
A Modular Approach to Designing an Online Testable
Ternary Reversible Circuit

J. E. Rice ∗1, R. Rahman 2

University of Lethbridge, Lethbridge, AB, Canada
∗1j.rice@uleth.ca; 2md.rahman7@uleth.ca

Abstract
Energy inefficiency in irreversible logic circuits is creating
an obstruction on the path towards continued advancements
in complexity and reductions in the size of today’s computer
systems. Designing the component circuits in a reversible
manner may offer a possible solution to this crisis, allowing
significant reductions in power consumption and heat dis-
sipation requirements. Multi-valued (MV) reversible logic
can provide further advantages over binary reversible logic,
such as better performance or reducing wiring congestion.
The current literature, however, contains very little work
on testability of such designs. This paper describes the de-
sign of an online testable block for ternary reversible logic.
This block implements most ternary logic operations and
provides online testability for a reversible ternary network
composed of several of these blocks. The testable block is
composed of reversible building blocks, and thus is itself re-
versible. Multiple such blocks can be combined to construct
complex and complete, testable, ternary reversible circuits.

Keywords
Reversible Logic; Multiple-valued Logic (MVL); Online
(Concurrent) Testability; Design for Testability

Introduction

Because of the irreversible nature of today’s circuits infor-
mation is lost as processing takes place, and as information
is lost energy is lost in the form of heat dissipation. The
use of reversible transformations can preserve energy by
conserving information (Frank 2005), and in fact as early
as 1961 researchers had proven that reversible computing
could offer a solution to the problem of information loss
and heat dissipation (Landauer 1961; Bennett 1973).
Testing and reliability of computer systems is very impor-
tant; however the area of fault detection in reversible cir-
cuits is fairly new. Recent works such as (Kole, Rahman,
Das, and Bhattacharya 2010; Polian, Fiehn, Becker, and
Hayes 2005) and (Zhong and Muzio 2006) have focused on
this area. The principle motivation behind work on ternary
online testing lies in quantum technologies. Quantum tech-

nologies can be both binary and ternary, however ternary
logic provides many advantages over binary such as high
computational speed (Miller and Thornton 2008). Quantum
logic operations are also reversible (Khan and Perkowski
2007), hence research on online reversible testability may
assist the development of test methods for quantum circuits.

In this paper we introduce an online testable block for use
in the construction of ternary reversible circuits. We discuss
the limitations of previously proposed designs (Rahman and
Rice 2011b; Rahman and Rice 2011a), and introduce an
upgrade. We also propose additional approaches to reduce
the quantum cost and provide comparisons.

Background

We begin with some background information in order to aid
the reader in their understanding of this work.

Ternary Operations

A multi-valued logic (MVL) is a logic system which utilises
variables that can take on a discrete and finite set of val-
ues (Miller and Thornton 2008). For example, the binary
logic system deals with values 0 and 1, whereas a three-
valued, or ternary system is a MVL that deals with values
0, 1 and 2. A finite set of values including two identity el-
ements and a set of operators are the basic elements of the
algebra for a MVL. These identity elements and operators
are well defined over the finite set in one-place and two-
place functions. We use the term one-place to refer to the
functions that have one operand and the term two-place to
refer functions that have two operands. The finite sets of
logic values generally have cardinality p≥ 3 in a MVL sys-
tem.

The commonly used operators in a ternary system are given
in Table 1. We note that the · symbol for the product op-
erator is often omitted, as in regular multiplication. This
practice is followed later on in e.g. Figure 6(a).

1

TABLE 1. SOME COMMON TERNARY OPERATORS.

operator behaviour

mod-sum
x⊕ y = (x+ y) mod p

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

mod-difference
x	 y = (x− y) mod p

	 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

product
x · y = (x · y) mod p

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

successor
−→x = (x+1) mod p

x −→x
0 1
1 2
2 0

Reversible Logic

The following definitions are fundamental to the area of re-
versible logic (Shende, Prasad, Markov, and Hayes 2003):

Definition 1 A gate is reversible if the (Boolean) function
it computes is bijective.

Definition 2 A well-formed reversible logic circuit is an
acyclic combinational logic circuit in which all gates are
reversible, and are interconnected without fanout.

Table 2 defines the behaviour of some of the more
commonly-used binary reversible gates.

TABLE 2. A SELECTION OF BINARY REVERSIBLE LOGIC

GATES.

gate behaviour
NOT (x)→ (x⊕1)
Feynman (x,y)→ (x,x⊕ y)
Toffoli (x,y,z)→ (x,y,xy⊕ z)
Fredkin (x,y,z)→ (x,z,y) iff x = 1

Binary reversible gates are cascaded together in order to
construct binary reversible circuits. For example Figure 1
illustrates a binary full adder design using NOT and Toffoli
gates.
The presence of garbage outputs is sometimes necessary in
a reversible circuit to maintain the reversibility. Garbage
can be defined as as the number of unutilized outputs re-
quired to convert an irreversible function to a reversible
one (Maslov and Dueck 2003). Some authors do not
consider primary inputs (input variables) or their comple-
mented forms to be garbage outputs (Chowdhury 2006;

(a) (b)

(c)

FIGURE 1. (A) THE NOT GATE, (B) THE TOFFOLI GATE,
AND (C) A REVERSIBLE FULL ADDER.

Khan and Perkowski 2003), and a similar assumption is
made here.

Ternary Reversible Logic

We provide here descriptions for the ternary gates that are
used in this work. A note on terminology is relevant here;
the lines or variables operated on in MV reversible comput-
ing are often assumed to have some quantum implementa-
tion, and thus the commonly used term in binary quantum
reversible logic for a variable is qubit, while the extension
to ternary is qutrit and in general for MV logic the term used
is qudit.

