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Abstract—Previous work presented a simple technique for
converting an ESOP-based Boolean reversible circuit into an
online testable circuit. This paper builds on the previous work
by extending its application to circuits consisting of cascades
of ternary Toffoli gates. The technique is applied to an existing
cascade of ternary Toffoli gates, and requires that a single
additional line be added to facilitate the propagation of any
faults that are identified, as well as modification and/or addition
of some gates. The modified circuit can detect online any single-
bit errors that occur within the circuit. Experimental results
compare very favourably to the only other known approach.

I. INTRODUCTION

Reversible logic is becoming a popular area of research as
power dissipation in the form of heat becomes problematic
in today’s computer chips. The International Technology
Roadmap for Semiconductors (ITRS) [1] has indicated that
this may become an insurmountable problem if we rely
solely on existing technologies and approaches. Reversible
logic, however, may provide a solution. Frank [2] states that
computers based mainly on reversible logic operations could
reuse up to 100% of the signal energies, and in 1973 Bennett
showed that for power not to be dissipated it is necessary that
a circuit be constructed from reversible gates [3]. Research
on reversible computing has been shown to have uses in
areas such as quantum computing [4], low power CMOS
design [5], optical computing [6], and nanotechnology [7].
Many of these areas rely on a multiple-valued model, thus
our work in the ternary case can be viewed as a stepping
stone towards testable designs in these areas.

While some work such as [8], [9], [10] has been carried
out in the area of reversible logic testing, there is little in
the literature on reversible logic with online testability. The
work we are aware of in this area includes [11], [12] and
[13]. There is even less work on online testability of ternary
reversible circuits, with the only work we are aware of being
[14] (based on [15]). The motivation for ternary reversible
circuits lies in the relationship between reversible logic and
quantum computing.

Our paper builds on the work in [16] and [17] and extends
the approach from Boolean (binary) to ternary reversible
logic. Since the results in the Boolean case are so promising,
we wish to determine if similar results can be obtained in
the ternary case. Compared to work in [14] and [15], our

approach leads to online testable circuits with significantly
fewer costs, which is the goal of this work. The work in
[16] modified a circuit generated by the synthesis approach
in [18]. [16] required the addition of a parity line and a
small number of gates to ensure that any single-bit error
would be propagated along the parity line to the end of the
circuit for detection. The approach we present here uses the
same underlying idea, with modifications as necessary for
use with ternary reversible gates.

II. BACKGROUND

A. Ternary Galois Field Logic

Ternary Galois field (TGF) consists of {0, 1, 2} and two
operations, addition modulo 3 and multiplication modulo 3.
In this paper, the addition modulo 3 operation is denoted by
⊕ and the multiplication modulo 3 operation is denoted by
the absence of any operator. Then for a ternary variable Y
we have Y = Y ⊕ 3 and Y Y Y = Y .

According to [19], a ternary variable Y has six basic
literals: Y , Y +1 = Y ⊕ 1, Y +2 = Y ⊕ 2, Y 12 = 2Y ,
Y 01 = 2Y ⊕ 1, and Y 02 = 2Y ⊕ 2. A composite literal
consists of the modulo 3 multiplication of two basic literals,
for example, Y Y and Y +2Y 12. In place of Y as used in
Boolean logic we use Y ⊕ 1 or Y ⊕ 2 in this paper.

A product term is formed by applying the multiplication
modulo 3 operations to constants, basic literals, and com-
posite literals of ternary variables [19]. For example, given
two variables X and Y , a product term can be 2X01Y Y +1.
A ternary Galois Field sum of products (TGFSOP) is an
expression in which the addition modulo 3 operations are
applied to product terms [19]. For example given two prod-
uct terms, 2X01Y Y +1 and XY 12, a TGFSOP expression
can be written as 2X01Y Y +1 ⊕ XY 12.

B. Reversible Logic

[20] provides the following definitions:
Definition 1: A gate is reversible if the (Boolean)

function it computes is bijective.
Definition 2: A well-formed reversible logic circuit is

an acyclic combinational logic circuit in which all gates
are reversible, and are interconnected without fanout. This
definition assumes that the circuit is strictly combinational;



considerations for sequential logic are addressed in works
such as [21].

