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Abstract We present an overview and analysis of existing work in the design
of online testable reversible logic circuits, as well as propose new approaches
for the design of such circuits. We explain how previously proposed approaches
are unnecessarily high in overhead and in many cases do not provide adequate
fault coverage. Proofs of the correctness of our approaches are provided, and
discussions of the advantages and disadvantages of each design approach are
given. Experimental results comparing our approaches to existing work are
presented as well. Both approaches that we propose have better fault coverage
and significantly lower overheads than previous approaches.
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1 Introduction

Today’s consumers are demanding more of their electronic devices while also
wanting these devices to be smaller and smaller; in addition they also want
their devices to use less and less power. While the industry has so far been able
to meet these demands with a remarkable validation of Moore’s law [24], some
researchers are predicting that this will come to an abrupt end around the year
2015. Logic voltages can not be reduced much further than their current levels
without comprompising efficiency and impacting power consumption; industry
will be unable to reduce transistor sizes much further without running into
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leakage problems, and the reduction of signal energies is only a temporary fix
as below a certain threshold digital devices cannot reliably function due to
thermal noise [11].

This is not only being identified by academics and researchers, but also
by industry groups. The ITRS (International Technology Roadmap for Semi-
conductors), a group sponsored by semiconductor manufacturers around the
world, produces a report every 2 years on the state of the industry and its
future directions. In 2009 their report stated that “It is forecasted that by the
end of the next decade it will be necessary to augment the capabilities of the
CMOS process by introducing multiple new devices that will hopefully realize
some properties beyond the ones of CMOS device.” This was clarified later in
the report as referring to the possibilities of using “particle spin to perform
non-volatile memory and logic functions on a CMOS chip”, or performing “an
information processing function utilizing spin waves” [1]. Both of these, as the
report later states, belong to the fields of quantum and reversible comput-
ing. The 2011 report provides additional evidence of an industry struggling to
keep up with Moore’s law through small improvements in existing technology.
Statements such as this illustrate clearly the difficulties being encountered by
our industry: “Cost-effective heat removal from packaged chips remains al-
most flat in the foreseeable future. Driven by the 2 times increase in transistor
count per generation, power management is now the primary issue across most
application segments” (emphasis added).

One solution may be the use of reversible logic in the design of circuits.
Traditional logic loses information during computation, which is dissipated
as heat [16]. In 1973 Bennett stated that “loss of information implies energy
loss” [4] and proved that in order to not dissipate energy a circuit must be
entirely composed of reversible gates; more recently Frank theorized that a
reversible logic device could recover a fraction of energy that could reach up
to 100%. Research on reversible computing has also shown its use in a variety
of technologies such as quantum computing [28], low power CMOS design [7,8],
optical computing [30], and nanotechnology [20].

Despite having been proposed in 1961, reversible logic has only recently
gained popularity, no doubt driven by the looming power management issues.
Prototypes of reversible devices and chips are beginning to appear, e.g. [14] and
[40], and many options for synthesis of reversible circuits have been proposed
including [10, 22, 37, 41, 43], to name just a few. Testing approaches are also
beginning to develop, and existing work in this area includes [9,15,17,39]. We
provide an overview of this work and analyse the issues related to these designs.
We also present our own approaches for creating online testable reversible
circuits based on work first presented in [27] and [25]. This paper provides
further evidence of the fault coverage obtained by our approaches as well as
experimental results and comparisons with the previous approaches. Both of
our approaches are intended to build on an existing cascade of Toffoli gates,
such as that generated by the technique in [10]. To generate the online testable
circuit our approaches add a small number of gates and a single parity line
such that any single bit fault is propagated both forward to the end of the
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circuit as well as “down” to the parity line. Thus any single bit fault in the
circuit can be detected by examining the value of a single line at the end of
the circuit.

2 Background

2.1 Reversible Gates and Reversible Circuits

[22] provides the following definition:

Definition 1 An m-input, m-output, Boolean function f(X), X = {x1, x2, ..., xm}
is reversible if it maps each input assignment to a unique output assignment.

In other words, a reversible function has the same number of inputs as outputs
and there is a one-to-one mapping between its input and output vectors. A
reversible gate realizes a reversible function. Since traditional logic gates other
than the NOT gate are not reversible, a different set of gates are used in
reversible logic. In this work we focus only on the family of Toffoli gates.

An n-bit Toffoli gate is a reversible logic gate with n inputs and n outputs
and that maps the input vector [k1, k2, . . . , kj−1, kj , kj+1, . . . , kn] to the output
vector [k1, k2, . . . , kj−1, (k1k2 · · · kj−1kj+1 · · · kn)⊕ kj , kj+1, . . . , kn] where the
symbol ⊕ denotes the EXOR operation. That is, all control line values are
passed through the gate unchanged, while the target line is inverted if all
control line values are 1. The NOT gate is a special case of a Toffoli gate with
n = 1 and no controls. The 2-bit (that is, n = 2) Toffoli gate is also known as
the CNOT gate or Feynman gate. A NOT gate, a CNOT gate and an n-bit
Toffoli gate are shown in Figures 1(a), 1(b) and 1(c).

A negative-control Toffoli gate maps the input vector [k1, k2, . . . , kj−1, kj , kj+1, . . . , kn]
to the output vector [k1, k2, . . . , kj−1, (k1k2 · · · ki, · · · kj−1kj+1 · · · kn)⊕kj , kj+1, . . . , kn]
where ki is a negative control and i ∈ {1, 2, . . . , n}, i 6= j. This gate may have
one or more negative controls; in that case, the value of the target line is in-
verted if all positive controls have the value 1 and all negative controls have
the value 0. A 3-bit Toffoli gate with a single negative control in its first input
is shown in Figure 1(d).

The extended Toffoli gate (ETG) is a multi-target Toffoli gate proposed
in [6]. In our work we use an (n+ 1)-bit ETG with two target outputs on and
on+1 as shown in Figure 1(e). This gate maps the input vector [k1, k2, . . . , kn, kn+1]
to the output vector [o1, o2, . . . , on, on+1], where oj = kj for j = 1, 2, . . . , n−1,
on = k1k2 · · · kn−1⊕kn, and on+1 = k1k2 · · · kn−1⊕kn+1. Thus there are n−1
control lines and two target lines. Like the regular Toffoli gate the targets of
an ETG may be any lines; we use the nth and n + 1st lines in this definition
strictly for the sake of simplicity. Like a negative-control Toffoli gate, an ETG
may have negative controls. We note that in our diagrams we illustrate the two
target lines with different symbols (the ⊕ and × symbols); this is strictly to
differentiate between regular Toffoli gates and the ETGs added for testability
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Fig. 1 (a) NOT gate. (b) CNOT gate. (c) n-bit Toffoli gate. (d) 3-bit negative-control
Toffoli gate. (e) An (n+1)-bit ETG.

as we will describe later on in this paper. The two targets actually compute
the same functionality, albeit on different lines.

A reversible circuit consists of only reversible gates which are intercon-
nected without fan-out and feedback [28]. We refer to a reversible circuit as a
Toffoli circuit if it is built using only Toffoli gates including NOT gates, CNOT
gates and negative-control Toffoli gates.