1) 1-qutrit Permutative Gates

Any transformation of the qutrit state can be repre-
sented by a 3× 3 unitary matrix (Khan, Perkowski,
and Khan 2004; Khan 2008). This transformation
is known as a Z-transformation. A Z-transformation
shifts or permutes the input states to generate the de-
sired output states. For example, the Z(+1) transfor-
mation shifts the input states by 1. There are numer-
ous Z-transformations that can be defined by varying
the 3×3 matrices, but the most useful transformations
are shown in Table 3. There are five ternary one-place
operations corresponding to the permutation of ternary
values 0,1 and 2 and each of these can be constructed
as ternary reversible gates. These gates are known as
ternary 1-qutrit permutative gates. Table 3 shows the
operations of these 1-qutrit permutative gates as de-
fined by Khan (2008). Two 1-qutrit ternary gates act
as another 1-qutrit ternary gate if they are cascaded to-
gether (Khan 2008). Table 4 shows the resultant 1-
qutrit gates for two cascaded 1-qutrit gates as defined
by in (Khan 2008).

2

TABLE 3. OPERATIONS OF 1-QUTRIT PERMUTATIVE

GATES.

Input Output of z-transformation
Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

TABLE 4. OPERATIONS RESULTING FROM CASCADING

TWO 1-QUTRIT GATES.

First 1-qutrit
gate +1 +2 12 01 02
+1 +2 +0 02 12 01
+2 +0 +1 01 02 12
12 01 02 +0 +1 +2
01 02 12 +2 +0 +1
02 12 01 +1 +2 +0

2) M-S Gates

The Muthukrishnan-Stroud, or M-S gate is a 2-qutrit
MV gate which can be realized using ion-trap technol-
ogy (Khan and Perkowski 2007). The M-S gate is gen-
erally represented as shown in Figure 2(a). The value
of output Q is controlled by the value of the input A. Q
is the Z-transformation of the input B whenever A = 2,
where Z∈ {+1,+2,12,01,10}. If A 6= 2 then input B
is passed unchanged as Q = B. The Z transforms are
described in Table 3 (Khan and Perkowski 2007).

3) Ternary Toffoli and Feynman Gates

Toffoli gates and 2×2 Feynman gates are used exten-
sively in this work. The notations used in this paper are
shown in Figure 2. Quantum realizations using M-S
gates to implement ternary Toffoli and Feynman gates
are discussed by Khan and Perkowski (2007) as well
as in a later work (Khan 2009).

4) Generalized Toffoli Gates (GTGs)

In a generalized Toffoli gate (GTG), whenever the
values of the two controlling inputs are 2 a Z-
transformation is applied on the controlled input to
generate the output. For all other combinations of the
controlling inputs the controlled input is passed un-
changed. However to make the operation more gen-
eralized, i.e. to allow the Z-transformation to be acti-
vated for other combinations of the controlling inputs
(other than 2, 2), (Khan and Perkowski 2007) proposed
a more general version of this Toffoli gate. The sym-
bol for Khan’s GTG is shown in Figure 2(d), where x
and y indicate the controlling values for each line.

B Q

A P

Z

(a)

B

A

A ⊕ B

A

(b)

B

A

C

B

A

AB ⊕ C

(c)

B

A

C

B

A

Z P

x

y

(d)

"x x"

(e)

FIGURE 2. (A) THE M-S GATE, (B) THE 2-INPUT FEYN-
MAN GATE, (C) THE 3-INPUT TERNARY TOFFOLI GATE,
(D) THE GENERALIZED TOFFOLI GATE (GTG), AND

(E) THE DUAL SHIFT GATE.

5) Dual Shift Gates

Six 1-qutrit ternary shift gates based on GF3 opera-
tions were proposed in (Khan 2004). In this work
we utilise one of these, the dual shift gate. The dual
shift gate has the functionality x→ (x+2)mod3 and is
shown in Figure 2(e).

6) Cost Metrics

One simple way to compare reversible circuits is by
counting the gates required in a circuit’s implementa-
tion. However, gate count does not consider the com-
plexity of the gates, and thus is often an inaccurate
measure of the size of a reversible circuit. For exam-
ple, if a circuit can be constructed either using five Tof-
foli gates with 2 control lines, or two Toffoli gates each
with 10 control lines, the gate count metric will con-
sider the second approach to be better since it uses only
two gates to realize the circuit. However, this is inac-
curate since a 10-bit Toffoli gate has higher complex-
ity, and requires additional quantum operations when
compared to a 2-bit Toffoli gate (Nayeem 2011).

(Maslov and Dueck 2004) define the quantum cost of
a reversible gate as the number of quantum operations
required to realize that gate. The M-S gate is con-
sidered to be an elementary quantum building block
which Khan and Perkowski (2007) define as having a
cost of 1, and this is used as the cost metric in this
work.

Fault Models

Fault modeling refers to the detection and modeling of the
behaviour of possible defects in a circuit. There are vari-
ous traditional models of faults such as stuck-at faults and

3

bridging faults (Jha and Gupta 2003), as well as models
suggested specifically for reversible implementations such
as missing gate faults (Polian, Fiehn, Becker, and Hayes
2005) and cross point faults (Zhong and Muzio 2006). The
fault model used in this work is the single-bit fault used in
(Vasudevan, Lala, Di, and Parkerson 2006). Whenever an
internal circuit error changes the value of an output value,
a single bit error occurs. The error is reflected in any one
of the output values of the block. Single bit errors are very
similar to stuck-at faults; however, stuck-at faults behave in-
dependently of the inputs whereas the behaviour of a single
bit error is dependent on the initial input values.
The ternary online testing blocks we propose in this paper
are designed to identify single bit errors propagated to one
output line within the testable blocks. This uses a method
similar to that proposed for the binary case by other au-
thors (Vasudevan, Lala, Di, and Parkerson 2006). The er-
rors are then propagated to the circuit outputs via the use of
a ternary two-pair two-rail checker. Since we are working
with ternary logic, a single bit error should technically be
referred to as a single qutrit error; however for the sake of
simplicity we use the term “single bit error” through-out the
rest of this paper.

