
An Overview of Fault Models and Testing
Approaches for Reversible Logic

J. E. Rice
Dept. of Math and Computer Science

University of Lethbridge
Alberta, Canada

Email: j.rice@uleth.ca

Abstract—Reversible logic has been proposed as one solution
to the problem of ever increasing power consumption. Work in
areas such as synthesis techniques in reversible logic is growing, as
is work on testing approaches. Numerous fault models have been
proposed, but many researchers are still utilising models proposed
for traditional logic. We provide an overview of the various
fault models and testing approaches for reversible logic, as well
as highlighting important results and comparisons/connections
between the various models.

I. INTRODUCTION

In the field of electronics consumers are demanding smaller
and smaller devices, with lower and lower power consumption;
unfortunately today’s technologies are having difficulties keep-
ing up and power consumption and dissipation are becoming
serious issues. However a solution is offered in the form
of reversible logic, and in fact Frank has stated that “...[a]
computer based mainly on reversible logic operations can reuse
a fraction of the signal energy that theoretically can approach
arbitrarily near to 100% as the quality of the hardware is
improved...” [1]. This is not a new idea; in 1961 Landauer
published the first paper linking reversible logic to lower power
dissipation [2], and in 1973 Bennett showed that for power
not to be dissipated it is necessary that a binary circuit be
constructed from reversible gates [3]. Reversible logic also has
connections to quantum computing, and reversible circuits can
be viewed as a special case of quanutm circuits [4]. As Shende
et al. note, “[w]hile the speed-ups which make quantum
computing attractive are not available without purely quantum
gates, logic synthesis for classical reversible circuits is a first
step toward synthesis of quantum circuits” [5]. Although the
area of reversible logic is not new, it is only now that it seems
to be gaining interest, and only recently that techniques for
testing reversible logic circuits have been proposed.

The paper progresses as follows: section II provides
some background on reversible logic in general, followed
by overviews of existing work on fault models and testing
in sections III and IV. The paper finishes with a section
offering comparisons and connections between the various
testing approaches, with the goal of offering a new perspective
on these fault models.

II. REVERSIBLE LOGIC CIRCUITS

The term reversible function is used to refer to a function
that is bijective. For example, Figure 1 gives two functions,
one of which (A) is reversible while the other (B) is not. A

x y x′ y′

00 00
01 10
10 01
11 11

x y f(x, y)
00 0
01 0
10 0
11 1

(A) (B)

Fig. 1. (A) An example of a reversible function. (B) An example of an
irreversible function.

TABLE I. THE BEHAVIOUR OF A SELECTION OF MORE COMMONLY
USED REVERSIBLE LOGIC GATES.

gate behaviour
Not (x)→ (x⊕ 1)
Feynman (y, x)→ (y, x⊕ y)
Toffoli (z, y, z)→ (z, y, x⊕ yz)
swap (x, y)→ (y, x)
Fredkin (z, y, x)→ (z, x, y) iff z = 1

else (z, y, x)→ (z, y, x)

x x’
y y’
x x’

z z’
y y’
x x’

(a) NOT gate (b) Feynman gate (c) Toffoli gate

July 7, 2005 J. Rice - an overview of Reversible Logic 9 of 17

what is reversible logic? — 6

• another commonly used

reversible gate is the SWAP

gate:

• and you may have heard of the

Fredkin gate:

SWAP’s equivalent:

(x,y) (y,x)

Fredkin’s equivalent:

(z,y,x) (z,x,y) iff z = 1

x x’
y y’

y y’
x x’

z z’

• both Toffoli and Fredkin can be generalized to any number of

inputs

July 7, 2005 J. Rice - an overview of Reversible Logic 9 of 17

what is reversible logic? — 6

• another commonly used

reversible gate is the SWAP

gate:

• and you may have heard of the

Fredkin gate:

SWAP’s equivalent:

(x,y) (y,x)

Fredkin’s equivalent:

(z,y,x) (z,x,y) iff z = 1

x x’
y y’

y y’
x x’

z z’

• both Toffoli and Fredkin can be generalized to any number of

inputs

(d) swap gate (e) Fredkin gate

Fig. 2. Symbols for some of the more commonly-used reversible logic gates.

logic gate can then be considered reversible if the function it
computes is bijective [5], and a circuit is considered reversible
if it consists entirely of reversible gates. We assume in this
work that the functions in question are limited to the Boolean
domain, although this is not a requirement for reversible
functions, gates and circuits.