2.2 Metrics

A given function can be synthesized several ways, each resulting in different
reversible circuits. Thus cost metrics are required to evaluate and compare
different circuits realizing the same function.

Gate count is a simple cost metric sometimes used to compare and evaluate
different reversible circuits. It refers to the number of gates required to imple-
ment the circuit. It simply counts gates but does not take into account the
complexity of the gates. As a result, it fails to provide meaningful information
if the underlying implementation requirements of the gates under comparison
are significantly different [23].

Quantum cost is a very popular measure used to compare reversible cir-
cuits. The quantum cost of a gate is the number of basic quantum operations
needed to realize the gate [21]. Any reversible circuit can be decomposed into
basic quantum gates, and the number of basic quantum gates required to im-
plement the circuit is the quantum cost. Unlike gate count, quantum cost can
provide accurate information since it considers the complexity of the circuit
by counting the number of basic gates. In this work we calculate the quantum
cost of a gate/circuit using the table given in [18] and information from [19]
and [2]. For more information on this topic we direct the reader to [3].
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In reversible circuits some outputs do not behave as final results but they
are required to maintain the reversibility property. These unwanted outputs
are known as garbage outputs. For some circuits, however, it is impossible
to remove all the garbage outputs. The reader is directed to [45] for further
discussion on the issue of garbage in reversible circuits.

In this paper we compare circuits in terms of their quantum cost and
number of garbage outputs. We have computed the cost of an (n+1)-bit ETG
to be 2+ the cost of an n-bit Toffoli gate since it can be simulated by an n-bit
Toffoli gate and two CNOTs. Similarly, an (n + 1)-bit negative-control ETG
has the cost of 2+ the cost of a negative-control n-bit Toffoli gate.

2.3 Fault Models and Testing Approaches

There are several fault models currently proposed for use in reversible logic.
These include traditional models such as the stuck-at model, but also newly
proposed models such as the missing gate fault model (MGF) family and
crosspoint fault model. The MGF model was first proposed in [12] and modeled
the disappearance (or non-operation) of an entire gate. This is refined and
extended in [31] to include the single missing gate fault (SMGF) in which
a single gate is missing; the multiple missing gate fault (MMGF) in which
multiple gates are missing; the repeated gate fault (RGF) in which gates may
be repeated, and the partial missing gate fault (PMGF) in which all or some
control points of a gate may be missing/non-operational. The crosspoint fault
model is based on the crosspoint model for programmable logic arrays and [46]
proposed two categories of crosspoint faults: disappearance faults, which occur
when one or more control points of a Toffoli gate are missing, and appearance
faults, when an additional control point is erroneously added. Disappearance
faults in fact model the same fault as the PMGF model. A more generic model
referred to as the bit fault model has been considered in various articles such
as [39] and [17]. In this model a fault in a gate changes the behavior of its
outputs, whether they are control lines or targets. A single bit fault is reflected
on exactly one output of a gate, changing the correct value of the output to
a faulty value. This model is very similar to the single stuck-at fault model,
where a single stuck-at fault erroneously fixes the output of a gate to either
0 or 1. However a bit fault on a particular line inverts the value of that line,
changing it from logic 0 to logic 1 or vice versa. Thus unlike the stuck-at fault
model the single bit fault model depends on the input values. In this paper we
consider primarily the single bit fault model.

Testing is required to ensure quality, availability, and reliability of a cir-
cuit or device. According to [42], testing can be performed online (concurrent
testing) or offline (non-concurrent testing), or a combination of both. Online
testing takes place while the system is performing its normal operation, al-
lowing faults to be detected in real time. Offline testing requires the system
or a part of the system to be taken out of operation to perform testing, and
generally involves the application of a set of test vectors that will detect all
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possible faults under a given fault model (a complete test set). This assumes,
of course, that faults are permanent. In some cases a design for testability
(DFT) approach will be used, requiring the addition of extra circuitry or re-
design of the circuit in order to facilitate the testing process. Work in offline
testing of reversible logic circuits includes [29] and [5] as well as DFT methods
such as in [13] and [32]. If, however, we assume that faults may be transient,
then an offline approach may not be desirable. In this case there is a strong
argument for an online approach that is continuously testing for faults while
the circuit is in operation. We suggest that for reversible circuits, where the
underlying technology is still being theorised, such an approach is particularly
desirable. For instance, [12] suggests that many potential technologies would
involve static states which are modified by electromagnetic pulses (EM); these
pulses then are modeled as gates, and their sequential application would form
the “cascade” of gates in the circuit. As argued by [33] it is not unreasonable to
assume that there would be variability in the EM pulses or in the maintenance
of the static states.

In this work we focus on the bit fault model in an online testing approach.
While [31] has suggested the MGF family, with corresponding arguments for
each type of fault related to potential problems with EM pulse “gates”, this
again assumes that the pulses will perform in exactly the same way in an offline
testing situation as when the circuit is under normal operations. In addition,
while there appear to be good arguments for the MGF family and/or crosspoint
fault models in application to the unknown quantum technologies in which
reversible circuits are likely to be implemented, there is also an equally good
argument for a generic fault model such as the bit fault model. We provide
an example of this: if we assume that one or more permanent bit faults are
present in a circuit such as shown in Figure 2, then it is necessary to apply
only one test vector to detect each fault – a bit fault (shown with an X in
Figure 2) on any of the lines will invert the value on that line. However if we

X0
1
1
0

0/1
1/0
1/0
0/1

X
X
X

Fig. 2 A simple circuit with multiple permanent bit faults. The test vector of {0110} was
chosen arbitrarily.

assume a transient fault that, like the cell fault model proposed in [29], can
be triggered by certain input values, then all possible 2k (for a gate with k
lines) values must be applied in order to detect the fault, which would trivially
also detect all other faults under the different fault models. It is this second
possibility that we are targeting with the approach described in this work. We
do not, however, propose the development of a test set; rather our proposed
online approach is designed to detect faults of any type as they occur.
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3 Review of Online Testable Approaches

We next provide an overview of a number of different approaches for generating
online testable reversible circuits. We discuss the potential design issues and
the benefits and limitations of each approach.

3.1 Testable Circuit Design Using R1, R2, and R Gates

Vasudevan et al. [39] proposed a design methodology for constructing online
testable reversible circuits. Three new reversible gates R1, R2 and R were
introduced as shown in Figure 3. The R1 gate is used to realize NAND, OR,
EXOR, and EXNOR operations by setting different values on inputs. This gate
has a parity output at q. The gate R2 passes the inputs through to the outputs,
with a parity output again being computed at s, and in order to construct a
testable block (TB), the gates R1 and R2 are cascaded by connecting the first
three outputs of R1 to the first three inputs of R2, creating a testable block
with two parity outputs that can be compared to determine whether a single
bit fault has occurred or not. Figure 4 shows the construction of a TB and its
block diagram. The TBs are then used to realize the reversible circuit.