Online Testability

Online, or concurrent testability refers to the ability of a
circuit to test a portion of itself without halting the oper-
ation (Vasudevan, Lala, Di, and Parkerson 2006). Online
testing includes detecting a fault, the point of occurrence
and sometimes, fault recovery (Jha and Gupta 2003).

Related Work

Previous work includes the proposal of binary reversible on-
line teatble logic blocks (Vasudevan, Lala, Di, and Park-
erson 2006). The proposed blocks R1 and R2 are used in
pairs and are cascaded together for the design of testable
reversible logic circuits. Arbitrary binary functions are im-
plemented by the R1 gate, and the R2 gate implements the
online testability. As well as duplicating inputs, the R2 gate
also generates the parity of its inputs, and generates the
complement of its input R at S only if the inputs remain
unchanged. Thus R = S indicates a fault in the circuit. Fig-
ure 3 shows the proposed R1 and R2. The same work also
proposes a rail checker circuit to detect and carry forward
flaws in testable blocks in a larger circuit.
(Mahammad and Veezhinathan 2010) propose an approach
to directly construct an online testable circuit from a given
reversible circuit. The authors propose two steps for this
construction. In the first step, every n×n reversible gate G
in that circuit is transformed into a new (n+ 1)× (n+ 1)
Deduced Reversible Gate DRG (G). This can be achieved

V=B ⊕ C ⊕ AB ⊕ BC

U=A ⊕ C

B

A

P

C W=A ⊕ B ⊕ C

Q=P ⊕ C ⊕ AB ⊕ BC

R1

Y=E

X=D

E

D

R

F Z=F

S=R ⊕ D ⊕ E ⊕ F

R2

FIGURE 3. R1 AND R2 GATES (VASUDEVAN, LALA, DI,
AND PARKERSON 2006).

by adding an extra input bit Pia and the corresponding out-
put bit Poa to the reversible gate G, maintaining the original
functionality of the gate. Figure 4 shows the conversion.

O2

O1

I2

I1

In

I3 O3

On

G

O2

O1

I2

I1

Pia

I3 O3

Poa

DRG (G)

In On

FIGURE 4. G GATE AND DEDUCED REVERSIBLE LOGIC

GATE DRG(G).

In the second step, a testable reversible cell of G, TRC(G) is
constructed by cascading the DRG(G) with a deduced iden-
tity gate. An identity gate is an n×n reversible gate where
all the inputs are simply copied to the outputs. For instance
if X is an n×n identity gate, then its deduced identity gate
called DRG(X) can be easily constructed from X by adding
the extra input bit Pib and the corresponding output bit Pob.
The DRG(G) and DRG(X) are cascaded by connecting the
first n outputs of DRG(G) and the first n inputs of DRG(X).
The new (n+ 2)× (n+ 2) block is called a Testable Re-
versible Cell, TRC(G) which is the final online testable gate.
The construction is shown in Figure 5.
Another work (Nayeem and Rice 2012) presents more cur-
rent research related to online testing of ternary Toffoli
gates. In this paper the authors discuss an online testing
approach as applied to a cascade of ternary Toffoli gates.
In this approach one additional line (referred to as a parity
line) is added to the circuit. Each input and output line of
the circuit is connected to the additional parity line by one
2-qutrit Toffoli gate and one 2-qutrit modified Toffoli gate.

4

I2

I1

In

I3

O2

O1

O3

Pob

DRG (X)

On
Pia Pib

DRG(G)

Poa

FIGURE 5. CASCADED DRGS TO FORM A TRC.

Each n-qutrit Toffoli gate of the original circuit is replaced
by a n+ 1-qutrit Toffoli gate and connected to the parity
line. The resultant circuit is proved to be online testable.

Testable Ternary Logic Block

In this section we describe our design of the online testable
ternary reversible logic block. The basic concept is simi-
lar to that described in (Vasudevan, Lala, Di, and Parkerson
2006), however we have extended this work to ternary and
proposed different approaches to reduce the implementation
cost. As first described in (Rahman and Rice 2011b) and
extended in (Rahman and Rice 2011a), the online testable
ternary reversible logic block (TR) is composed of two in-
dividual blocks referred to as TR1 and TR2, which are de-
scribed below.

TR1 Block

The logic needed for the functionality of the circuit is im-
plemented using the proposed TR1 block, as shown in Fig-
ure 6(a). All operations in this figure and subsequent figures
are ternary operations as defined in Table 1. The outputs L,
M and N implement the ternary operations and error detec-
tion is performed using the output Q. Q = P⊕A⊕B⊕C
should be equivalent to the sum of the outputs L, M and
N, and input P. The operations are independent of the in-
put P and P is set to an arbitrary value 0 which is used in
the testability feature. The basic ternary operations such as
AND, EXOR, successor, negation/complement, mod-sum
and mod-difference can be implemented by the TR1 block.
As an example, to find the successor −→x where x = 1, we
need to set the inputs A = 1,B = 1,C = 0 and P = 0 in TR1
to produce the desired result of M = A⊕B = 2.

TR2 Block

The online testing is achieved by the TR2 block. Figure 6(b)
shows the functionality of the TR2 block. A single bit error
is detected using the output S when TR2 is cascaded with
a TR1 block to create an online testable block (TR). In a

TR1

A

P

C

B

L = AB C

M = A B

N = 2AB

Q = P A B C

(a)

TR2

D

R

F

E

U = D

V = E

W = F

S = R D E F

(b)

FIGURE 6. (A) THE TR1 BLOCK AND (B) THE TR2
BLOCK.