Table I lists the behaviour of each of the most commonly
used reversible gates. Figure 2 illustrates the symbols usually
used for each of the gates. Controls are shown as solid dots
where the gate intersects a line. Toffoli gates with varying
numbers of controls are sometimes referred to as k-CNOT
gates, where k refers to the number of lines that control how
the gate affects the target line. For instance, the Toffoli gate
shown in Figure 2 could be referred to as a 2-CNOT gate,
while the Feynman gate would be referred to as a 1-CNOT gate
and the NOT gate would be a 0-CNOT gate [6]. Circuits that
are designed using only NOT, Feynman (CNOT) and Toffoli
gates are said to be designed using the NCT-library, which is a
common approach in reversible logic synthesis since k-CNOT
gates are universal.

III. FAULT MODELS

In both traditional and reversible logic the complexity of
generating tests for all possible faults in a circuit can be
reduced through the use of models which encompass varying
fault possibilities. The models vary according to the type of
description that is being used, which in turn varies according
to the level of abstraction. We list here a number of fault
models common to traditional logic, followed by a description
of various models used in reversible logic.

A. Traditional Fault Models

In general fault models can be grouped according to the
level of abstraction used in describing the system [7]. Levels
of abstraction might include behavioural, functional, structural
and geometric.

In this work we focus mainly on structural fault models.
Structural fault models describe faults that can occur at the
gate level and in the interconnections between gates. The gates
can be treated as a type of building block in the functional
fault model, but then the interconnections are not considered.
One of the most commonly used fault models is the stuck-at
fault (SAF) model. An interconnection, or line, can be stuck-
at 0 (SA0) if it only can carry a low signal, or similarly it
is said to be stuck-at 1 (SA1) if it can only carry a high
signal. The underlying reasons for this type of fault to occur
are widely varying, but the model covers a large number of
likely problems. It is assumed that a stuck-at fault will occur
on only one line in the circuit then this is referred to as the
single stuck-at fault model. If multiple faults can occur then
the model that is used is the multiple stuck-at fault model.

A similar model can be used at the transistor (or switch)
level, but with slightly more detail. For instance, a stuck-open
fault (SOpF) refers to a transistor which becomes permanently
non-conducting, while a stuck-on fault (SOnF) refers to a
transistor that has become permanently conducting.

We also might have interest in models at the geometric
level, where one finds information about line widths, interline
widths, and intercomponent distances. For instance, as device
sizes shrink there are lower and lower interline widths which
is resulting in defects causing shorts where lines inadvertently
touch; these are referred to as bridging faults.

B. Fault Models for Reversible Circuits

There are numerous fault models being proposed and used
in reversible logic testing. We describe a selection of these in
the following sections.

1) Stuck-at Faults: The single stuck-at fault (SSF) and
multiple stuck-at fault (MSF) as described for traditional logic
are also used in reversible logic testing. The reader will note
that Jha and Gupta’s notation refers to this model as the SAF
model, however the concept is the same for reversible logic as
in traditional logic.

2) Crosspoint Faults: Based on the crosspoint model for
programmable logic arrays, [8] suggests two categories of
crosspoint faults: disappearance faults, which occur when
one or more control points of a Toffoli gate are missing,
and appearance faults, when an additional control point is
erroneously added.

3) Missing Gate Faults: The missing gate fault (MGF)
model was proposed in [9] and extended in [6]. The single
missing gate fault (SMGF) models the complete removal of a
gate from the circuit; the multiple missing gate fault (MMGF)
models the complete removal of two or more gates; the
repeated gate fault (RGF) models repeating the behaviour of
a gate within the circuit, and the partial missing gate fault
(PMGF) model models the modification of a k-CNOT gate
into a k′-CNOT gate where k′ < k (in other words, removing
one or more controls from the gate). All of these models are
based on having circuits composed entirely of k-CNOT gates.