R1b
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v = b c ab bc
w = a b c

u = a c

q = p c ab bc

(a)

R2
e

r
f

d
y = e
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s = r d e f

(b)
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c

a
m= a
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l = a b

(c)

Fig. 3 (a) R1 gate, (b) R2 gate, and (c) R gate.
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Fig. 4 (a) Construction of a testable block (TB), and (b) its block diagram.

Since each TB generates two parity outputs, a two-pair two-rail checker
circuit is also required to test the parities of two TBs. The checker circuit
takes (q1, s1) and (q2, s2), the parities of two TBs, as inputs and produces two
outputs (e1 = q1s2 + s1q2, e2 = q1q2 + s1s2). This checker circuit is built using
eight R gates. If a circuit contains more than two TBs a cascade of checker
circuits is required. A fault in a circuit propagates through the checker circuits.
By comparing the outputs of the last checker circuit, the circuit detects a fault.
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Analysis

For analysis, we consider a function f = ab + c. We rewrite this function as
f = abc ⊕ c and implement a non-testable circuit for this function using the
basic ESOP-based method from [10]. The circuit has a quantum cost of 16
and 3 garbage outputs and is shown in Figure 5(a).

We then implement an online testable circuit for the same function, as
shown in Figure 5(b). The first TB takes inputs a and b and generates ab
which is then connected along with input c to the second TB, producing the

final output f = abc = ab + c. The checker circuit checks the parity outputs
of two TBs. The circuit should be able to detect a fault by examining the
outputs (e1 and e2). The testable circuit has a quantum cost of 56 and 12
garbage outputs. Thus the overheads are 250% and 300% in terms of quantum
cost and garbage outputs, respectively, compared to the non-testable circuit.

b
c

a

f = abc c0
= ab + c

(a)

TB
b
1

a

TB
c

ab

0
1

1
0
1

ab c = ab+c

Checker
circuit

e1

e2

(b)

Fig. 5 (a) Non-testable circuit for f = abc⊕ c = ab + c and (b) Online testable circuit for
f = ab + c built using the design approach in [39].

A close investigation reveals that this approach cannot detect all single bit
faults. If a fault occurs between two TBs, the circuit is unable to detect it.
Note that TBs generate parities which are tested by checker circuits; thus a
fault in any of the TBs is detected but occurrence of any fault outside the TBs
is left undetected. For example, in the circuit given in Figure 5(b), if a fault
occurs at the first input of the second TB, the circuit is unable to detect it.
As a result this approach can detect some single bit faults, more specifically
faults that occur in TBs, but cannot detect all faults.

3.2 Testable Circuit Design Using Testable Reversible Cells (TRCs)

Mahammad et al. [17] proposed an approach involving converting from an
existing circuit. The first step transforms each n × n reversible gate G used
in the circuit into an (n + 1) × (n + 1) deduced reversible gate DRG(G).
Given the input vector [k1, k2, . . . , kn] and output vector [o1, o2, . . . , on] of an
n× n gate as shown in Figure 6(a), an extra input piG and the corresponding
output poG are added to construct an (n + 1) × (n + 1) DRG(G) as shown
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in Figure 6(b), which maps the input vector [k1, k2, . . . , kn, piG] to the output
vector [o1, o2, . . . , on, poG] where poG = o1 ⊕ o2 ⊕ . . .⊕ on ⊕ piG.

G

k1
k2

kn

o1
o2

on

(a)

DRG
(G)

k1
k2

kn

o1
o2

on
piG poG

(b)

Fig. 6 (a) G gate and (b) DRG(G).

The second step constructs a testable reversible cell (TRC) of G, denoted
by TRC(G). For example let us consider another n× n gate X which has the
same input and output vectors; that is, the inputs of X pass through to the
outputs without any change. DRG(X) is constructed by adding an input piX
and the corresponding output poX . DRG(G) and DRG(X) are cascaded by
connecting the first n outputs of DRG(G) to the first n inputs of DRG(X) in
order to form an (n + 1)× (n + 1) TRC(G) with two parity outputs poG and
poX as shown in Figure 7. Given piG = piX , poG and poX are complementary
only if TRC(G) is faulty.

DRG
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piG poG

DRG
(X)

o1
o2

on
piX poX

(a)

TRC

k1
k2

kn

o1
o2

on
piG poG
piX poX

(b)

TC

e

poG1
poX1

T

poGm
poXm

poG1
poX1

poGm
poXm

(c)

Fig. 7 (a) Construction of a testable reversible cell TRC(G), and (b) its block diagram. (c)
Test cell (TC).

To create a testable circuit each gate in the circuit is replaced by its TRC.
Let us assume that there are m TRCs in the circuit and that poGj and poXj

are the parity outputs of the jth TRC. To test all the parity outputs, a (2m+
1)× (2m + 1) test cell (TC) is formed. The first 2m inputs of the TC are the
parity outputs which pass through to the outputs. The last input is e which
is set to 0 or 1, and the corresponding output is T = ((poG1⊕ poX1) + (poG2⊕
poX2) + . . . + (poGm ⊕ poXm)) ⊕ e. The block diagram of the TC is given in
Figure 7(c). According to the design, if a single bit fault occurs in the circuit
then T becomes 1 provided e = 0.
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Analysis

For analysis, we convert the non-testable circuit given in Figure 5(a) into an
online testable circuit using this approach. The 4-bit Toffoli gate and 2-bit
Toffoli gate in the non-testable circuit are replaced by a 6×6 TRC and 4×4
TRC. The parity outputs of these two TRCs are connected to a 5×5 TC to form
a testable circuit as shown in Figure 8. This testable circuit has a quantum cost
of 39 and 8 garbage outputs. Thus the overheads are 143.75% and 166.67%
in terms of quantum cost and garbage outputs, respectively, compared to the
non-testable circuit.

5x5
TRC

b
c

a
4x4
TRC

TC

e T

poG2

poX20
poG1

poX1

f = ab + c

Fig. 8 Online testable circuit for f = ab + c built using the design approach in [17].

Unfortunately the design flaw that we described in the previous approach
also exists in this design. For example, any fault between the connections of
two TRCs in Figure 8 is undetectable. Thus this approach fails to detect a
fault between two TRCs, contrary to the claims of the authors.

3.3 Testable Circuit Design Using Online Testable Gates (OTGs)

Thapliyal and Vinod [38] proposed an approach similar to the one described
in Section 3.1. A new 4×4 reversible online testable gate (OTG) introduced in
their work has a parity output at q as shown in Figure 9(a). The R2 gate (see
Figure 3(b)) is combined with the OTG as shown in Figure 9 to design a block
that is online testable. Two parity outputs of the testable block (s and q) are
compared to check whether the block is faulty or not. In [39] (see Section 3.1)
the two-pair two-rail checker circuit was designed using eight R gates, whereas
Thapliyal and Vinod designed the checker circuit using four 3-bit Toffoli gates
and two 3-bit Fredkin gates.