TR block the TR2 block receives the first three outputs of
the TR1 block as inputs and generates copies of each, along
with the error detecting output S. If any error occurs inside
the TR2 block it is reflected on the output S.

Online Testable Block (TR)

TR1 and TR2 are cascaded together to construct an online
testable ternary reversible block (TR). The TR block that is
formed by connecting a 4× 4 TR1 to a 4× 4 TR2 by their
first three outputs and inputs is a 5× 5 block. In an online
testable block, input P of the TR1 block and input R of the
TR2 block must be set in such a way that R =

−→
P . Since we

must set R to be a successor of P, we can set P = 0 and R =
1, P= 1 and R= 2 or P= 2 and R= 0. For regular operation
we have chosen to set P = 0 and R = 1. Figure 7(a) shows
the configuration and Figure 7(b) shows the block diagram
of TR.
TR1 takes ternary logic values for implementing the desired
functionality at A, B, C, and P is set to 0. Output Q generates
P⊕A⊕B⊕C where P = 0. TR1 has been constructed so
that A⊕B⊕C can be equal to L⊕M⊕N only if no error
occurs inside TR1. TR2 transfers the input values D, E,
F to outputs U , V and W , where D = L, E = M and F =
N. TR2 also generates the error detecting output at S. The
output S will be the successor of Q if no error occurs in TR1
and TR2. If any error occurs, output S will no longer be a
successor of Q.

Limitation of the TR block

In ternary GF3 logic, adding 3 to a variable leaves the vari-
able unchanged, e.g., A⊕3 = A⊕1⊕1⊕1 = A. Let us as-
sume that a copy of the input A is required. If inputs B and
C are set to 1, then we have U = A⊕1 and V = A⊕1 at the

5

TR2

U = D

V = E

W = F

S = R D E F

TR1

A

P

C

B

L D

M E

N F

Q R

TR

(a)

TR

A

P=0

C

B

U

V

W

S R=1

Q

(b)

FIGURE 7. (A) INTERNAL CONFIGURATION OF THE ON-
LINE TESTABLE TERNARY REVERSIBLE BLOCK (TR)
AND (B) ITS BLOCK DIAGRAM.

outputs of a TR. If we repeat this process thrice using three
TR blocks, each time providing A = A⊕ 1 from the previ-
ous block and B = C = 1, at the end of the third operation
we have U = A⊕1⊕1⊕1 = A and V = A⊕1⊕1⊕1 = A.
Thus we have produced a copy of input A.

In this design five TR blocks and two rail checkers (RC)
are required to generate a single copy. Each TR block re-
quires 61 M-S gates and each RC requires 18 M-S gates.
Therefore, the number of gates required for a single copy
operation is 3∗61+2∗18 = 219, which is very large. This
inefficiency of the TR block can be improved in different
ways, as discussed in the following sections.

Upgraded design of the TR1, TR2 and TR blocks (5TR1,
5TR2, 5TR)

One disadvantage of the original TR block is that it requires
three TR blocks and two rail checkers to generate a copy of
one input. This creates a large amount of overhead. Hence,
the 4× 4 TR1 block that is part of the TR block can be
changed into a 5× 5 block by adding an additional con-
stant input 0 and an output O = A. The output function Q
will also be changed. To distinguish between the 4×4 TR1
block and the 5× 5 TR1 block in this literature they are
referred as 4TR1 and 5TR1 correspondingly; similary, the
4×4 TR2 block is referred to as 4TR2. We define the new
5×5 TR1 block (5TR1) as shown in Figure 8(a) and 5×5
TR2 block (5TR2) as shown in Figure 8(b). To distinguish
between the 4×4 TR2 block and 5×5 TR2 block we refer
to them as 4TR2 and 5TR2 respectively.

5TR1

A

0

C

B

R Q = P 2A B C

O = A

L = AB C

M = A B

N = 2AB

(a)

5TR2

D

G

F

E

R S = R D E F G

X = G

U = D

V = E

W = F

(b)

5TR2

U = D

V = E

W = F
5TR1

A

P

C

B

L D

M E

N F

Q R

5TR

0
O G

S = R D E F G

X = G

(c)

FIGURE 8. (A) 5× 5T R1 (5TR1) BLOCK, (B) 5× 5T R2
(5TR2) BLOCK, AND (C) 6×6T R (5TR) BLOCK.

Two-pair two-rail checker

As described in (Nikolos 1998), error checking is often im-
plemented using one of two main techniques: parity codes
or two-pair two-rail checkers. Rail checkers compare the
outputs from more than one identical system. This process
is also used to reduce the number of error detecting out-
puts (Nikolos 1998). The two-pair two-rail checker receives
two pairs of inputs and generates a pair of outputs that in-
dicates if the prior operations were fault-free or faulty. A
ternary two-pair two-rail checker should receive two pairs
of inputs from two TR blocks, compare them and indicate
in the outputs if any flaw was identified by either of those
TR blocks. This concept has also been used in the reversible
context by other authors such as in (Farazmand, Zamani,
and Tahoori 2010) and (Vasudevan, Lala, Di, and Parkerson
2006).
The purpose of the rail checker is to detect the existence of
a flaw, if there is any, in the TR blocks attached to the rail
checker. This is achieved by checking whether the outputs
of the blocks are successors or not. The rail checker gen-
erates two outputs where one is successor to another if the
attached blocks are fault-free. Since these outputs may be
used afterwards to cascade additional rail checkers, succes-
sor outputs are generated to represent the fault-free situa-
tion. Otherwise, if the rail checker detects any flaw in the
attached TR blocks, the design guarantees that the outputs
generated will never be the successor of each other.