As was the crosspoint model, these models were proposed
to address the potential flaws in applying the SAF model to re-
versible circuits. However the authors also argued that the SAF
and other classical fault models are difficult to justify based
on proposed quantum gate implementations. Their proposed
models were based on observations of how quantum operations
would take place. The authors state that “[g]ate operations are
pulse-like, localized and microscopic in scale”, and “[e]rrors
are caused by faults affecting the length, energy, or direction
(spatial alignment) of the pulses.” Based on these observations
the authors go on to identify that “short, missing, misaligned
or mistuned gate pulses” would appear as a missing gate, “long
or duplicated gate pulses” would appear as a repeated gate, and
“partially misaligned or mistuned gate pulses” would appear
as a (partially) reduced gate, which led to the models defined
above.

4) Bridging Faults: Like the SAF (SSF/MSF) models,
bridging fault models are also used in both traditional and
reversible logic.

5) Cell Faults: [10] proposed the use of a cell fault model,
based on fault modeling for cellular logic arrays [11]. This
model assumes that a single gate has failed in some way, which
results in undesired modification of any of the lines interacting
with the gate. This requires all possible 2k values to be applied
to a k × k gate in order to detect all possible cell faults [10].

6) Bit Faults: The bit fault model assumes that one or more
wires or lines will have their value altered from the correct
(fault-free) value to some incorrect value. Technological rea-
sons for this change are not specified, as one assumes that any
number of reasons could be the cause for such an alteration. In
the single bit fault model it is assumed that a single bit fault is
reflected on exactly one wire coming from a gate. This model
can also be extended to allow multiple bit faults, as is done
for the SSF fault model.

If we assume a permanent bit fault in a gate, then one
might also assume that the value of the line in question will
always be modified by the fault. This makes fault detection
fairly easy. However it may be more accurate, depending on
the technology, to assume that a fault can occur in a more
transient manner, perhaps depending on the inputs applied to
the gate. In this case the model behaves as does the cell fault
model.

The reader will note below that the bit fault model is
used exclusively in online detection approaches, where the
test vectors are essentially the input values used in regular
operations of the circuit, and thus any bit fault occuring during
regular operations is detected without requring a large number
of test vectors.

7) Quantum Fault Models: [12] and others have also
suggested a number of fault models, approaching this from
the quantum paradigm. However the focus of our paper is
primarily on structural (gate-level) models, and so we direct the
reader to [12] as a comprehensive overview in this area. Briefly,
quantum models for faults include initialization faults, where a
line (qubit) is incorrectly initialized to some erroneous starting
value; bit-flips, where a qubit changes its value at an undesired
location/time; and faded control faults, where the control of a
gate does not behave as desired. While the SAF, MGF and
other models described here could be considered to be at the
structural level, these quantum models could be considered to
be at the switch level of abstraction. We do, however, point
out the overlap with the bit fault model described above.

IV. TESTING APPROACHES

A. Offline approaches

Offline testing assumes that the circuit will be taken out of
usual operations and can be tested by applying a number of
test vectors for which the correct output values for the circuit
are known. Thus a key factor in determining offline testing
approaches for a given fault model is the development of test-
sets that are complete for the model under consideration. A
test-set is complete if it detects all faults in the fault set F ,
and such a set is minimal if it contains the fewest possible
vectors [10]. Additional circuitry or modification of the circuit
is sometimes required, in which case the approach may be
referred to as a design-for-test (DFT) approach.

1) SSFs and MSFs: [10] addresses the SSF and MSF
models, being the first to identify that any test-set that detects
all SSFs in a reversible circuit also will detect all MSFs. The
authors identify two important properties of reversibility:

• controllability: whether there exists a test vector that
generates any given desired state on the wires at any
given level, and

• observability: the condition that any single fault that
changes an intermediate state in the circuit also
changes the output.

Both of these properties hold for all reversible circuits, but if
fan-out or loss of information is permitted (as in irreversible
circuits) then these properties do not hold. This makes testing
of reversible circuits much easier than it is for irreversible
circuits. An important result from [10] identified the following:

Proposition. A complete test set [under the SSF model] for
an n-wire circuit using the CNT library must have at least
2n−1+1 vectors, and any 2n−1+1 test vectors will give such
a set.