Analysis

In this analysis, we consider the same function f = ab + c as in previous
sections. A testable circuit realizing this function is built using this approach
as shown in Figure 10. In the circuit, the first block produces ab which is then
fed along with input c to the second block. The second block produces = ab+c.
A checker circuit is required to test these two blocks. This testable circuit has a
quantum cost of 52 and 12 garbage outputs. Thus the overheads are 225% and
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Fig. 9 (a) Online testable gate (OTG). (b) Construction of a testable block, and (c) its
block diagram.

300% in terms of quantum cost and garbage outputs, respectively, compared
to the non-testable circuit of Figure 5(a).

Block
b
0

a

Block
c

ab

0
1

0
0
1

ab c = ab+c

Checker
circuit

e1

e2

Fig. 10 Online testable circuit for f = ab + c built using the design approach in [38].

Like the previous two approaches, this approach also fails to detect a fault
that occurs between two blocks.

3.4 Dual Rail Coding Approach

The dual rail coding approach proposed in [9] uses a set of dual rail reversible
gates to design an online testable circuit. Each dual rail gate is a 4 × 4 gate
which has two pairs of inputs and two pairs of outputs. It is noted that two
signals are in dual rail form if they are complement of each other. In other
words, a dual rail form represents either 01 or 10. Similarly, a non-dual form is
either 11 or 00. A dual rail gate is designed in a way so that two inputs of each
pair are given in the dual rail form and two outputs of each pair also appear
as the dual rail form. Figure 11(a) shows a dual rail NAND gate. According
to the design of the gate, a single fault in a gate causes the outputs of a
pair to be in non-dual rail form. To implement a testable circuit, a cascade
of dual rail gates is used. A fault in any dual rail gate propagates through
the circuit. Thus by examining the output-pairs of last gate, the circuit can
detect the fault. Consequently, this approach does not need a checker circuit
for fault propagation and testing of intermediate gates, although it does require
a checker circuit to test the final outputs.
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Analysis

We again implement a testable circuit for the function f = ab + c according
to this approach as shown in Figure 11(b). The inputs a, b, and their comple-
mented forms are connected to a dual rail NAND gate. The two outputs (ab
and ab) of this gate, input c and its complemented form are passed to another

dual rail NAND gate. This gate produces f = abc = ab+ c. The quantum cost
of this circuit is 126. It also produces 5 garbage outputs. Thus the overheads
are 687.5% and 66.67% in terms of quantum cost and garbage outputs, respec-
tively, compared to the non-testable circuit of Figure 5(a). Although quantum
costs of the dual rail gates are very high, this approach can detect any single
bit fault in the circuit.

Dual
Rail
Gate

(NAND)

ab

garbage

ab
garbageb

a

b

a

(a)

Dual
Rail
Gate

(NAND)b

a ab

b

a ab
Dual
Rail
Gate

(NAND)c
c

f = abc = ab + c
abc

(b)

Fig. 11 (a) A dual rail NAND gate. (b) Online testable circuit for f = ab + c built using
the design approach in [9].

3.5 Testable Circuit Design with Duplication of Gates

Kole, Rahaman and Das [15] proposed a technique that can detect online
any single missing gate fault in a circuit consisting of only Toffoli gates. This
technique requires one extra line T which is tested to detect the fault. For
each n-bit Toffoli gate in the circuit, three extra Toffoli gates, two CNOT
gates and another n-bit Toffoli gate are embedded to construct a testable
circuit. Figure 12 shows how a Toffoli gate t1 is surrounded by three Toffoli
gates c1, c2, and t2 to make it testable. If the initial value and the final value
of the line T are the same then no gate is missing; otherwise the absence of a
gate is assumed.

t1

i1
i2
i3
i4

(a)

t2 c1 t1 c2

i1
i2
i3
i4
T

(b)

Fig. 12 (a) A Toffoli gate t1 and (b) its corresponding testable circuit.
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Analysis

The testable circuit implemented in this way requires 4 times as many gates
as the non-testable design requires. The complexity of this technique in terms
of quantum cost is 2g + 2q, where g and q are the gate count and quantum
cost of the non-testable design, respectively. Thus the quantum cost of this
design is more than twice the cost of the non-testable design. As indicated
above, this approach can detect any single missing gate fault.

4 Optimized Approaches for Online Fault Detection

The previous section has described a variety of approaches to generate online
testable circuits. In this section we present a simple technique that takes a
reversible circuit consisting only of NOT, CNOT and Toffoli gates and converts
it into an online testable reversible circuit. The resulting circuit is able to detect
any single bit faults. We present this approach in two stages; the first stage
being designed for a specific type of Toffoli circuit, and the second stage being
applicable to any type of Toffoli circuit.

4.1 Testing of ESOP-based Circuits

The basic ESOP-based reversible logic synthesis approach [10] and several
of its variants [34, 35] all generate circuits which have separate input and
output lines. A common structure of this type of circuit is that controls of
the Toffoli gates are connected only to input lines and targets are connected
only to output lines. This structure is maintained when the given ESOP-
circuit is converted into a testable circuit, allowing easy detection of single
bit faults in the resulting circuit. While techniques such as those listed above
generate circuits with this structure, other synthesis techniques that ensured
the requisite structure could also be used to generate a reversible circuit to
which we could then apply our modifications to make it online testable.

4.1.1 Construction of a Testable Circuit from the ESOP-based
Circuit

Given a function with p inputs and q outputs, consider a reversible circuit
which realizes this function and has the structure mentioned earlier. One
method for generating a reversible circuit with the required structure is to
create an empty circuit with p input lines and q output lines, and initialize
each output line with zero. If the function is described as an exclusive-or sum
of products (ESOP) then for each ESOP term (product) of each output a Tof-
foli gate is added at the end of the circuit. This method was proposed in [10]
and creates a circuit with p input lines and q output lines.
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To convert such circuit into an online testable circuit, we need to add some
NOT gates and CNOT gates. It also requires a parity line L which is initialized
with a zero. The procedure is as follows. We first replace every n-bit Toffoli
gate in the given circuit by an (n + 1)-bit ETG. The connections of the first
n bits of the ETG remain the same as that of n-bit Toffoli gate. The last, i.e.
(n+1st) bit of the ETG is connected to L. The NOT gates in the given circuit
are also kept. For each NOT gate in the input and output lines, one extra NOT
gate is added on the line L. In total m extra NOT gates are required in this
step, where m is number of NOT gates in the given circuit. In order to test the
output lines, a CNOT gate is added from each output line to the L line at the
end of circuit, requiring q more gates. To test the input lines, CNOT gates are
added from each input line to L before and after the whole circuit. This step
requires 2p CNOT gates. Now in the resulting circuit, if a single fault occurs
in any of the input lines, output lines or even in L, the value of L at the end
will become 1. If no fault occurs, L will remain 0. It is important to note that
this technique can also be applied for the ESOP-based circuit consisting of
inverted-control Toffoli gates. The following example describes the conversion
procedure.

Example 1 For a given 4-input (I1, I2, I3, I4), 2-output (I5, I6) ESOP-
based circuit shown in Figure 13(a), the corresponding online testable circuit
generated by the proposed technique is shown in Figure 13(b). We can see that
Toffoli gates (t1, t2, t3, and t4) are replaced by ETGs (e1, e2, e3, and e4).
CNOT gates c1 through c10 are added to test the input and output lines.