6

The rail checker is designed in such a way that if the in-
put pairs are successors, i.e. y0 =

−→
x0 and y1 =

−→
x1, the rail

checker will generate X3 = 1 and X4 = 2, so that X4 =
−→
X3,

otherwise it generates outputs where X4 6=−→X3. There is no
specific reason for choosing X3 = 1 and X4 = 2. Any two
successors could have been used, for example X3 = 0 and
X4 = 1 or X3 = 2 and X4 = 0.

Example Circuit

We implement the GFSOP expression F = ab ⊕ cd to
demonstrate that the proposed blocks in this work can suc-
cessfully implement a ternary GFSOP. Figure 9 shows the
realization of function F using the proposed online testable
ternary reversible blocks. The final outputs of the second
rail checker can be used for cascading if the function needs
to be further extended.

Internal Designs

5TR Block

The designs of the TR1 and TR2 block have gone through a
number of evolutions as we continue to improve the design.
The final versions of the 5× 5 TR1 (5TR1) and 5× 5 TR2
(5TR2) blocks are designed using a number of 2×2 Feyn-
man gates and a cascade of GTGs. To reduce the number of
M-S gates in the new design of 5TR1 a new gate named the
Modified-Feynman (MF) gate has been proposed, as illus-
trated in Figure 10.

P P ⊕ 2A

A A

+1 +2

+1 +2

(a)

P P ⊕ 2A

A A

MF

(b)

FIGURE 10. (A) INTERNAL DESIGN OF THE MODIFIED

FEYNMAN (MF) GATE AND (B) SYMBOL FOR THE MF
GATE.

Figure 11 shows the internal design of the 5TR1 block. This
design includes four 2×2 Feynman gates, one MF gate, one
dual-shift gate and four GTGs. It can be verified from the
internal structures of the constructing gates that the number
of M-S gates required for each gate is as follows:

• a Feynman gate requires 4 M-S gates,

• the dual-shift gate requires one M-S gate,

• the MF gate requires 4 M-S gates, and

• each GTG requires 7 M-S gates (Khan and Perkowski
2007).

Therefore, the total number of M-S gates required to im-
plement the 5TR1 block is 49 which is 55.4% less than the
first design of the 4TR1 block discussed in (Rahman and
Rice 2011b). However the most significant achievement of
this design is the number of garbage outputs, which is zero
for this design. However it should be mentioned here that
when this block is used to realize a ternary circuit, some of
the outputs of the TR block may become garbage outputs if
they are not used in any further operation.
Figure 11 shows the new 6× 6 TR block consisting of a
5TR1 cascaded with a 5TR2 and addressed as the 5TR
block. The total number of M-S gates required to construct
this 5TR block is (49+16) = 65.

Two-pair two-rail checker

To implement the rail checker discussed above, an elemen-
tary gate (E) with two controlling inputs and one controlled
input has been designed. The design of the E gate is based
on the architecture of the 1-qutrit ternary comparator cir-
cuit proposed in (Khan 2008). Figure 12 (a) and (b) shows
the block diagram of the E gates. The behavior of the Z-
transformation depends on whether the second input (y) is
successor to the first input (x) or not. If the second input is
a successor of the first input, the Z-transformation changes
the controlled input, as previously described, to either a 1 or
a 2. Otherwise, 0 is passed unchanged through to K. There
are actually two E-gate designs, one with an output of 1 if
x0 = −→y 0 and one with an output of 2 if x1 = −→y 1 where
x0,y0 and x1, y1 are outputs from two attached TR blocks.
The E-gate with an output of 1 is denoted by Ea in Figure 12
(a) and the E-gate with an output of 2 is denoted by Eb in
Figure 12 (b).
The controlling inputs (x,y) of the two E-gates comprise the
four inputs of the rail checker circuit and the controlled out-
puts Ka and Kb comprise the two outputs of the rail checker.
Each controlled input is a constant input set to the value
zero. One each of Ea and Eb are used to construct the
ternary rail checker.
The first E-gate (Ea) receives x0 and y0 as its inputs and
generates Ka = 1. This is generated by the Z(+1) transfor-
mation on the controlled input, but only if y0 =

−→
x0. The

second E-gate (Eb) that takes x1 and y1 as inputs generates
Kb = 2 at the output by applying the Z(+2) transformation
on the controlled input in the case where y1 =

−→
x1. Figure 12

(c) shows the block diagram of the internal architecture of
the ternary rail checker. From this figure we can see that
since error detecting signals X3 and X4 are generated out
of two physically separated E-gates any single bit error in
internal lines will affect one of the two outputs, but not both.

7

5TR1 5TR2 5TR1 5TR2

5TR1 5TR2

Two Pair Two

Rail Checker

Two Pair Two

Rail Checker

a

b

0

P = 0

L = ab

Q

U =ab

c

d

0

x

P = 0

L = cd

Q

 R=1 R=1

 R=1

QP = 0

U=cd

0

cd
L = ab cd

 ab cd

S

S

S

x0
x0

x1 x1

y0
y0

y1 y1

X3

X4

0

FIGURE 9. ONLINE TESTABLE TERNARY REVERSIBLE IMPLEMENTATION OF FUNCTION F = ab⊕ cd .

V=E

U=D

B

A

C

0

X=G

W=F

P S=R ⊕ D ⊕ E
 ⊕ F ⊕ G

MF

2

2

+1

2

1

+2

1

2

+2

1

1

+1 "

A

A ⊕ B

2AB

AB ⊕ C

P ⊕ 2A ⊕ B ⊕ C

D

E

F

G

R

5TR1 5TR2

FIGURE 11. 6× 6 TR (5TR) BLOCK WITH FUNCTIONALITY FOR THE 5TR1 AND 5TR2 SHOWN ON THE LEFT AND RIGHT

RESPECTIVELY.

