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Abstract—Circuit realizations generated by reversible logic 

synthesis approaches may not be optimal, thus it is 

common to apply post-synthesis optimization techniques. 

This paper proposes an algorithm that uses a ranking 

system for identifying the best match with circuit-

reduction templates. These templates incorporate both 

positive and negative control Toffoli gates. A reduction in 

quantum cost was achieved for 86 of the 110 circuits. On 

average a 21.34% reduction in quantum cost was achieved, 

and in some cases up to 53.58% reduction was obtained. 
Keywords-reversible logic; Toffoli gate; template matching; 

quantum cost; gate count 

I. INTRODUCTION 

Research into reversible logic synthesis has begun to attract 

much attention due to the potential use of reversible logic in 

areas such as quantum computing [20], optical computing [3], 

and nanotechnology [16]. In particular, heatgeneration and 

dissipation are serious problems in today's traditional circuit 

technologies. In 1961 Landauer observed that the amount of 

energy dissipated for each lost bit of information is 𝐾𝑇𝑙𝑛2, 

where 𝐾is Boltzmann's constant 1.3807 × 10−23𝐽𝐾−1and 𝑇 is 

the temperature [8]. Over millions of operations this becomes 

a significant amount of energy. However,in [1] Bennett 

showed that in order to not dissipate energy a system must be 

logically reversible. Research on reversible circuits may also 

be attracting attention due to the discovery of powerful 

quantum algorithms in the mid-1990s [20], as quantum 

circuits are inherently reversible. Interested readers can refer 

to [20] for a detaileddiscussion of quantum computing. In 

reversible circuits no information is lost as the underlying 

functions are all bijective. Thus fan-out and feedback 

operations are not allowed. Such features of reversible circuits 

prevent the use of existing algorithms and tools for circuit 

synthesis and optimization, thus leading to the need for logic 

synthesis approaches that are specifically targeted to reversible 

circuits. After an initial logic synthesis approach is applied the 

resulting circuit is often not optimal, leading to the need for an 

optimization phase as shown in Figure 1. The main focus of 

this paper is to offer an improved optimization phase 

incorporating the application of templates. This work builds 

on the proposal from [22], in which a set of templates for 

positive and negative control Toffoli gates was proposed. 

The remainder of the paper is organized as follows. The 

following section gives an overview of the Toffoli gate and 

the cost metrics of a reversible circuit, followed by a 

description of template matching as a post-synthesis 

optimizationapproach. In section 3 we describe the basic 

template matching algorithm, the moving rule version that was 

proposed in [22], and the rank-based algorithm that is 

proposed in this work. Section 4 gives the results based on 

benchmarks as compared to both non-optimized circuits and to 

other techniques from the literature. Section 5 concludes the 

paper and provides possible directions for future work. 

II. BACKGROUND 

[13] states that if an 𝑛-input 𝑛-output function (gate) is a 
bijection then it is reversible. In other words, a reversible 
function (gate) has the same number of inputs and outputs and 
there is a one-to-one mapping between its input and output 
vectors. Traditional logic gates other than the NOT gate are not 
reversible. Reversible gates that have been proposed include 
Toffoli [24], Fredkin [7], and Peres [21] gates. In this work we 
focus only on the family of Toffoli gates. 

A. Toffoli gates 

An 𝑛-bit Toffoli gate or Multiple Control Toffoli (MCT) 

gate is a reversible gate with 𝑛  inputs and 𝑛  outputs where 

(𝑖1, 𝑖2, … , 𝑖𝑛) is the input vector, (𝑜1, 𝑜2, … , 𝑜𝑛)is the output 

vector, and 𝑜𝑗 = 𝑖𝑗  where 𝑗 = (1, 2, … , 𝑛 − 1)  and 𝑜𝑛 =

𝑖1,𝑖2,…,𝑖𝑛−1⊕𝑖𝑛. The first 𝑛−1 bits are known as controls 

and the last 𝑛𝑡𝑕 bit is known as the target. The MCT gate 

passes all the inputs to the outputs unchanged and inverts the 

target bit when all control bits have the value 1.When 𝑛 =
1there are no controls and this gate is known as a NOT gate. 

When 𝑛 = 2 the gate is known as a controlled-NOT (CNOT) 

gate or Feynman gate. For the sake of simplicity, we assume 

that the nth bit is the target; however, thetarget bit could be 

any of the n bits with which the gate interacts. 

A negative-control Toffoli gate is a MCT gate that may 

have one or more negative controls. The gate maps the n 

inputs (𝑖1, 𝑖2, … , 𝑖𝑛) to the n outputs (𝑜1, 𝑜2, … , 𝑜𝑛)  where 

𝑜𝑗 = 𝑖𝑗  for 𝑗 = (1, 2, … , 𝑛 − 1)  and 𝑜𝑛 = 𝑖1  , 𝑖2, … , 𝑖𝑛−1 ⊕

𝑖𝑛where 𝑖1  is a negative control. Like the original MCT gate a 

MCT with negative controls gate passes all the inputs to the 

outputs unchanged; however, the target bit is inverted when all 

positive controls have value 1 and negative controls have 

value 0. 