I1
I2
I3
I4
0

0

I5
I6

t1 t2 t3 t4

(a)

I1
I2
I3

0

I4
0

0

I5
I6
L

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10e1 e2 e3 e4

(b)

Fig. 13 (a) An ESOP-based circuit, and (b) equivalent online testable reversible circuit.

4.1.2 Analysis

In our testable circuit, a single bit fault can generate multiple faults. Faults can
occur in control bits and/or target bit of an ETG. A fault in a target bit affects
the gate as it changes the target output. However, a fault in a control bit affects
the gate only if it changes the target output to a faulty value. For instance,
given that all controls of an ETG are positive, a fault in a control bit has an
effect on the target output if all fault-free control bits have the value 1. Thus
if a single fault in the control bit affects an ETG, then the fault propagates



Testing Reversible Logic 15

to other lines by the target outputs. In our testable design, since controls of
the ETGs and CNOTs are connected to input lines, faults on input lines can
propagate to output lines and L by the target outputs. However, faults on
output lines and L cannot cause other lines to be faulty since no controls are
connected to output lines or L. Our proposed approach can detect any single
bit fault even though it causes multiple faults. The following example shows
the propagation of a single fault from an input line to multiple output lines.

Example 2 Consider a circuit consisting of two ETGs as shown in Figure 14.
This circuit has two input lines (I1 and I2), two output lines (I3 and I4), and
a parity line L. The initial values of I1, I2, I3, I4, and L are 0, 1, 0, 1,
and 0, respectively. Assume a fault occurs on I1 just before the first ETG;
thus the value of I1 changes to 1. For the faulty lines, values are given in the
form [fault-free value/ faulty value]. The fault on I1 affects the first ETG and
propagates to I3 and L by the target outputs of this gate. As a result, two extra
lines I3 and L become faulty. The fault on I1 also affects the second ETG. This
causes I4 to have the faulty value and fixes the value of L. Therefore, after the
second ETG, lines I1, I3 and I4 are faulty.

I2
I3
I4
L

0/1

0/1

0/1
1/0
0/0

1
0
1
0

1

1

I1 0
0/1 0/1

Fig. 14 Fault propagation in multiple lines.

Lemma 1 proves that both targets of an ETG calculate the same function
regardless of the occurrence of the fault. In this lemma, we consider all controls
of the ETG to be positive. A similar lemma can be proved if some or all controls
are negative. Lemma 2 proves the correctness of our technique.

Lemma 1 Consider an (n+1)-bit ETG which maps the input vector [k1, k2, . . . , kn−1, kn, kn+1]
to the output vector [o1, o2, . . . , on−1, on, on+1] where oj = kj (for j = 1, 2, . . . , n−
1), on = f ⊕ kn, on+1 = f ⊕ kn+1, and f = k1k2 · · · kn−1.

1. If faults occur in controls of the ETG and affect the gate, then both on and
on+1 compute f ; otherwise both outputs compute f .

2. If faults occur in targets of the ETG, then both on and on+1 compute f .
3. If faults occur in targets and controls which affect the ETG, then both on

and on+1 compute f ; otherwise both outputs compute f .

Proof 1. Consider faults in ki, kj , . . . , kl such that {i, j, . . . , l} ⊆ {1, 2, . . . , n−
1}. These faults affect the calculation of function f if the following two
conditions hold. [i)]
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(a) km = 1∀m ∈ {1, 2, . . . , n− 1} − {i, j, . . . , l}, and
(b) ki = kj = . . . = kl = 0 or ki = kj = . . . = kl = 1.
If both conditions are true, then the faults have impact on on and on+1 since
both outputs compute f . Thus on = f⊕kn and on+1 = f⊕kn+1. If at least
one of the conditions is false, then the faults do not affect the calculation
of f . Thus according to the definition, on = f ⊕ kn and on+1 = f ⊕ kn+1.
Therefore if the faults have an effect, then on and on+1 compute f ; other-
wise these outputs compute f .

2. We consider three cases, depending on whether one of the targets is faulty
or both targets are faulty.
Case 1. Assume a fault occurs in kn. This fault does not propagate to
on+1 since on+1 is independent of kn; thus on+1 = f ⊕ kn+1. However due
to the fault, on = f ⊕ kn.
Case 2. Assume a fault occurs in kn+1. The proof is similar to Case 1. We
get on = f ⊕ kn and on+1 = f ⊕ kn+1.
Case 3. Consider that faults occur in both kn and kn+1. Due to these
faults, on = f ⊕ kn and on+1 = f ⊕ kn+1.
Hence, for any of the cases, both on and on+1 compute f .

3. We consider two cases, depending on whether faults in controls affect the
gate or not.
Case 1. First consider that faults in controls affect the gate. From Lemma 1(1),
we can write on = f ⊕ kn and on+1 = f ⊕ kn+1.
Assume that faults also occur in both targets. According to Lemma 1(2),
we can rewrite the outputs as follows: on = f ⊕ kn and on+1 = f ⊕ kn+1.
Thus both outputs compute f . Similarly, we can reach the same conclusion
if a fault occurs in any of the targets.
Case 2. For the case that faults in controls have no effect on the gate, the
proof is similar to Lemma 1(2).

Lemma 2 If any single fault occurs on any line, the value of L changes to 1
and the fault is detected.

Proof Consider an online testable circuit generated by the proposed tech-
nique which has N ETGs, p input lines, q output lines, and a parity line
L. Let G = {g1, g2, . . . , gN} be the set of ETGs used in the circuit and let
I1, I2, . . . , Ip be the input lines and Ip+1, Ip+2, . . . , Ip+q be the output lines.
Let the initial values of lines I1, I2, . . . , Ip be i1, i2, . . . , ip. All output lines and
L are initialized by 0. Given an (n + 1)-bit ETG gi ∈ G and the input vector
[k1, k2, k3, . . . , kn−1, kn, kn+1], the output vector is [k1, k2, k3, . . . , kn−1, fgi ⊕
kn, fgi⊕ kn+1] where fgi = k1k2 · · · kn−1, and n can be at most p+1. In order
to prove this lemma, consider the following three cases:

Case 1. Assume that a single fault occurs on any input line, say Iz (for z =
1, 2, . . . , p), which affects a set of gates, X = {x1, x2, . . . , xu} ⊆ G. Consider
another set of gates, Y = {y1, y2, . . . , yv} which is not affected by the fault.
We have G = X ∪ Y , and X or Y can be empty.

As described before, the last two outputs of a gate gi ∈ G computes the
same function fgi. A gate yr in Y computes fyr, for r = 1, 2, . . . , v. However,
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from Lemma 1(1), due to the fault, each gate x in X computes fxs, for s =
1, 2, . . . , u.