This is because SSFs are detected by setting each of the wires
to both 0 and 1, both before and after each gate (in some works
this is described as levels of the circuit).

[13] built on this work, proving that all stuck-at faults in
an n-wire k-CNOT circuit with k ≥ 2 can be detected using
at most n test vectors, and that the addition of an extra wire
that is attached to every k-CNOT gate through a control results
in a circuit with a universal test set of size 3 for MSFs. [14]
offers further work on test sets for the SSF and MSF models.

2) MGFs: These models were proposed in [6], and this
work also provided a number of important results in the area:

Theorem. For a circuit consisting of N CNOT gates there
is always a complete SMGF test set of dN/2e vectors or
less, and by adding one extra wire and several 1-CNOT gates,
every circuit can be transformed such that the resulting circuit
retains its original functionality but has a complete SMGF test
set consisting of one test vector.

RGFs are easily dealt with by identifying that if a gate is
replaced by k instances of the gate, then if k is odd the fault
cancels itself out, and if k is even the effect is that of the gate
being missing which then falls under the SMGF model. The
following theorem from [6] deals with PMGFs:

Theorem. A k-CNOT requires k test vectors to detect all first-
order PMGFs and k + 1 vectors if the SMGF must also be
detected.

The order refers to the number of controls that are removed
from the gate, and the SMGF referred to is that created by re-
moving all controls and the target from the gate (i.e. the entire
gate). MMGFs are harder to deal with, despite the restriction
in [6] of the affected gates occuring consecutively. [15], [16]
and [17] offer three approaches to generating complete test
sets for this type of fault.

3) Cell Faults: [10] also proposes the generation of a test
set to cover the cell fault model. Because this model suggests
that any of the lines interacting with a gate could be modified,
a test set for this model is only complete if the inputs of every
k × k gate in the circuit can be set to all 2k possible values
(assuming the use of the NCT-library for the circuit).

4) Bridging Faults: [18], [19] and [20] focus on test sets for
bridging faults in k-CNOT reversible circuits. [19] identifies
that if two lines involved in a bridging fault are assigned
opposite logic values then the error will be propogated to the
output(s) of the circuit. This provides a basis for developing a
test set. [20] extends the model to include single input bridging
faults (SIBF), which are faults involving only two inputs lines
of the circuit, as well as multiple input bridging faults (MIBF)
which involve more than two lines. [20] also proves that a
complete test set for the SIBF model is complete for the MIBF
model, and that n test vectors are sufficient for detecting all
single and multiple input bridging faults as well as all stuck-
at faults for an n wire reversible circuit. [18] offers a DFT
approach by adding an extra input line/wire, similar to the
approach in [10].

5) Crosspoint Faults: [8] identified that all single cross-
point faults are detectable, and that the number of gates in
a circuit is an upper bound on the size of a complete test
set for all single appearance crosspoint faults in the circuit.
The authors also suggest a randomized automatic test pattern
generation (ATPG) technique for generating complete test sets
for all single crosspoint faults.

B. Online approaches

Online testing involves testing approaches that can be
assessed while the circuit is operating normally. This may
involve the addition of circuitry to enable the detection of
faults while the circuit is being used. While offline testing

approaches assume the presence of a permanent fault of some
type, online testing may be able to detect both permanent and
transient faults.

1) Bit faults: Numerous online testing approaches have
focused on the bit fault model, including [21], [22], [23] and
[24]. We hypothesize that one reason for its popularity is the
unknown nature of the technologies to be used in implementing
reversible circuits. While elementary particle spins may be
a commonly theorized implementation approach [6], it is by
no means the only option; thus a fault model that allows for
flexibility may be desired. [24] suggests an approach involving
the addition of one line and several gates to a NCT-based
circuit in order to detect all single bit faults. [21] proposes an
approach using testable gates that are then cascaded together
to implement the required functionality; and [22] suggests a
similar approach, although with different building blocks. [23]
also offers an approach based on cascading together testable
gates, however their approach also covers multiple bit faults.

