Block.

V. TWO PAIR TWO RAIL CHECKER CIRCUIT

As shown in [17], error checking and correcting is often
implemented using one of two main techniques: parity codes
and two rail checkers. Two rail checkers compare the outputs
from more than one identical system. This process is also
used to reduce the error detector output. The two rail checker
receives a predetermined pattern of inputs as a subset of the
entire input set during fault free operation and generates a
predetermined output to represent the fault free situation. A
two pair two rail checker receives two pairs of inputs from
two identical systems and detects if any flaw exists in those
systems [17]. This concept has also been used in the reversible
context by other authors such as in [18] and [11].

We have also designed a two pair two rail checker circuit
to detect flaws in a large circuit by cascading our TR block
and rail checker circuit. The rail checker circuit is designed
using ternary 1-qudit permutative gates and ternary controlled-
controlled gates. These gates are discussed in the following
sections.

A. 1-qutrit Permutative Gate

1-qutrit unitary permutative gates are discussed in [7]
and [16]. These works state that if any transformation of
the qutrit state can be represented by a 3*3 unitary matrix,
then a 1-qudit ternary gate can be specified in a similar
way [7]. This transformation, known as the Z-transformation,
shifts/permutes the input states to produce the desired output
states. For example, the Z(+1) transformation shifts the input
qutrit states by 1. Table III shows the truth table of 1-qutrit
permutative gates and the symbol for the ternary 1-qutrit
permutative gate is shown in Figure 13(a) [7].

TABLE III
OPERATIONS OF 1-QUTRIT PERMUTATIVE GATES AS SHOWN IN [7].

Input Output of z-transformation
Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Two 1-qutrit ternary gates act as another 1-qutrit ternary gate
if they are cascaded together [7]. The cascading gates have a
serial effect on the input which produces a resultant output
that is similar to the single output of another 1-qutrit gate.



(a)

(b)

(c)

(d)

Fig. 10. (a) 2-input copy Feynman gate. (b) 2-input basic Feynman gate as shown in [16]. (c) 3-input Feynman gate. (d) 4-input Feynman gate.

Fig. 11. Internal diagram of the TR1 block.

Table IV shows the resultant 1-qutrit gates for two cascaded
1-qutrit gates as shown in [7].

TABLE IV
RESULTANT 1-QUTRIT GATES FOR TWO CASCADED 1-QUTRIT GATES AS

SHOWN IN [7].

Second 1-qutrit gate
First 1-qutrit gate +1 +2 12 01 02

+1 +2 +0 02 12 01
+2 +0 +1 01 02 12
12 01 02 +0 +1 +2
01 02 12 +2 +0 +1
02 12 01 +1 +2 +0

B. Ternary Controlled-controlled Gate

The ternary controlled-controlled gate was also proposed
in [7]. The ternary controlled-controlled gate has two control-
ling inputs and one controlled output. Figure 13(b) illustrates
the symbol of a ternary controlled-controlled gate. From the
figure it can be seen that the Z-transform is applied on the
controlled input W only when the values of both of the inputs
X and Y are 2, otherwise W is passed unchanged.

(a)

(b)
Fig. 13. (a) Symbol of 1-qutrit permutative gate. (b) Ternary controlled-
controlled gate as shown in [7].

C. Principle of the Rail Checker Circuit

The purpose of the rail checker is to detect if there is any
flaw in the circuits connected to the rail checker by checking
whether one output is the successor of the other. The rail
checker circuit also generates two output values where one
is successor to another if there is no flaw in the input circuits.
Since these values may be cascaded to additional rail checkers,



a successor is generated to represent the fault free situation.
Otherwise, if the rail checker detects any flaw, the values
generated can never be successors. Figure 14 shows the block
diagram of a general rail checker circuit and Figure 17 shows
the internal design of the rail checker circuit. From Figure 17
one can see that since error signals X3 and X4 are generated
out of two physically separated modules E1 and E2, any single
bit error in internal lines will affect either of the two outputs,
but not both. Hence, any single error in the internal lines
results in the outputs being non-successors and thus indicates
the occurrence of an error.

The rail checker circuit is designed in such a way that if the
inputs are successors of each other, i.e. y0 =

−→
x0 and y1 =

−→
x1,

the rail checker will generate X3 = 1 and X4 = 2, so that
X4 =

−→
X3, otherwise it generates the combinations where

X4 6= −→X3.

Fig. 14. Block diagram of two pair two rail checker.

1) Example: Let us say x0 = 1, y0 = 2, x1 = 0 and y1 =
1. Then the two pair two rail checker will produce X3 = 1 and
X4 = 2 as its output. Again let us assume x0 = 1, y0 = 2,
x1 = 2 and y1 = 1. then the two pair two rail checker will
produce X3 = 1 and X4 = 0 as its output. Since in this case
y1 6= −→x1, the rail checker generates X4 6= −→X3.