After the last gate in G, the line Iz has the faulty value iz, and L becomes
i1⊕ i2⊕ . . .⊕iz⊕ . . .⊕ip⊕fy1⊕fy2⊕ . . .⊕fyv⊕fx1⊕fx2⊕ . . .⊕fxu. When
all output lines are EXORed to L at the end, L becomes

i1 ⊕ i2⊕. . .⊕iz⊕. . .⊕ip ⊕ fy1 ⊕ fy2⊕. . .⊕fyv⊕ fx1 ⊕ fx2 ⊕ . . .⊕fxu ⊕
fy1 ⊕ fy2⊕ . . .⊕fyv⊕ fx1 ⊕ fx2⊕ . . .⊕fxu

= i1 ⊕ i2⊕ . . .⊕iz⊕ . . .⊕ip
Finally, when all input lines are EXORed to L, the fault on Iz is propagated

to L, and L becomes

i1 ⊕ i2⊕ . . .⊕iz⊕ . . .⊕ip ⊕ i1 ⊕ i2⊕ . . .⊕iz⊕ . . .⊕ip
= iz ⊕ iz = 1.

Since at the end, the line L contains 1, the circuit can detect the fault.

Case 2. Now consider that a single fault occurs on an output line Ip+z at
any point, where z = 1, 2, . . . , q.

Consider a set of gates, X = {x1, x2, . . . , xu} ⊆ G which have targets
connected on line Ip+z after the occurrence of the fault. Consider another set
of gates, Y = {y1, y2, . . . , yv} such that Y = G −X. From Lemma 1(2), each
gate xs in X computes fxs, for s = 1, 2, . . . , u. According to the definition,
each gate yr in Y computes fyr, for r = 1, 2, . . . , v.

The initial value of Ip+z is 0 and it becomes 1 because of the fault. At the
end, the value of Ip+z is fx1 ⊕ fx2 ⊕ . . .⊕ fxu ⊕ 1. As a result, when output
and input lines are EXORed to L at the end, the faulty value of Ip+z appears
at L. Thus L becomes

i1⊕i2⊕. . .⊕ip ⊕fx1⊕fx2⊕. . .⊕fxu ⊕fy1⊕fy2⊕. . .⊕fyv⊕i1⊕i2⊕. . .⊕ip
⊕fx1 ⊕ fx2 ⊕ . . .⊕ fxu ⊕fy1 ⊕ fy2 ⊕ . . .⊕ fyv ⊕ 1 = 1

Case 3. A fault can also occur on L. This causes L to have the value 1.

Hence, for any of these cases, the circuit detects the fault.

4.1.3 Advantages of the Proposed Design

Our proposed approach has several advantages over the previous approaches,
which are listed below.

– The approaches in [39] and [9] make use of new gates such as the R1
gate, R2 gate, R gate, and dual rail gates. These approaches require new
synthesis techniques to implement the testable circuits since no existing
synthesis techniques work with these new gates. In contrast, our proposed
approach is quite simple since it works on top of the non-testable circuit
designed using the ESOP-based synthesis technique.

– The approaches in [39] and [17] need checker circuits to detect the fault.
Although the approach in [9] does not need intermediate checker circuits,
it does require a checker circuit for testing the final outputs. Our proposed
approach does not require any checker circuit.

– Our approach does not produce any new garbage outputs.
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4.2 Testing of General Toffoli Circuits

A Toffoli circuit consists of only Toffoli gates including NOTs, CNOTs and
negative-control Toffoli gates. In general in a reversible circuit the input lines
can become the output lines; this is the ideal case, in which no garbage is
generated. The target and controls of a Toffoli gate can be connected to any
line in the circuit. In Section 4.1 we proposed an approach for constructing
online testable reversible circuits from a certain type of ESOP-based Toffoli
circuit. In this section we extend our approach to work for any type of Toffoli
circuit.

4.2.1 Construction of a Testable Circuit from the Toffoli Circuit

Consider a Toffoli circuit consisting of p lines; in order to convert such circuit
into an online testable circuit, a parity line L is added, which is initialized
with a 0. The detailed procedure is given below.

A CNOT gate is inserted from each line to L at the beginning of the
given circuit. Every n-bit Toffoli gate is replaced by an (n + 1)-bit ETG. The
connections of the first n bits of the ETG are kept the same as that of n-bit
Toffoli gate. The last bit of the ETG is connected to L. All NOT gates found
on the lines are retained. If the number of NOT gates in the circuit is an odd
number, an extra NOT gate is added at the end of line L; otherwise, no extra
NOT gate is added. Finally, a CNOT gate is added at the end from each line
to L.

This approach requires a total of 2p extra CNOT gates and at most one
extra NOT gate to construct an online testable circuit. In the testable circuit,
if a single fault occurs in any line (including L), the value of L changes from
0 to 1. If no fault occurs, the value of L remains 0. Thus the circuit detects
the fault by checking the line L. Note that this procedure also works for any
circuit consisting of inverted-control Toffoli gates.

Although this approach seems similar to our first approach, there are dif-
ferences between the two. The first difference lies in optimizing the number
of NOT gates. This approach is optimized in terms of NOT gates since at
most one extra not gate is added on line L depending on the total number of
NOT gates in the given circuit. In contrast, the first approach adds as many
extra NOT gates as is found in the given circuit. Another difference is that
our first approach does not require CNOT gates from the output lines to L at
the beginning of the circuit since each output line is initialized with a constant
zero. However, the second approach does require a CNOT gate from each line
to L at the beginning of the circuit.

Example 3 Consider a Toffoli circuit given in Figure 15(a) which has five
lines (I1, I2, . . . , I5) and four Toffoli gates (t1, t2, t3, and t4). For constructing
an online testable circuit, we add a parity line L as well as replace t1, t2, t3,
and t4 by ETGs e1, e2, e3, and e4. We also insert five CNOT gates c1 through
c5 at the beginning and five CNOT gates c6 through c10 at the end of circuit.
The resultant online testable circuit is shown in Figure 15(b).
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I1
I2
I3
I4
I5

t1 t2 t3 t4

(a)

I1
I2
I3
I4
I5
L

c1 c2 c3 c4 c6 c7 c8 c9 c10e1 e2 e3 e4c5

(b)

Fig. 15 (a) A Toffoli circuit and (b) an online testable circuit.

4.2.2 Analysis

As described in Section 4.1.2, a single fault can generate multiple faults. In a
testable circuit, a fault on a line (except parity line L) can cause any other
lines including L to become faulty. It is important to note that a fault on L
cannot propagate to other lines since controls of the CNOTs and ETGs are
not connected to L. Lemma 3 proves that this approach can detect any single
bit fault even if it propagates to other lines, generating multiple faults.

Lemma 3 If any single fault occurs on any line, the circuit is able to detect
it.

Proof Consider an online testable circuit generated by the proposed tech-
nique which has N ETGs, p lines (I1, I2, . . . , Ip), and a parity line L. Let
G = {g1, g2, . . . , gN} be the set of ETGs used in the circuit. Let the initial val-
ues of lines I1, I2, . . . , Ip be i1, i2, . . . , ip. The line L is initialized with a 0. Given
an (n+ 1)-bit ETG g ∈ G and the input vector [k1, k2, k3, . . . , kn−1, kn, kn+1],
the output vector is [k1, k2, k3, . . . , kn−1, fg ⊕ kn, fg ⊕ kn+1], where fg =
k1k2 · · · kn−1, and n can be at most p. In order to prove this lemma, consider
the following two cases.