2) SAFs: [25] presents a method that detects both stuck-at
faults and single bit faults (referred to as bit flips), as well as
some multiple bit faults. The approach is to replace all gates,
including Toffoli, Peres, and Fredkin, with testable versions,
and then a parity-checking technique is used.

3) MGFs and RGFs: The work in [26] focuses on missing
gate and repeated gate faults. Briefly, information on the
number of gates that exist (or should exist) in the circuit is
maintained, and this can be used to provide information on
whether a gate is missing or being repeated, and a new gate
is proposed in order to build a circuit with this detection line
built into every gate.

[27] also proposed an online-testing technique for detecting
single missing gate faults (SMGFs), this time in k-CNOT-
based circuits. The testability is achieved by adding an extra
line and replacing each gate in the cascade with 4 gates. We
note that [24] built on this method to offer an alternative
approach that addresses the single bit fault model.

C. Fault Tolerance

We briefly address the issue of fault tolerance, although
this is not the focus of this paper. Fault tolerance in circuits is
a different approach than testing and testability; in this case the
goal is to assume that there is some resilience to error built in
to the circuit. [28], for instance suggests a reversible approach
to this. In practice, however, some works using the term “fault
tolerant” are reporting on approaches similar to what we have
described previously, providing primarily designs that require
a human to check some value at the end of the circuit’s
computation to ensure that the computation took place without
error. Works that could be considered to fall into this category
include [29], [30], [31] and [32], as each suggests the use of
parity-checking or a similar approach to ensure “tolerance” of
faults.

V. CONNECTIONS

There are a number of connections among the various
types of fault models and testing approaches. These are useful
to highlight, as it allows for the possibility that approaches
targeted at one particular model can be applied to detecting

faults under another model. In particular we note that many
authors have begun in this area with a SAF or bit fault
detection approach; thus we begin with these models in order
to demonstrate their capability (or lack thereof).

A. SAFs and other models

a) SAF and Crosspoint faults models: [8] has identified
that a complete test set for all single crosspoint faults also
covers most SSFs. At least (2n+k−1) of a possible 2(n+k)
SSFs are covered (where n is the number of inputs and k
is the number of gates in the circuit). However the authors
show that a test set for the SAF model will not necessarily
detect a crosspoint fault, as shown in Figure 3, and demonstrate
experimentally that a complete test set for SSFs often covers
less than half of the single crosspoint faults.

fault 1: control point missing

fault 2: control point missing

Fig. 3. Although the test set {0110, 1001, 1000} is complete for all stuck-at
faults in this circuit, it does not detect faults 1 and 2.

This can be explained through the following analysis: a
test set is complete under the SSF model if each of the wires
at every level (prior to each gate) can be set to both 0 and 1
by the test set [10], while appearance crosspoint faults are
detected by setting the control inputs to logic 1 and other
inputs (the target) to logic 0. Thus it is possible in many
cases to contruct a test set which covers all SSFs and which
will also satisfy the requirement to test all single appearance
crosspoint faults. However disappearance crosspoint faults are
tested by setting the controls to logic 1 with the exception of
the control which is being tested for disappearance, which must
be set to logic 0 (values for the other lines are not important).
For instance, to test for disappearance of all possible controls
in just the first gate in Figure 3 we require the test vectors
{011−, 101−, 110−} (− indicates the value can be either logic
1 or logic 0) while the SSA faults could be tested by just two
vectors (assuming only a single gate).

b) SAF and MGF models: As described above, SAFs
are detected by setting the wires to both logic 0 and logic 1
at each level of the circuit. However MGFs are detected by
setting all control bits for each gate to logic 1. Thus we can
see that a test set for SAFs could potentially be designed to
cover MGFs; future work is planned in this area.

c) SAF and Bit fault models: Bit faults and SAFs are
similar in nature, although bit faults are dependent on the
previous value of the line. The main difference is that a bit
fault, if present, is assumed to always change a line’s value.
This is not true of a SAF. Thus if we assume that a permanent
bit fault in a gate will always modify the faulty line in question,
then if a gate and/or wire exhibits permanent bit faults these
faults (at each level) can be detected by the application of
a single test vector, much like MGFs, while SAFs require a
minimum of two test vectors. Again, we can see that a test set
for SAFs could (would be likely to) cover bit faults.