Approaches to Utilizing the Online Testable Block

The benchmark circuits from (Denler, Yen, Perkowski, and
Kerntopf 2004) can be implemented using the proposed
5TR block and the rail checker. However in reversible logic
it is often necessary to “copy” input values to avoid fanout.
Therefore, it is possible to reduce the cost of implementa-
tion in terms of the number of gates if the copy operation
is performed intelligently rather than using multiple 5TR
blocks for generating copies. In the following sections dis-
tinct blocks are proposed to implement the copy operation.

Method 1: Combination of 5TR block and online testable
copy gate

This block can be used for generating copies of a single
input but will also incorporate the online testability fea-
ture. The maximum number of outputs excluding the error
checking output is four in a 5×5 block. Therefore the on-
line testable copy gate can generate four copies of a single
input. However, generating four copies involves more M-S
gates as well as increase the number of garbage outputs if
only two copies are required, as in most of the cases. Thus,
we have limited our design of TRcopy to generate only three

copies of the input, although the flexibility of designing a
copy gate for four copies still exists. Figure 13(a) shows
the internal design of the online testable copy gate. For the
copy operation 5TR1 is replaced with the new 5×5 TRcopy
block and cascaded with a 5TR2 block for the online testa-
bility feature. The new 5TR block constructed from TRcopy
and 5TR2 is referred to as TRc which generates three copies
of a single input. The error detection policy is identical to
that used in both the 4TR and 5TR blocks. TRcopy requires
8 and 5TR2 requires 12 M-S gates. Therefore, a TRc block
requires 24 M-S gates in total.

Method 2: Combination of 5TR block, TRc and multicopy
gate (TRmc)

Copies of multiple variables are required for some logic op-
erations. For example, two copies of A, two copies of B
and two copies of C are required for the benchmark 3CyG2
which implements the function ab⊕ bc⊕ ca. Three TRc
blocks are required to generate the copies in this bench-
mark. To avoid this situation the design of TRcopy can be
modified to generate two copies of two different variables.
Figure 13(b) shows the configuration. This multi copy gate
is referred as TRmulticopy. 16 M-S gates are required to re-
alize this gate. Online testability is incorporated by cas-

8

y0

x0

0

+2

+1

+1

+2

+2

+2

+2

+1 +1

x0

Ka

y0+2+1

+2

+0

+1 +0

(a)

y1

x1

0

+2

+1

+2

+2

+2

+2

+2

+2 +2

x1

Kb

y1+2+1

+2

+0

+1 +0

(b)

y0

x0

0 +1

Ea x0

X3

y0

y1

x1

0 X4

(y=x)

+2

Eb x1

y1(y=x)

(c)

FIGURE 12. (A) THE INTERNAL STRUCTURE OF THE Ea
GATE, (B) THE INTERNAL STRUCTURE OF THE Eb GATE,
AND (C) THE INTERNAL ARCHITECTURE OF THE TWO-
PAIR TWO-RAIL CHECKER CIRCUIT.

cading the TRmulticopy and the 5TR2 block. The new cas-
caded block is referred as TRmc. Therefore, a TRmc block
requires 32 M-S gates in total to generate one copy for each
of the two variables whereas TRc would require 48 M-S
gates to perform the same operation. Although the number
of M-S gates is increased in TRmc, this block can reduce
the number of M-S gates to 33% where copies for multiple
variables are necessary. In the 3CyG2 benchmark function,
24 ∗ 3 = 72 M-S gates are required to implement the copy
functions, whereas 56 M-S gates are required if one TRc and
one TRmc are used. In another benchmark circuit, 4CyG2,
which implements ab⊕bc⊕cd⊕da, 24∗4 = 96 M-S gates
are required if TRc is used whereas implementation using
two TRmc requires only 64 M-S gates. For the best result a
combination of TRc and TRmc blocks can be used.
The number of M-S gates required to construct each pro-
posed block is shown in Table 5. This table can be used to

0
A

TRcopy

0
0

P

0
A

0
0

PQ R

A
A
A 5TR2

(a)

0
A

TRmulticopy

0
B

P

0
A

0
0

P
Q = P ⊕
 2A ⊕ 2B

R

A
A
B

5TR2

B

+1

+1

+2

+2

+1

+1

+2

+2

(b)

FIGURE 13. INTERNAL DESIGNS OF THE (A) 6× 6 TRc
BLOCK AND (B) 6*6 TRmc BLOCK.

determine the quantum cost of any circuit constructed using
the proposed blocks.

TABLE 5. NUMBER OF M-S GATES REQUIRED TO IMPLE-
MENT THE PROPOSED BLOCKS.

Blocks Number of M-S gates

4TR
4TR1 49
4TR2 12

Total (4TR) 61

5TR
5TR1 49
5TR2 16

Total (5TR) 65

TRc

TRcopy 8
5TR2 16

Total (TRc) 24

TRmc

TRmulticopy 16
5TR2 16

Total (TRmc) 32
RC 18

Discussion

Comparisons of the Approaches

Table 6 presents the number of M-S gates, which is used as
the cost metric in this work, required to realize the bench-
mark circuits provided by Denler, Yen, Perkowski, and
Kerntopf (2004) using the design approaches discussed so
far. The cost includes the number of M-S gates required to
implement the testable blocks as well as the rail checkers.

9

TABLE 6. COMPARISON OF NUMBER OF M-S GATES FOR IMPLEMENTING THE TERNARY BENCHMARK CIRCUITS.