Commonly used Boolean reversible gates include the
Toffoli gate. An n-bit Toffoli gate maps the input vector
[k1, k2, . . . , kn] to the output vector [o1, o2, . . . , on] where
oj = kj for j = 1, 2, . . . , n − 1 and on = k1 · k2 · . . . ·
kn−1⊕ kn. The first n− 1 bits are known as controls while
the last bit is the target which is toggled only if all of the
control lines are 1. Another name for a 2-bit (that is, n = 2)
Toffoli gate is the CNOT gate. In this work we concentrate
on ternary reversible gates. The reader is directed to, for
example, [20] for descriptions of other Boolean reversible
gates.

C. Reversible Ternary Gates

There are several ternary reversible gates. We define here
the gates which are required for this paper. A 1-qutrit
permutative gate [22] is defined as {k} → {o = kZ} where
Z ∈ {+1, +2, 12, 01, 02} as shown in Figure 1(a). For
example, if Z = +1, then o = k+1 = k ⊕ 1 .

An n-qutrit Toffoli gate is defined as mapping the
input vector [k1, k2, . . . , kn−1, kn] to the output vector
[o1, o2, . . . , on−1, on] where oj = kj for j = 1, 2, . . . , n−1,
on = f ⊕ kn, and f = k1k2 · · · kn−1. As in Boolean
reversible logic the first n−1 inputs are known as controlling
inputs and the last input is known as the controlled input.
When n = 2 this gate becomes a 2-qutrit Toffoli gate with
the input vector [k1, k2] and output vector [o1 = k1, o2 = k1
⊕ k2]. This gate is also known as the Feynman gate. A 2-
qutrit modified Toffoli gate discussed in [15] is very similar
to the 2-qutrit Toffoli gate, with the exception that o2 = 2k1
⊕ k2. A 2-qutrit Toffoli gate, its modified version, and an
n-qutrit Toffoli gate are shown in Figure 1(b)-(d).
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Figure 1. (a) A 1-qutrit permutative gate, (b) a 2-qutrit Toffoli gate, (c)
a 2-qutrit modified Toffoli gate, (d) an n-qutrit Toffoli gate, and (e) an
(n+1)-qutrit TGC-2.

Khan, Perkowski and Kerntopf [23] proposed a Toffoli
gate with m controlled inputs (TGC-m). If m = 1 this gate
is the Toffoli gate as earlier defined. An (n+1)-qutrit TGC-2

is shown in Figure 1(e). In this figure we see that the gate
maps the input vector [k1, k2, . . ., kn−1, kn, kn+1] to the
output vector [o1, o2, . . ., on−1, on, on+1] where oj = kj
for j = 1, 2, . . . , n − 1, on = f ⊕ kn, on+1 = f ⊕ kn+1,
and f = k1k2 · · · kn−1. Here, the first n − 2 inputs are the
controlling inputs and the last two inputs are the controlled
inputs.

D. Synthesis of Ternary Reversible Circuit

There are many approaches for synthesis of ternary
reversible circuits including [23], [24], [25], [26], [27].
We briefly discuss the TGFSOP-based synthesis of ternary
Toffoli circuits proposed in [23].

Consider a TGFSOP form of a function with u input
variables and v output variables. An empty cascade with
2u + 1 input lines and v output lines is created. The
basic literals of an input variable can be realized using 1-
qutrit permutative gates along the corresponding input line.
However, for realizing the composite literal of a single input
variable, two copies of that variable are required which
can be managed by using a 2-qutrit Toffoli gate. Thus
for each input variable, two input lines are needed. One
constant input line is required in the cascade to realize the
product term of the form 2X+1X+1, where X is an input
variable. Thus a circuit requires at most 2u + 1 input lines
and exactly v output lines. Now for each product term of
each output variable in the TGFSOP function, a Toffoli gate
is added to the circuit with controlling inputs connected
to the input lines and controlled input connected to the
output line. Unused input lines are removed from the circuit.
Appropriate 1-qutrit permutative gates and 2-qutrit Toffoli
gates are added on the input lines to restore the initial values.
This approach ensures that the initial value and the final
value of each input line are the same. For example, given a 3-
input (I1, I2, I3), 2-output (I4, I5) function in the TGFSOP
form, I4 = I1I2 ⊕ I+1

1 I123 and I5 = 1 ⊕ I1I
01
2 , a Toffoli

cascade generated by this approach is shown in Figure 2. In
the circuit, input lines are I1, I2, I3, and output lines are
I4 and I5. Toffoli gates are labeled as t1 through t3. At the
end of circuit, two 1-qutrit permutative gates are added on
lines I2 and I3 to restore the initial values.
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Figure 2. A ternary Toffoli circuit.

The synthesis approach that we have described here is
slightly different from the original approach proposed in [23]
since we have considered Toffoli gates whereas the original
approach uses the TGC-m.