d) SAF and Bridging faults models: According to [33],
bridging faults between two lines at the same level can be
detected by test vectors that set the two lines to opposite logic
values, i.e. {01} or {10}. Again, we see that a SAF model,
which requires two test vectors to detect faults at any level,
could potentially cover bridging faults as well, if designed
carefully, and in fact [20] demonstrates this.

e) Cell faults and SAF models: As stated above, in
order to detect all possible cell faults all 2k values must be
applied to the k− 1 controls and the target of a k× k gate at
every level. It is trivial to see that this will cover all SAFs as
well.

B. Bit faults and other models

Under the bit fault model we assume that a line or wire’s
value will, if a permanent fault is present, always change to
an incorrect value. Thus setting any value on that line will
identify the fault. This means that any test set that specifies
values for every line will cover all faults under the bit fault
model.

As the reader will note, the bit fault model has been used
exclusively in online testing approaches, implying that the
development of a test set to be used in an off-line setting
is either a) not useful or b) trivial. In fact, both are the case.
The triviality of developing a test set for bit faults is explained
above. To discuss the lack of usefulness of such an approach
we first discuss the cell fault model. As mentioned above, a
k×k gate must have all 2k values applied to its inputs to detect
all possible cell faults. This implies that there are some input
combinations which will result in (the appearance of) a fault on
an output line while others (potentially) do not. If we assume
that, rather than exhibiting permanent bit faults, a circuit might
exhibit transient bit faults, then we have a situation where a
given test vector may not identify a bit fault. That is, when
a test vector is applied to the circuit, a bit fault may not be
present, or may not “triggered” by that value. This theory is
supported by, for instance, the description in [9] of potential
quantum circuit technologies:

These essentially static states are modified by dy-
namic electromagnetic (EM) pulses that implement
gate functions like CNOT. For example, in trapped-
ion technology, qubits are individual atoms whose
electric charge states are altered by directing laser
pulses of precise frequency and duration at them
under control of a (classical) computer. ... Thus in
the quantum case, the “gates” ... often represent EM
pulses, while the “wires” indicate the order in which
the gate operations are applied.

It is not at all unlikely for the EM pulses to be erratic or
inconsistent in behaviour, resulting in bit faults appearing on a
transient basis. This argues for an online testing approach, and
as well for a generic fault model such as the bit fault model
that would cover any type of potential error.

C. Connections between other models

a) Crosspoint and PMGF models: The PMGF model is
a subset of the crosspoint fault model. The crosspoint model
allows for either disappearance or appearance of any of the

control points on a reversible gate, where disappearance faults
are in fact the same as PMGFs [8]. Thus the approach from
[8] trivially covers all PGMFs.

b) Crosspoint and other MGF models: In order to
detect other MGFs it is necessary to apply a logic 1 to all
control inputs of the faulty gate [6]. To test for appearance
crosspoint faults we apply logic 1 to all control lines of the gate
and logic 0 to the remaining lines. Thus we can see that a test
set for appearance faults would also cover MGFs (other than
PMGFs), and that it would be possible to design a test set for
MGFs that would also cover appearance faults. Disappearance
faults are detected by applying logic 1 to all controls except
the control to be tested, which must have a logic 0 applied.
This would be more difficult to incorporate into a test set for
MGFs.

c) Bridging fault and other models: Bridging faults are
tested by assigning the two lines assumed to be involved in
a bridging fault opposite logic values. As described above,
testing for disappearance faults requires a similar approach.
As a reminder, we saw that to test for disappearance of all
possible controls for the first gate in Figure 3 we required
the test vectors {011−, 101−, 110−}. Thus this test set would
also test for bridging faults between several of the lines in
the circuit, and additional faults could be detected by careful
selection of the value for the don’t cares in this vector.
However connections between the bridging fault and the MGF
models are not apparent.