Case 1. Assume that a single fault occurs on a line Id (for d = 1, 2, . . . ,
p) and propagates to multiple lines.

Let W = {w1, w2, . . . , wq} ⊆ G be the set of gates that are not affected
by the faults.

Let X = {x1, x2, . . . , xr} ⊆ G be the set of gates such that faults occur
only on controls and affect the gates.

Let Y = {y1, y2, . . . , ys} ⊆ G be the set of gates with faults only on
targets.

Let Z = {z1, z2, . . . , zt} ⊆ G be the set of gates such that faults occur on
targets and controls which affect the gates.

We have G = W∪X∪Y ∪Z, and W , X, Y or Z can be empty. According
to the definition of the ETG, two targets of a gate g ∈ G compute the same
function fg. Similarly, a gate wj ∈ W computes fwj for j = 1, 2, . . . , q. A
gate xl ∈ X computes fxl for l = 1, 2, . . . , r according to Lemma 1(1). A
gate yu ∈ Y computes fyu for u = 1, 2, . . . , s according to Lemma 1(2). A
gate zv ∈ Z computes fzv for v = 1, 2, . . . , t according to Lemma 1(3).
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At the beginning of the circuit, all Im lines, for m = 1, 2, . . . , p are
EXORed to parity line L. Thus the value of L, just before the first gate in G,
is i1 ⊕ i2 ⊕ . . .⊕ id ⊕ . . .⊕ ip. After the last gate in G, the value of L becomes
i1 ⊕ i2 ⊕ . . .⊕ id ⊕ . . .⊕ ip ⊕ fw1 ⊕ fw2⊕ . . .⊕ fwq ⊕ fx1 ⊕ fx2⊕ . . .⊕ fxr

⊕ fy1 ⊕ fy2⊕ . . .⊕ fys ⊕ fz1 ⊕ fz2⊕ . . .⊕ fzt.
At the end, when all Im lines, for m = 1, 2, . . . , p are EXORed to L again,

the faulty value of Id (which is id) propagates to L and hence L becomes
i1 ⊕ i2 ⊕ . . .⊕ id ⊕ . . .⊕ ip ⊕ fw1 ⊕ fw2⊕ . . .⊕ fwq ⊕ fx1 ⊕ fx2⊕ . . .⊕ fxr

⊕ fy1 ⊕ fy2⊕ . . .⊕ fys ⊕ fz1 ⊕ fz2⊕ . . .⊕ fzt ⊕ i1 ⊕ i2 ⊕ . . .⊕ id ⊕ . . .⊕ ip
⊕ fw1 ⊕ fw2⊕ . . .⊕ fwq ⊕ fx1 ⊕ fx2⊕ . . .⊕ fxr ⊕ fy1 ⊕ fy2⊕ . . .⊕ fys ⊕
fz1 ⊕ fz2⊕ . . .⊕ fzt

= id ⊕ id = 1.
Since at the end, the line L contains 1, the fault is detected.
Case 2. A fault can also occur on L. This causes L to have the value 1

since it was initialized with a 0. Hence, the circuit detects the fault. Note that
a fault on Id can cause other lines faulty (Case 1). However, a fault on L does
not propagate to any Id since controls of ETGs and CNOTs are not connected
to L.

5 Experimental Results

A number of benchmark circuits have been collected from [44]. For approaches
in [39] and [9], no synthesis technique is given, and none of the currently
available reversible synthesis techniques provide output of the type required
for these approaches (e.g. cascades of the specific types of gates proposed
in the two papers). Thus we used the SIS synthesis tool [36] to simplify the
benchmarks and map into traditional logic gates (AND, OR, NAND and NOR
gates), and then we have implemented an approach to replace these gates
with the specific gates from each paper. For the approach in [39] this involved
replacing the original gates with TBs and adding a checker circuit to implement
the testable circuits. For the approach in [9] we replaced the original gates with
dual rail gates to implement the testable circuits.

The approach in [17] and our two approaches require that the circuit be
synthesized prior to modification for the testability. For the first experiment we
synthesized the benchmark circuits using the basic ESOP-based method [10].
We then applied the approach in [17] and our first approach (the approach
requiring the specific structure of the circuit) to implement the testable cir-
cuits. For the second experiment we used the improved shared cube synthesis
technique from [26] to implement the Toffoli circuits. We then applied the
approach in [17] and our second approach to implement the testable circuits.
For each of the above approaches we calculated the quantum cost and garbage
outputs of the testable circuits. The results are summarized in Table 1. In this
table Approach A represents the approach in [39], Approach B represents the
approach in [9], Approach C represents the approach in [17] using the ESOP-
based synthesis technique, Approach D represents the approach in [17] using
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the improved shared cube synthesis technique, and Approach E represents the
approach in [38]. Also note that QC and GO columns represent the quantum
cost and the number of garbage outputs, respectively.

From Table 1, we can see that both of our approaches reduce the quantum
cost and garbage outputs significantly for every circuit. It is noted that we
do not compare Approach D and our first approach since the underlying syn-
thesis techniques are different. On average, each of our approaches produces
15 garbage outputs whereas the best existing approach produces 484 garbage
outputs.

Table 2 summarizes the improvements achieved by our approach. Our first
approach can decrease the quantum cost by 54.02%, 61.91%, 22.65%, 54.02%
on average, as compared to [39], [9], [17], and [38], respectively. Average im-
provement of the quantum cost achieved by our second approach is up to
79.53%. Minimization of garbage outputs ranges from 96.90% to 99.85% on
average, compared to the previous approaches.

The overhead costs of the existing work and our second approach over the
non-testable designs are given in Table 3. The non-testable circuits were imple-
mented using the improved shared cube synthesis technique [26]. The quantum
cost overhead for our second approach is only 4.03% on average, compared to
321.06% for the approach in [39], 408.21% for the approach in [9], 40.53%
for the approach in [17], and 321.02% for the approach in [38]. Our approach
has absolutely no overhead in terms of garbage outputs since the testability
feature does not produce any extra garbage. However, existing approaches
produce extremely large numbers of garbage outputs and the average over-
heads are 65642.33%, 5684.82%, and 3162.39% for the approaches in [39], [9],
and [17], respectively.

5.1 Coverage of Fault Models

Like the approaches in [39] and [17], our proposed work considers the single
bit fault model. It is noted that the single bit fault model and single stuck-at
fault model are very similar with the exception that the stuck-at fault model
is independent on the initial values of the variables. Moreover, the behavior
of a stuck-at fault can be translated into that of a bit fault, and vice versa.
Consequently, a testable design which can detect bit faults can also detect
stuck-at faults. The lemmas which are provided to prove the correctness of
our approaches hold for both fault models.