E. Cost Metrics

It is customary to use some cost metric for comparison
among differing synthesis approaches. In order for accurate
comparison it is necessary to clearly define how these costs
are measured. The cost of a ternary circuit is the total cost
of the gates used to realize the circuit. According to [22],
the cost of a 1-qutrit permutative gate and a 2-qutrit Toffoli
gate are 1 and 4, respectively. The cost of the modified 2-
qutrit Toffoli gate is the same as that of a 2-qutrit Toffoli
gate. [28] presents the lowest cost implementation of the n-
qutrit ternary Toffoli gates with n > 2. A 3-qutrit Toffoli
gate and a 4-qutrit Toffoli gate have costs of 16 and 40.
For an n-qutrit (n > 4) Toffoli gate, the cost is defined as
eight plus twice the cost of an (n−1)-qutrit Toffoli gate. We
have calculated the cost of an (n+1)-qutrit (n > 3) TGC-2,
which is six plus the cost of an n-qutrit Toffoli gate. A 3-
qutrit TGC-2 and a 4-qutrit TGC-2 have costs of 6 and 20,
respectively. These costs are summarized in Table I.

Table I
COSTS OF TERNARY GATES.

Gate Cost
1-qutrit permutative gate 1
2-qutrit Toffoli gate 4
2-qutrit modified Toffoli gate 4
3-qutrit Toffoli gate 16
4-qutrit Toffoli gate 40

n-qutrit (n > 4) Toffoli gate 8 + 2*(cost of an (n−1)
-qutrit Toffoli gate)

3-qutrit TGC-2 6
4-qutrit TGC-2 20

(n+1)-qutrit (n > 3) TGC-2 6 + cost of an n-qutrit
Toffoli gate

F. Testing and Fault Models

We briefly explain the difference between offline and
online testing. In offline testing a test vector consisting of
inputs identified to be useful in detecting errors is applied
to the circuit. This requires that the circuit be taken out of
operation for some time, and that the outputs resulting from
the tests be compared with a set of known correct outputs.
In contrast, online testing is carried out while the circuit is
being used for normal operations, and additional circuitry
is used to identify if a fault has occurred. It is the latter
approach that we focus on in this work.

There are a variety of fault models of use with reversible
logic, including the missing gate fault model, repeated gate
fault model, and reduced gate fault model [29] as well as the
crosspoint fault model [30]. Other works such as [11] have
suggested the use of a bit fault model. In this model, a fault
in a gate changes the behavior of its outputs. A single bit
fault is reflected on exactly one output of a gate, changing
the correct value of the output to a faulty value.

Our work uses the single bit fault model, although we
note that the use of the term “bit” is not entirely accurate
for ternary logic. However the concept behind the original

model is still appropriate for this work, in that we are
identifying the situation when a fault is reflected on exactly
one output of a gate. While we acknowledge the inaccuracy
of the term we refer to the model as a single-bit model
through-out this paper primarily for the sake of consistency
with other work.

III. OUR APPROACH

Given a TGFSOP representation of a ternary function,
a ternary Toffoli circuit is generated as discussed in Sec-
tion II-D. The resulting circuit will consist of only 1-qutrit
permutative gates and n-qutrit (n > 1) Toffoli gates. Let the
number of input lines be p and the number of output lines be
q in the Toffoli circuit. If the initial and final values of any
input line are not the same, then appropriate gates (e.g. 1-
qutrit permutative gates and 2-qutrit Toffoli gates) are added
to restore the initial value at the end of the corresponding
input line. An approach to convert such a circuit into an
online testable circuit is proposed below.

The proposed approach requires a parity line L which is
initialized with a zero. For each input and output line in the
given Toffoli circuit, this approach inserts a 2-qutrit Toffoli
gate and a 2-qutrit modified Toffoli gate at the beginning
and at the end of the circuit, respectively. Note that that for
each such gate, the controlled input is connected to the line
L. This step requires a total of 2p+2q gates. All 1-qutrit
permutative gates found in the given circuit are retained.
Then each n-qutrit (n > 1) Toffoli gate is replaced by an
(n+1)-qutrit (n > 1) TGC-2. The connections of the first n
qutrits of the (n+1)-qutrit (n > 1) TGC-2 remain the same
as that of n-qutrit Toffoli gate. The second controlled input
(i.e. the last qutrit) is connected to L. The converted circuit
is now online testable. If a single fault occurs on any input
line, output line, or line L, then the value of L changes to 1
or 2. If no fault occurs, L remains 0. The following example
describes this approach.