Benchmarks
Proposed Methods Non-testable Lowest

5TR & RC 5TR,TRc& RC 5TR,TRc,TRmc& RC ternary gates overhead
2CyG2 (2ab) 65 65 65 37 164%

3CyG2 (ab+bc+ ca) 646 523 489 92 531%

a2bccG (a2 +bc+ c) 480 398 364 96 379%

ProdG2 (ab) 65 65 65 28 217%

ProdG3 (abc) 148 148 148 56 250%

SumG2 (a⊕b) 65 65 65 4 1525%

SumG3 (a⊕b⊕ c) 148 148 148 8 1750%

Table 6 shows that the fewest M-S gates are required when
using the non-testable ternary gates. This is unsurprising
because incorporating testability features always adds some
overhead to the circuit. However testable circuits are far
more robust and fault tolerant than non-testable circuits,
hence the tradeoff between the overhead and testability is
considered to be justifiable. It can be seen from Table 6 that
the basic approach using only 5TR blocks and rail check-
ers requires more M-S gates than the other approaches for
benchmarks 3CyG2 and a2bccG but almost equal numbers
of gates for the remaining benchmarks. The approach of
using TRc blocks along with 5TR blocks generates the best
result whenever the circuit requires more than two copies of
an input variable. The design of TRc can be easily upgraded
to generate 4 copies of a single input variable, although
the upgraded design would require 8 more M-S gates. If
the function to be implemented consists of several variables
which require 4 copies each, the upgraded design would fur-
ther reduce the required number of gates in total. However
the proposed design is the best for functions consisting of
variables which require at most 3 copies each.

The approach using both TRc and TRmc blocks along with
the 5TR blocks requires the lowest number of M-S gates
to implement the benchmark circuits. This approach is the
most efficient since it uses a best fit approach to use either
of the TRc or TRmc block to achieve the best result. This
approach is the most efficient if the design requires at most
two copies of the input variables and also requires copies
for a large number of variables. It is evident from Table 6
that this approach requires a lower number of M-S gates
for benchmarks 2CyG2, 2CyG3 and a2bccG and an equal
number of gates as compared to the previous approach for
the remaining benchmarks.

Overhead Analysis

In this work overhead can be approximated as the total num-
ber of extra elementary gates required to be added for the re-
alization of the ternary online testable circuit as compared
to the original gate count of the non-testable realization of
the same circuit.
We have compared our overhead with that resulting from
the implementation of a binary online reversible testing ap-
proaches (Nayeem 2011). The cost metric used in both the
binary and ternary online testing approaches is the number
of elementary gates required to realize a logic function. Ta-
ble 7 shows the comparison of average overheads among
the two binary and the proposed ternary online testing ap-
proaches.
Although the average overhead of our approach is higher
than the other approaches, the following should be consid-
ered. From the last column of Table 6 it can be seen that the
overhead costs for the benchmarks SumG2 and SumG3 are
significantly higher than the other overheads. These costs
are significant in increasing the average overhead of our ap-
proach. If the average overhead is calculated excluding the
benchmarks SumG2 and SumG3, the average overhead for
our approach is reduced to 308%. We note that the non-
testable approaches for benchmarks SumG2 and SumG3 re-
quired less than 8 gates whereas the minimum number of
gates required for a ternary online testable design is 61.
Therefore, we can predict that our approach is likely to min-
imize the overhead costs for larger Toffoli circuits.
The approach discussed in Nayeem and Rice (2011)has
very low quantum cost; however our design has some ad-
vantages over the design in that work. Their design is based
on the fact that there should be an existing Toffoli gate cas-
cade. Therefore if there is no existing gate cascade imple-
mentation for the function, or if the existing gate cascade

10

TABLE 7. OVERHEAD COMPARISON.

Approaches Average overhead for testability
(Vasudevan, Lala, Di, and Parkerson 2006) 312.28% (Nayeem 2011)
(Farazmand, Zamani, and Tahoori 2010) 388.67% (Nayeem 2011)
(Nayeem 2011; Nayeem and Rice 2011) 4.21%

Our approach 688%

uses a different type of gate, their approach can not be ap-
plied. Our design, however, can realize any ternary function
in online testable form as long as the function is described
as a TGFSOP. However as a result of our comparisons we
are motivated to continue our research to find ways to im-
prove our technique to achieve compatible performance.

Conclusion & Future Work

In this paper we present a design for an online testable
ternary reversible logic block. Multiple such blocks can
be used in conjunction with two-pair two-rail checkers to
implement any ternary reversible circuit. Different design
approaches are suggested, with discussion as to how each
approach might best be utilized.

The fault model used in this work is a single-bit fault model,
meaning that any single error in a block can be detected and
will be propagated to the outputs through the use of the two-
pair two-rail checkers.

One of the major concerns of reversible logic synthesis is to
keep the number of the input constants as few as possible.
In our proposed designs, we have only one constant input.
The other two major concerns of reversible logic synthesis
are to keep the number of garbage outputs and the length of
gate cascades as small as possible. In our designs we min-
imize the number of garbage outputs by using the internal
gates as intelligently as possible. The length of cascaded
gates is also kept at a minimum by replacing 4TR or 5TR
blocks with TRc and TRmc blocks, which are designated for
copy operations, whenever required. In this work we have
detected and resolved the limitation of the design first pro-
posed in (Rahman and Rice 2011b) and upgraded in (Rah-
man and Rice 2011a). We have also proposed some addi-
tional blocks for the copy operation, which may also result
in an additional reduction in the circuit’s quantum cost.

Future work will include further analysis as to the fault cov-
erage and examination as to how the designs could be modi-
fied to work with other fault models. In addition a synthesis
process must be developed with heuristics for making the
best choice among the alternate blocks in order to imple-
ment circuits with the lowest cost.

Acknowledgments

This research was funded by a grant from the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

References

Bennett, C. H. (1973). Logical reversibility of computa-
tion. IBM Journal of Research and Development 6,
525–532.

Chowdhury, A. R. (2006). A new approach to syn-
thesize multiple-output functions using reversible
programmable logic array. In Proceedings of the
IEEE 19th International Conference on VLSI De-
sign, Hyderabad, India, Jan. 2-7, pp. 311–316.