D. Elementary E gate

To implement the operation of the two pair two rail checker
circuit discussed above, an elementary gate (E) has been
designed which has two controlling inputs and a controlled
output. The E gate is designed based on the architecture of
the 1-qutrit ternary comparator circuit proposed in [7]. The
controlling inputs (x, y) are the two of the four inputs of the
main rail checker circuit and the controlled output (K) is one
of the two outputs of the main rail checker circuit. Two such
gates/blocks are used to create the rail checker circuit. The
output of the controlled input depends on whether the second
input (y) is the successor of the first input (x) or not. If it
is a successor, a Z-transform operation changes the controlled
input constant (0) to either 1 or 2 in y depending on which
output the gate/block produces, X3 or X4, hence K = 1 or 2.
Otherwise, 0 is passed unchanged i.e K = 0. Figure 15 shows
the block diagram of the E gate.

1-qutrit permutative gates and ternary controlled-controlled
gates are used to design our E gate. Table V shows all possible
input combinations, the desired output for that combination,
and shifts required to produce that output. From Table V
it can be seen that only for three input combinations, the
output K is the Z-transform of input constant 0 where Z

Fig. 15. E gate.

TABLE V
TRUTH TABLE AND TRANSFORMATION TABLE OF THE E GATE.

Input Output Shift Required
00 0
01 1 or 2 +1,+2
02 0
10 0
11 0
12 1 or 2 +1,+2
20 1 or 2 +1,+2
21 0
22 0

=+1,+2. For all other combinations K = 0. For the input
combinations for which the output is 0, no transformation is
applied on the 0-input and 0 is passed unchanged to the output.
For the input combinations for which the output is the Z-
transform of 0, the inputs are changed to 2 by applying the 1-
qutrit transform (Z(+1), Z(+2)). The values are used to trigger
the Z-transformation (Z(+1), Z(+2)) of the ternary controlled-
controlled gate on input constant 0 to produce K = 1 or
K = 2 at the output. Figure 16 shows our realization of this
gate.

Fig. 16. Internal structure of the E gate.

For example, if the input combination is x = 0 and y = 1,
transformation +2 and +1 is needed to transform/shift both the
input values to 2, 2. Hence a +2 gate is placed along the x
input and a +1 gate is placed along the y input. The outputs
of these gates are used to trigger the Z-transform gates placed
along input constant 0. Other transformations are applied by
placing appropriate gates along x and y and the input constant
0 in a similar way. Since the 1-qutrit gates along input x and
y are cascaded, effective transformations are shown explicitly
at the controlling points.

E. Architecture of the Rail Checker Circuit

To construct the rail checker circuit, the first E gate that
takes x0 and y0 as its inputs generates K = 1 at the output



by applying Z(+1) transformation on constant input 0, but only
if y0 =

−→
x0. It generates K = 0 in all other cases.

The second E gate that takes x1 and y1 as inputs generates
K = 2 at the output by applying Z(+2) on the 0 input, but only
if y1 =

−→
x1. It generates K = 0 in all other cases. Figure 17

shows the block diagram of the internal architecture of the rail
checker circuit.

Fig. 17. Internal architecture of the two pair two rail checker circuit.

The operation of the rail checker can be easily verified from
all possible input combinations of the blocks. Let us define the
input state of a E block to be “True” if the inputs of the block
are successors of each other and “False” otherwise. Let us also
name the block of E gate with output X3 to be B1 and the
block with output X4 to be B2. Table VI shows the truth table
for all possible input states and the corresponding outputs for
blocks B1 and B2.

TABLE VI
TRUTH TABLE FOR THE POSSIBLE INPUT STATES AND THE

CORRESPONDING OUTPUTS OF BLOCK B1 AND B2

B1 B2 X3 X4
True True 1 2
True False 1 0
False True 0 2
False False 0 0

Table VI demonstrates that the rail checker circuit produces
X3 = 1 and X4 = 2, (i.e. X4 =

−→
X3) at the output only when

both of the input sets have successive (y0 =
−→
x0 and y1 =

−→
x1)

values.

VI. SAMPLE DESIGN

In [11] the author implemented the NAND-NAND form of
the Sum of Product (SOP) expression F = ab+ cd using the
proposed testable blocks. In ternary a Galois Field Sum of
Product (GFSOP) can be directly implemented in a similar
way by a ternary reversible circuit. Thus as an example we
will implement the same function, i.e. F = ab + cd as
a demonstrate that the proposed blocks in this paper can
successfully implement a GFSOP expression. Figure 18 shows

the implementation of F using the proposed online testable
ternary reversible blocks. Use of variables more than once
can be implemented by duplicating variables using duplicating
ciruits which can also be implemented by the proposed TR
block. The final output of the second rail checker can be used
if the function needed to be further extended; i.e. if additional
logic were to be added.

VII. CONCLUSION

The testable blocks proposed in this paper use basic ternary
building blocks to incorporate online testing features. This
has produced complex and larger circuit blocks, although
gates and garbage values were of course minimized where
ever possible. To keep the number of garbage values at a
minimum, the garbage output of one ternary gate is used as
an input to subsequent gates. Because of the fan-out limitation
of reversible logic circuits, Feynman gates are used to create
copies. As far as we are aware our proposed TR and dual rail
checker circuit are the first such combination to be proposed
for ternary reversible logic. Work is continuing in a number
of areas, including improved implementations for the TR1 and
TR2 blocks, determining if they can be implemented as ternary
gates, and reduction of the number of garbage outputs.
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