As described in Sections 3.1, 3.2 and 3.3, previous approaches in [17,38,39]
fail to detect all single faults; thus these approaches partially cover the bit
fault and stuck-at fault models. In contrast, both of our approaches as well
as the approach in [9] fully cover two fault models. Table 4 summarizes this
discussion.
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Table 1 Comparison of different online testable approaches.

Circuit
Approach A Approach B Approach C Approach D Approach E 1st approach 2nd approach
QC GO QC GO QC GO QC GO QC GO QC GO QC GO

9symml 25598 5701 32220 532 12262 139 12262 139 25594 5701 11065 9 11066 9
alu2 40992 9123 52500 858 6549 215 6104 205 40988 9123 4882 10 4551 10
alu4 132367 29470169332 2738 63165 1342 54160 1149132363 29470 48951 14 42071 14
apex5 195061 43692213843 3518 69596 1557 47847 1620195057 43692 53947 117 35354 117
apla 17815 3979 20574 334 5457 185 2934 190 17811 3979 3978 10 1859 10
bw 19019 4216 25140 386 8757 620 4464 723 19015 4216 4994 5 1249 5
c17 486 109 564 12 190 23 190 23 482 109 103 5 103 5
cm82a 2163 482 2823 50 370 45 385 48 2159 482 176 5 173 5
cm163a 5259 1181 5940 106 1507 106 1099 104 5255 1181 977 16 661 16
co14 13429 3018 14163 250 3983 49 3983 49 13425 3018 3529 14 3529 14
con1 1647 370 1929 38 307 30 307 30 1643 370 184 7 184 7
cu 5560 1248 6234 110 1834 82 1288 84 5556 1248 1327 14 876 14
dc1 4141 919 5481 88 905 92 562 82 4137 919 435 4 204 4
dc2 11967 2666 15141 250 3066 143 1977 136 11963 2666 2088 8 1209 8
dist 38756 8634 48384 788 10594 363 5551 243 38752 8634 7786 8 3909 8
dk17 10376 2320 11478 186 2463 95 1649 95 10372 2320 1791 10 1113 10
ex2 1733 387 2241 42 267 23 267 23 1729 387 171 5 171 5
ex5p 84852 18914 98898 1540 38740 1518 12484 1623 84848 18914 26970 8 4918 8
f2 1948 434 2322 38 533 44 317 39 1944 434 306 4 152 4
f51m 128927 28694164889 2670 42590 937 37323 832128923 28694 33165 14 29072 14
frg2 218109 48779247332 4048264020 5073150509 3616218105 48779 205969 143 115211 143
ham7 5861 1301 8367 142 653 92 560 100 5857 1301 259 7 162 7
inc 13945 3102 17754 290 3679 197 2051 195 13941 3102 2389 7 1065 7
majority 787 177 876 18 224 18 224 18 783 177 154 5 154 5
max46 15321 3417 19314 326 5585 114 5585 114 15317 3417 4627 9 4627 9
misex1 7151 1593 8844 146 1694 111 941 113 7147 1593 1040 8 439 8
misex3 141354 31498174732 2816151363 2987 69153 2149141350 31498 117215 14 50826 14
mlp4 36477 8116 46950 762 5917 248 4043 208 36473 8116 4094 8 2680 8
pdc 124627 27784148926 2386127947 2044 44931 1639124623 27784 101170 16 32332 16
radd 4829 1075 6570 114 1508 126 1330 111 4825 1075 836 8 748 8
rd32 873 194 1257 24 110 18 104 18 869 194 49 3 45 3
rd73 16482 3674 20583 342 1862 140 1617 115 16478 3674 1064 7 959 7
root 14246 3174 18063 300 5073 176 2734 128 14242 3174 3773 8 1928 8
sqn 11236 2503 14256 240 3025 122 2053 100 11232 2503 2209 7 1437 7
sqrt8 5689 1269 7086 122 1056 76 835 63 5685 1269 657 8 530 8
sym9 24652 5485 31890 528 12262 139 12262 139 24648 5485 11065 9 11066 9
table3 223054 49769265566 4294112361 2019 31011 1767223050 49769 87880 14 20050 14
tial 134689 29992169002 2738 65578 1327 56703 1162134685 29992 51314 14 44366 14
wim 2378 528 2934 46 639 64 462 62 2374 528 325 4 200 4
z4ml 3883 865 5070 88 1114 97 1048 92 3879 865 607 7 575 7

Average 43693 9746 52737 858 25970 570 14583 484 43689 9746 20088 15 10796 15

Approach A is [39], Approach B is [9], Approach C is [17] using ESOP-based synthesis technique, Approach D
is [17] using improved shared cube synthesis technique, Approach E is [38].

Table 2 Improvements achieved by our approach.

Achieved improvements
Existing approaches Our 1st approach Our 2nd approach

QC GO QC GO
Approach in [39] 54.02% 99.85% 75.29% 99.85%
Approach in [9] 61.91% 98.25% 79.53% 98.25%
Approach in [17] 22.65% 97.37% 25.97% 96.90%
Approach in [38] 54.02% 99.85% 75.29% 99.85%

Table 3 Overhead calculation of the testable design over the non-testable design.

Approach
Average overhead

QC GO
Approach in [39] 321.06% 65642.33%
Approach in [9] 408.21% 5684.82%
Approach in [17] 40.53% 3162.39%
Approach in [38] 321.02% 65642.33%
Our 2nd approach 4.03% 0%
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Table 4 Coverage of fault models.

Approach Bit / stuck-at fault model
Approach in [39] Partial
Approach in [17] Partial
Approach in [38] Partial
Approach in [9] Complete
Our Approaches Complete

6 Conclusion

In this paper we have reviewed previous approaches for online testing of re-
versible circuits and discussed their design issues and limitations. We have
also presented two approaches that overcome the limitations of previous work.
Our first proposal is a technique which converts a circuit synthesized from an
ESOP [10] to an online testable circuit which can detect any single bit fault,
first described in [27]. Our second proposed approach [25] allows conversion
in a similar manner, but of any reversible circuit consisting solely of Toffoli
gates. Our techniques compare favorably with the existing approaches, provid-
ing better fault coverage, as evidenced by the analysis we have presented in this
work, and as well having significantly lower overhead in terms of garbage lines
and quantum cost. The extensive analysis and comparisons based on bench-
mark tests, as reported in this paper, demonstrate conclusively the significant
improvements achieved by our two approaches. We highlight that although
we have applied our modifications for the testability to circuits generated by
ESOP-based synthesis techniques, the underlying synthesis technique need not
be a factor in the success of our techniques. That is, our techniques can be ap-
plied to any circuit consisting of only Toffoli gates, regardless of the synthesis
technique that generates the circuit. In addition any new synthesis technique
that generates a minimal (or close to) reversible circuit consisting of only Tof-
foli gates could be used to generate the initial circuit, and even lower overhead
could be achieved if fewer gates and lines were generated by such a synthesis
technique (fewer gates means less ETG-modifications, and fewer lines means
fewer CNOT gates to be added). On-going work includes the extension of this
technique to other fault models as well as to multiple-valued reversible logic
circuits and to reversible circuits that incorporate other types of gates.
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