Denler, N., B. Yen, M. Perkowski, and P. Kerntopf
(2004). Synthesis of reversible circuits from a sub-
set of Muthukrishnan-Stroud quantum realizable
multi-valued gates. In Proceedings of the Interna-
tional Workshop on Logic Synthesis (IWLS), June,
Tamecula, California, USA.

Farazmand, N., M. Zamani, and M. B. Tahoori (2010).
Online fault testing of reversible logic using dual
rail coding. In Proceedings of the IEEE 16th Inter-
national On-Line Testing Symposium (IOLTS), pp.
204–205. Corfu, 5-7 July.

Frank, M. P. (2005). Introduction to reversible com-
puting: motivation, progress, and challenges. In
Proceedings of the 2nd Conference on Comput-
ing Frontiers, New York, NY, USA, pp. 385–390.
ACM.

Jha, N. and S. Gupta (2003). Testing of Digital Systems.
The Press Syndicate of the University of Cam-
bridge.

Khan, M. H. A. (2004). Quantum realization of ternary
Toffoli gate. In Proceedings of the 3rd Interna-
tional Conference on Electrical and Computer En-
gineering, pp. 264–266. 28–30 December, Dhaka,
Bangladesh.

Khan, M. H. A. (2008, May). Design of re-
versible/quantum ternary comparator circuits. En-
gineering Letters 16(2), 178–184.

11

Khan, M. H. A. (2009). Quantum realization of multiple-
valued Feynman and Toffoli gates without ancilla
input. In Proceedings of the 39th International
Symposium on Multiple-Valued Logic (ISMVL),
21-23 May, Naha, Okinawa, Japan, pp. 103–108.

Khan, M. H. A. and M. A. Perkowski (2003). Multi-
output ESOP synthesis with cascades of new re-
versible families. In Proceedings of the 6th In-
ternational Symposium on Representations and
Methodology of Future Computing Technologies,
March, pp. 144–153.

Khan, M. H. A. and M. A. Perkowski (2007). Quantum
ternary parallel adder/subtractor with partially-
look-ahead carry. Journal of Systems Architec-
ture 53, 453–464.

Khan, M. H. A., M. A. Perkowski, and M. R. Khan
(2004). Ternary Galois field expansions for re-
versible logic and Kronecker decision diagram for
ternary GFSOP minimization. In Proceedings of
the 34th International Symposium on Multiple-
Valued Logic (ISMVL), Toronto, Canada, 19-22
May, pp. 58–67.

Kole, D. K., H. Rahman, D. K. Das, and B. B. Bhat-
tacharya (2010). Synthesis of online testable re-
versible circuit. In Proceedings of the IEEE 13th
International Symposium on Design and Diagnos-
tics of Electronic Circuits and Systems (DDECS),
Vienna, 14–16 April, pp. 277–280.

Landauer, R. (1961). Irreversibility and heat generation
in the computing process. IBM Journal of Research
and Development 5, 183–191.

Mahammad, S. N. and K. Veezhinathan (2010, Jan-
uary). Constructing online testable circuits using
reversible logic. IEEE Transactions on Instrumen-
tation and Measurement 59(1), 101–109.

Maslov, D. and G. W. Dueck (2003). Garbage in re-
versible design of multiple output functions. In
Proceedings of the 6th International Symposium
on Representations and Methodology of Future
Computing Technologies, March, pp. 162–170.

Maslov, D. and G. W. Dueck (2004). Reversible cascades
with minimal garbage. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Volume 23, pp. 1497–1509.

Miller, D. and M. Thornton (2008). Multiple Valued
Logic: Concepts and Representations. Morgan and
Claypool Publishers.

Nayeem, N. and J. E. Rice (2011, August). A simple ap-
proach for designing online testable reversible cir-
cuits. In Proceedings of the IEEE Pacific Rim Con-

ference on Communications, Computers and Sig-
nal Processing (PACRIM), pp. 274–279. (best pa-
per award).

Nayeem, N. M. (2011). Synthesis and testing of re-
versible Toffoli circuits. Master’s thesis, Univer-
sity of Lethbridge.

Nayeem, N. M. and J. E. Rice (2012). A new approach
to online testing of TGFSOP-based ternary Toffoli
circuits. In Proceedings of the International Sym-
posium on Multiple-Valued Logic (ISMVL), 14–16
May, Victoria, BC, Canada, pp. 315–321.

Nikolos, D. (1998, Feb./April). Self-testing embedded
two-rail checkers. Journal of Electronic Testing:
Theory and Applications 12(1–2), 69–79.

Polian, I., T. Fiehn, B. Becker, and J. P. Hayes (2005).
A family of logical fault models for reversible cir-
cuits. In Proceedings of the Asian Test Sympo-
sium (ATS), Los Alamitos, CA, USA, pp. 422–427.
IEEE Computer Society.

Rahman, M. R. and J. E. Rice (2011a, August). On de-
signing a ternary reversible circuit for online testa-
bility. In Proceedings of the IEEE Pacific Rim Con-
ference on Communications, Computers and Sig-
nal Processing (PACRIM), pp. 119–124.

Rahman, M. R. and J. E. Rice (2011b). Online testable
ternary reversible circuit. In Proceedings of the
Reed-Muller Workshop, May 25–26, Tuusula, Fin-
land, pp. 71–79.

Shende, V. V., A. K. Prasad, I. L. Markov, and J. P. Hayes
(2003, June). Synthesis of reversible logic circuits.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 22(6), 710–722.

Vasudevan, D. P., P. K. Lala, J. Di, and J. P. Parkerson
(2006, April). Reversible logic design with online
testability. IEEE Transactions on Instrumentation
and Measurement 55(2), 406–414.

Zhong, J. and J. C. Muzio (2006). Analyzing fault mod-
els for reversible logic circuits. In Proceedings of
the IEEE Congress on Evolutionary Computation
(CEC), Vancouver, BC, pp. 2422–2427.

12