For a given 3-input (I1, I2, I3), 2-output (I4, I5) Toffoli
circuit shown in Figure 2, the proposed approach generates
an online testable circuit as shown in Figure 3. In the testable
circuit, a parity line L is added and the Toffoli gates (t1, t2,
and t3) are replaced by TGC-2s (e1, e2, and e3). In addition
five 2-qutrit Toffoli gates c1 through c5 and five 2-qutrit
modified Toffoli gates c6 through c10 are added.
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Figure 3. An online testable reversible circuit.



IV. ANALYSIS

In our proposed testable design, a fault on an input line
can propagate to the output lines and the parity line L
by the TGC-2s. However, a fault on an output line or L
cannot propagate to other lines since controlling inputs of
the TGC-2s are not connected to the output lines or L.
Lemma 1 proves that the last two outputs of the TGC-2
compute the same function no matter whether the faults
occur in controlling inputs, controlled inputs or both. Lemma
2 proves that the proposed testable design can detect a single
bit fault even though it propagates to multiple lines by TGC-
2s, causing multiple faults.
Lemma 1. Consider an (n+1)-qutrit TGC-2, mapping the
input vector [k1, k2, . . ., kn−1, kn, kn+1] to the output vector
[o1, o2, . . ., on−1, on, on+1], where oj = kj (for j = 1, 2,
. . ., n − 1), on = f ⊕ kn, on+1 = f ⊕ kn+1, and f =
k1k2· · ·kn−1.

a) If faults occur in controlling inputs and affect the gate,
then both on and on+1 compute f ; otherwise both outputs
compute f .

b) If faults occur in controlled inputs of the gate, then both
on and on+1 compute f .

c) If faults occur in controlled inputs and controlling inputs
which affect the gate, then both on and on+1 compute
f ; otherwise both outputs compute f . �

Proof.

a) Consider faults in ki, kj , . . ., kl such that {i, j, . . ., l}
⊆ {1, 2, . . ., n−1}. These faults affect the gate only if
such faults cause the function f to be changed to f . As
an example, consider a TGC-2 with f = k1k2k3. Let, the
values of k1, k2, and k3 be 1, 1, and 2, respectively. Thus
f = 2. If a fault changes the value of k1 to 2, then the
fault has an effect since f also changes from 2 to 1.
Faults affecting the gate have impact on on and on+1

since both outputs compute f . Thus on = f ⊕ kn
and on+1 = f ⊕ kn+1. If the faults do not affect the
calculation of f , then according to the definition, on = f
⊕ kn and on+1 = f ⊕ kn+1.
Therefore, if the faults have an effect, then on and on+1

compute f ; otherwise these outputs compute f .
b) We consider three cases, depending on whether one of

the controlled inputs is faulty or both controlled inputs
are faulty.
Case 1. Assume a fault occurs in kn. This fault does not
propagate to on+1 since on+1 is independent of kn; thus
on+1 = f ⊕ kn+1. However, due to the fault, on = f ⊕
kn.
Case 2. Assume a fault occurs in kn+1. The proof is
similar to Case 1. We get on = f ⊕ kn and on+1 = f ⊕
kn+1.
Case 3. Consider that faults occur in both kn and kn+1.
Due to these faults, on = f ⊕ kn and on+1 = f ⊕ kn+1.

Hence, for any of the cases, both on and on+1 compute
f .

c) We consider two cases, depending on whether faults in
controlling inputs affect the gate or not.
Case 1. First consider that faults in controlling inputs
affect the gate. From (a), we can write on = f ⊕ kn and
on+1 = f ⊕ kn+1.
Assume that faults also occur in both controlled inputs.
According to (b), we can rewrite the outputs as follows:
on = f ⊕ kn and on+1 = f ⊕ kn+1. Thus both outputs
compute f . Similarly, we can reach the same conclusion
if a fault occurs in any of controlled inputs.
Case 2. For the case that faults in controlling inputs have
no effect on the gate, the proof is similar to (b). �

Lemma 2. If any single fault occurs on any line in the
testable circuit, the value of L changes from 0 to either 1
or 2, and the fault is detected. �
Proof. Consider an online testable ternary circuit consisting
of p input lines, q output lines, and a parity line L. Let G =
{g1, g2, . . ., gN} be the set of (n+1)-qutrit (n > 1) TGC-2s
used in the circuit. Let the initial values of the input lines
Given an (n+1)-qutrit TGC-2 gi ∈ G and the input vector
[k1, k2, k3, . . ., kn−1, kn, kn+1], the output vector is [o1
= k1, o2 = k2, o3 = k3, . . ., on−1 = kn−1, on = fgi ⊕ kn,
on+1 = fgi ⊕ kn+1], where fgi = k1k2· · ·kn−1, and n can
be at most p+1. In order to prove this lemma, we consider
the following three cases:

Case 1. Consider a single fault on an input line Xw (for
w = 1, 2, . . ., p) which affects a number of gates. Let A =
{a1, a2, . . ., au} ⊆ G be the set of gates which are affected
by the fault. Let B = {b1, b2, . . ., bv} = G − A. Here, A
or B can be empty.

Note that the last two outputs of a gate gi ∈ G compute
the same function fgi. A gate br in B computes fbr, for
r = 1, 2, . . ., v. However, from Lemma 1, due to the fault,
each gate a in A computes fas, for s = 1, 2, . . ., u.

At the beginning of circuit, there is a 2-qutrit Toffoli gate
between Xy and L, for ∀ y ∈ {1, 2, . . ., p+q}. Thus the
value of L, just before the first gate in G, is x1 ⊕ x2 ⊕ . . .
⊕ xw ⊕ . . . ⊕ xp+q . After the last gate in G, the value of
L becomes x1 ⊕ x2 ⊕ . . . ⊕ xw ⊕ . . . ⊕ xp+q ⊕ fb1 ⊕
fb2 ⊕ . . . ⊕ fbv ⊕ fa1 ⊕ fa2 ⊕ . . . ⊕ fau.

At the end, there is a 2-qutrit modified Toffoli gate
between Xy and L, for ∀ y ∈ {1, 2, . . ., p+q}. As a result,
the faulty value of line Xw (which is xw) propagates to L
and hence L becomes x1 ⊕ x2 ⊕ . . . ⊕ xw ⊕ . . . ⊕ xp+q

⊕ fb1 ⊕ fb2 ⊕ . . . ⊕ fbv ⊕ fa1 ⊕ fa2 ⊕ . . . ⊕ fau ⊕
2fb1 ⊕ 2fb2 ⊕ . . . ⊕ 2fbv ⊕ 2fa1 ⊕ 2fa2 ⊕ . . . ⊕ 2fau
⊕ 2x1 ⊕ 2x2 ⊕ . . . ⊕ 2xw ⊕ . . . ⊕ 2xp+q

= xw ⊕ 2xw

= xw ⊕ 2xw ⊕ 1 or xw ⊕ 2xw ⊕ 2 = 1 or 2.
Since at the end the line L contains 1 or 2, the circuit can

detect the fault.



Case 2. Now consider that a single fault occurs on an
output line Xp+w at any point, where w = 1, 2, . . ., q.

Consider a set of gates, A = {a1, a2, . . ., au} ⊆ G which
have controlled inputs on line Xp+w. Consider another set of
gates, B = {b1, b2, . . ., bv} such that B = G −A. According
to Lemma 1, each gate as in A computes fas, for s = 1, 2,
. . ., u. Similarly, each gate br in B computes fbr, for r =
1, 2, . . ., v.

The fault on Xp+w propagates to the end of the line. The
value of the line Xp+w at the end is xp+w ⊕ fa1 ⊕ fa2
⊕ . . . ⊕ fau ⊕ m where m is either 1 or 2. Because of
the 2-qutrit modified Toffoli gates between Xy and L, ∀ y
∈ {1, 2, . . ., p+q}, the faulty value of Xp+w appears at L.
Thus L becomes x1 ⊕ x2 ⊕ . . . ⊕ xp+q ⊕ fa1 ⊕ fa2 ⊕
. . . ⊕ fau ⊕ fb1 ⊕ fb2 ⊕ . . . ⊕ fbv ⊕ 2x1 ⊕ 2x2 ⊕ . . .
⊕ 2xp+q ⊕ 2fa1 ⊕ 2fa2 ⊕ . . . ⊕ 2fau ⊕ 2fb1 ⊕ 2fb2
⊕ . . . ⊕ 2fbv ⊕ 2m

= 2m = 1 or 2.
Case 3. A fault can also occur on L. This causes L to

have the value either 1 or 2.
Hence, for any of these cases, the circuit detects the

fault. �
The following two examples illustrate the detection of

single faults which occur on an input line and an output
line, respectively.