VI. CONCLUSION

While the idea of reversible logic has existed for some time,
researchers are only now becoming interested in the idea. Thus
significant work is now being put into determining efficient
ways to synthesize and test reversible circuits. Fault models
for reversible logic first tended to borrow from traditional
logic, with models such as the stuck-at model, but as the
area has matured we are seeing models specific to potential
quantum technologies appear. In this paper we have provided
an overview of existing work in this area and offered a
survey of the testing approaches utilising the various fault
models. We have drawn parallels between the available models,
showing how there is some overlap among models such as the
crosspoint (disappearance) fault model and the partial missing
gate fault (PMGF) model, and as well provided preliminary
suggestions as to how these and other similarities can be
leveraged. In particular, we have clearly differentiated between
the offline and online testing research in this area, and we point
out that certain fault models, such as the bit fault model, are
much better suited to online testing approaches.

REFERENCES

[1] M. P. Frank, “Introduction to reversible computing: Motivation,
progress, and challenges,” in Proceedings of the 2nd Conference on
Computing Frontiers. Ischia, Italy: ACM Press, 2005, pp. 385–390.

[2] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, pp. 183–
191, 1961.

[3] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development, vol. 6, pp. 525–532, 1973.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[5] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 6, pp. 710–722, Jun. 2003.

[6] I. Polian, J. P. Hayes, T. Fiehn, and B. Becker, “A family of logical
fault models for reversible circuits,” in Proceedings of the 14th Asian
Test Symposium (ATS), 8–21 Dec., Calcutta, India, 2005, pp. 422–427.

[7] N. K. Jha and S. Gupta, Testing of Digital Systems. Cambridge
University Press, 2003.

[8] J. Zhong and J. C. Muzio, “Analyzing fault models for reversible
logic circuits,” in IEEE Congress on Evolutionary Computation (CEC),
Vancouver, BC, Canada, 2006, pp. 2422–2427.

[9] J. P. Hayes, I. Polian, and B. Becker, “Testing for missing-
gate faults in reversible circuits,” in Proceedings of the 13th
Asian Test Symposium, ser. ATS ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 100–105. [Online]. Available:
http://dx.doi.org/10.1109/ATS.2004.84

[10] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing for reversible
circuits,” in Proceedings of the IEEE VLSI Test Symposium (VTS), Napa,
CA, April, 2003, pp. 410–416.

[11] W. H. Kautz, “Testing for faults in combinational cellular logic arrays,”
in Proceedings of the IEEE Conference Record of the Eighth Annual
Symposium on Switching and Automata Theory (SWAT), 1967, pp. 161–
174.

[12] J. D. Biamonte, J. S. Allen, and M. A. Perkowski, “Fault models for
quantum mechanical switching networks,” Journal of Electronic Testing,
Theory and Applications (JETTA), vol. 26, no. 5, pp. 499–511, 2010.

[13] A. Chakraborty, “Synthesis of reversible circuits for testing with uni-
versal test set and C-testability of reversible iterative logic arrays,”
in Proceedings of the 18th International Conference on VLSI Design,
2005, pp. 249–254.

[14] M. Ibrahim, A. R. Chowdhury, and H. M. H. Babu, “Minimization of
CTS of k-CNOT circuits for SSF and MSF model,” in Proceedings of
the IEEE International Symposium on Defect and Fault Tolerance of
VLSI Systems, Boston, MA, 2008, pp. 290–298.

[15] X. Fang-ying, C. Han-wu, L. Wen-jie, and L. Zhi-giang, “Fault detection
for single and multiple missing-gate faults in reversible circuits,” in Pro-
ceedings of the IEEE World Congress on Computational Intelligence,
IEEE Congress on Evolutionary Computation, Jun. 2008, pp. 131–135.

[16] H. Rahaman, D. K. Kole, D. K. Das, and B. B. Bhattacharya,
“On the detection of missing-gate faults in reversible circuits by
a universal test set,” in Proceedings of the 21st International
Conference on VLSI Design, 2008, pp. 163–168. [Online]. Available:
http://dx.doi.org/10.1109/VLSI.2008.106

[17] D. Kole, H. Rahaman, D. Das, and B. Bhattacharya, “Derivation of
optimal test set for detection of multiple missing-gate faults in reversible
circuits,” in Proceedings of the 19th IEEE Asian Test Symposium (ATS),
Dec. 2010, pp. 33–38.