Example 1: For a given online testable circuit with three
input lines (I1, I2, I3) and two output lines (I4, I5) as shown
in Figure 4, consider a single fault on the input line I2 just
before the first TGC-2. For the faulty lines, output values are
given in the form [fault-free value/ faulty value] after each
gate. For other lines, only the fault free values are shown.
Note that the fault on I2 propagates to lines I4 and I5,
causing multiple faults. However, the fault is detectable since
the value of L changes to 2. This example illustrates that
the circuit is able to detect a fault even though it propagates
to several lines.

Example 2: For a given online testable circuit with three
input lines (I1, I2, I3) and two output lines (I4, I5) as shown
in Figure 5, consider a single fault on the output line I4
between the first and second TGC-2s. Note that the fault
propagates to the end of I4 and L becomes 1. Thus the fault
is detected.

V. EXPERIMENTAL RESULTS

For a number of benchmark functions, we have imple-
mented the testable circuits using our proposed approach
and the previous approach [15]. In order to calculate the
overhead for adding the testability feature, we have also
implemented the non-testable circuits as described in Sec-
tion II-D. The results are summarized in Table II. The first
and second columns specify the function name and the
total number of input and variables in the function. The
third and fourth columns show the costs of testable circuits
generated by the previous approach [15] and our approach,

respectively. The fifth column calculates the improvements
achieved by our approach. The next column shows the
costs of non-testable circuits. The last two columns analyze
the overhead costs of the existing testable circuits and our
testable circuits over the non-testable circuits.

It can be seen from Table II that our approach reduces
the cost considerably for every circuit, compared to the
previous approach. As an example, our approach requires a
cost of 332 for implementing the function 6CyG3, whereas
the previous approach requires 1843 cost. Improvements of
our approach range from 32% to 82%, with 6 out of 11
circuits improved by more than 70%.

We have found that the overhead costs incurred by the
previous approach are much higher than the costs incurred
by our approach. However we can see from the last column
of Table II that our costs are significantly higher for the first
seven benchmarks than for the last four. Since our approach
requires the addition of 2(p + q) gates regardless of the
number of gates in the reversible circuit, this will result in a
higher overhead cost for smaller circuits i.e. those similar to
the first seven benchmarks used in our experiments. We note
that the non-testable circuits of such benchmarks consist of
no more than three gates, with the exception being the circuit
for a2bccG which requires five gates. The remaining four
non-testable circuits in Table II contain up to ten gates; thus
the overhead of our approach is reduced to only 17%. As
an example, for a randomly generated circuit with p = 3,
q = 2 and only 3 gates in the cascade, our overhead can
be expressed as 48% additional costs. However, a circuit
with the same values of p and q but requiring 70 gates
in the cascade has an overhead cost of only 16%. Thus
our approach has the potential to minimize the overhead
costs for larger circuits. Continuing work will involve the
development and/or acquisition of larger benchmarks on
which to test our approach. As well, further work will be
carried out to estimate the overall fault coverage in terms of
detectable faults.

Table II
EXPERIMENTAL RESULTS.
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2CyG2 3 281 78 72% 40 603% 95%
3CyG2 4 489 92 81% 48 919% 92%
a2bccG 4 364 112 69% 56 550% 100%
ProdG2 3 65 44 32% 16 306% 175%
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Figure 4. A single fault on input line I2.
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Figure 5. A single fault on output line I4.

VI. CONCLUSION

This paper presents an approach for taking an existing
TGFSOP-based cascade of ternary Toffoli gates and adding
a single parity line plus a fixed number of gates to modify the
circuit in order to provide online testability. With these small
modifications we create a circuit that computes its original
functionality and in addition will detect and propagate to the
outputs any single-bit fault that occurs within the circuit. The
process is straightforward and provable, and requires only
2(p+ q) additional gates.

Experimental results showed that our approach far outper-
formed the only other approach available for comparison,
and that for most of the benchmarks tested the overhead
incurred over a non-testable approach was 100% or less.
We highlight that the majority of the benchmarks currently
available to us require a very small number of gates for their
implementation, and that as the benchmark sizes grow our
overhead for online testability will shrink.

Our work differs from any other in either Boolean or
ternary reversible online testing techniques, in that other
techniques require redesign of the entire circuit. Also, in
most other techniques only small portions of the circuits
can be tested, requiring a rail checker or similar structure
to combine and propagate online testing results. Most im-
portantly we add no garbage lines to the design. However,
this approach currently works only for a particular type
of TGFSOP-based synthesis. Future work will extend this
approach for other type of synthesis methods as well as
investigate online detection of multiple errors.
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