[18] M. Bubna, N. Goyal, and I. Sengupta, “A DFT methodology for
detecting bridging faults in reversible logic circuits,” in Proceedings
of TENCON – IEEE Region 10 Conference, 2007, pp. 1–4.

[19] H. Rahaman, D. Kole, D. Das, and B. Bhattacharya, “Optimum test set
for bridging fault detection in reversible circuits,” in Proceedings of the
16th Asian Test Symposium (ATS), Oct. 2007, pp. 125–128.

[20] P. Sarkar and S. Chakrabarti, “Universal test set for bridging fault
detection in reversible circuit,” in Proceedings of the 3rd International
Design and Test Workshop (IDT), Dec. 2008, pp. 51–56.

[21] D. P. Vasudevan, P. K. Lala, J. Di, and J. P. Parkerson, “Reversible-logic
design with online testability,” IEEE Transactions on Instrumentation
and Measurement, vol. 59, no. 2, pp. 406–413, Apr. 2006.

[22] S. N. Mahammad and K. Veezhinathan, “Constructing online testable
circuits using reversible logic,” IEEE Transactions on Instrumentation
and Measurement, vol. 59, no. 1, pp. 101–109, Jan. 2010.

[23] N. Farazmand, M. Zamani, and M. Tahoori, “Online fault testing of
reversible logic using dual rail coding,” in Proceedings of the IEEE
16th International On-Line Testing Symposium (IOLTS), july 2010, pp.
204–205.

[24] N. M. Nayeem and J. E. Rice, “Online fault detection in reversible
logic,” in Proceedings of the 26th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), Vancouver, BC,
Canada, Oct. 2011, pp. 426–434.

[25] B. Sen, J. Das, and B. Sikdar, “A DFT methodology targeting online
testing of reversible circuit,” in Proceedings of the International Con-
ference on Devices, Circuits and Systems (ICDCS), Mar. 2012, pp. 689–
693.

[26] M. Zamani, N. Farazmand, and M. Tahoori, “Fault masking and diag-
nosis in reversible circuits,” in Proceedings of the 16th IEEE European
Test Symposium (ETS), May 2011, pp. 69–74.

[27] D. Kole, H. Rahaman, D. Das, and B. Bhattacharya, “Synthesis of
online testable reversible circuit,” in Proceedings of the IEEE 13th
International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2010, pp. 277–280.

[28] M. Zamani and M. Tahoori, “Online missing/repeated gate faults de-
tection in reversible circuits,” in Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Oct. 2011, pp. 435–442.

[29] B. Parhami, “Fault-tolerant reversible circuits,” in Proceedings of the
Fortieth Asilomar Conference on Signals, Systems and Computers
(ACSSC), Oct. 29–Nov. 1 2006, pp. 1726–1729.

[30] M. S. Islam, M. M. Rahman, Z. Begumand, and M. Z. Hafiz, “Fault
tolerant reversible logic synthesis: Carry look-ahead and carry-skip
adders,” in Proceedings of the International Conference on Advances in
Computational Tools for Engineering Applications, 2009, pp. 296–401.

[31] M. Haghparast and K. Navi, “Design of a novel fault tolerant reversible
full adder for nanotechnology based systems,” World Applied Sciences
Journal, vol. 3, no. 1, pp. 114–118, 2008.

[32] S. K. Mitra, L. Jamal, M. Kaneko, and H. M. Hasan Babu, “An efficient
approach for designing and minimizing reversible programmable logic
arrays,” in Proceedings of the Great Lakes Symposium on VLSI,
ser. GLSVLSI ’12. New York, NY, USA: ACM, 2012, pp. 215–
220. [Online]. Available: http://0-doi.acm.org.darius.uleth.ca/10.1145/
2206781.2206834

[33] M. Abramovici, M. A. Breur, and A. D. Friedman, Digital Systems
Testing and Testable Design. IEEE Press, 1995.