We use ⊕  to represent the target line, ∙  to indicate a 

positive control, and °to indicate a negative control line. A 
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Toffoli gate can also be written as 𝑇 𝐶; 𝑡 where 𝐶 is the set of 

controls and 𝑡 is the target line. The size of a Toffoligate refers 

to the number of controls plus target. Figure 2 illustrates 

different versions of the Toffoli gate. 

 

Figure 1.  Toffoli gates. 

Reversible circuits are created by cascading a series of 
reversible gates in such a way that the desired computation 
takes place. 

B. Cost Metrics 

A given reversible function may be realized in different 

ways, resulting in different circuits. The following two metrics 

are commonly used in evaluating the cost of different 

realizations. Gate count is the simplest way to evaluate 

different reversible circuits, and refers to a simple count of the 

number of gates in a circuit. It does not, however, consider the 

complexity of the circuit. For instance, if one circuit consists 

of two 6-input Toffoli gates and an equivalent circuit consists 

of three 2-input Toffoli gates, the first might seem preferable 

as it has fewer gates but these gates are significantly more 

complex in terms of quantum cost. The quantum cost of a gate 

is defined as the number of basic quantum operations needed 

to realize the gate [11]. Any reversible gate can be 

decomposed into basic quantum (1 × 1 and 2 × 2) gates. The 

NOT gate has a quantum cost of 1, as does the CNOT gate, 

while a 3-bit Toffoli gate has a quantum cost of 5. In general, 

as the number of controls for a gate increases so does the 

quantum cost. 

The quantum cost of an n-bit negative control Toffoli gate 

with at least one positive control is exactly the same as the 

cost of an 𝑛 -bit Toffoli gate. When all the controls are 

negative, an extra cost of 2 is required if the gate is to be 

implemented with zero or (𝑛 − 3) additional lines (referred to 

as garbage lines, as their values are not of interest at the output 

of the circuit) are used. An additional cost of 4 is required 

when only one garbage line is used [15]. 

C. Logic Synthesis 

Logic synthesis is the process of converting a logic 

function into a high level circuit design in terms of gates. In 

reversible logic we refer to this as a cascade of gates. 

Reversible logic synthesis tools are used to generate a cascade 

of gates that computes the desired function. The circuit 

realizations obtained from different logic synthesis approaches 

may not be optimal in terms of the number of gates used, the 

quantum cost of those gates, and/or the number of lines (bits) 

required. Post-synthesis optimization phases may be applied in 

order to further reduce these costs as shown in Figure 1. 

Figure 2.  General flow in reversible logic synthesis approaches 

An irreversible function can be embedded into a reversible 

function by adding constant inputs and garbage outputs [11]. 

A variety of synthesis approaches are available including 

those described in [6] and [17]. 

D. Template Matching 

One post-synthesis optimization approach is template 

matching. If a circuit is non-optimal then it may be possible to 

decrease the size and quantum cost by replacing sequences of 

gates with shorter sequences that are equivalent in 

functionality. This is known as template matching [17].  

The basic process of template matching is as follows: a 

circuit is examined to find a subsequence of gates (more than 

half) from a sequence that computes the identity; if such a 

subsequence is found then the matched sequence of gates in 

the circuit can be substituted with remaining sequence of gates 

in the identity circuit. The reader is directed to [13] for further 

details on the original template matching approach. These 

identity circuits are referred to as templates. One approach to 

template matching is to define all the templates up to a certain 

size for a given gate library. For instance, all Fredkin-Toffoli 

templates with less than six gates are given in [12], and all 

Toffoli gate templates of size up to 7 and some templates of 

size 9 can be found in [14]. 

However, the approach described above did not 

incorporate negative control Toffoli gates. In [2], the authors 

defined positive/negative control Toffoli gates as PNC gates. 

They also suggest rules for merging, moving, and splitting of 

PNC gates within a circuit so that the overall functionality of 

the circuit is not affected. This allows simplification of the 

circuit when e.g. identity circuits (templates) can be identified. 

A simplification algorithm utilizing these ruleswas proposed 

in [2]. 

Templates and rules using both positive and negative 

control Toffoli gates were proposed in [4]. They introduced 

templates that allow for a substitution of a cascade of 

(positively controlled) Toffoli gates with a single but an 

equivalent (negatively controlled) Toffoli gate. In [4], 7 

generalized rules were proposed for post-synthesis 

optimization to reduce both the number of gates and the 

quantum costs [4]. The proposed algorithm traverses the given 

reversible circuit and checks for any possible rules until no 

further reduction is possible. In [5], the authors proposed an 

optimization algorithm that uses merging and replacement 

rules to optimize the circuits and showed that their algorithm 

was able to improve upon the results from [4]. 

[23] defined the negative/positive Toffoli gate as a Mixed 
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Polarity Multiple Control Toffoli (MPMCT) gate and 

proposed reduction rules that can be applied to MPMCT gates. 

A process for applying these reduction rules was 

alsoproposed. 

III. PROPOSED APPROACH 

In this section we give an overview of the previous work 

that the proposed algorithm builds upon, and then describe the 

new algorithm and how it improves upon the previous work. 

[22] describes how Toffoli gates can appear in various ways 

in a circuit. Basedon the target line, pairs of gates in a circuit 

can be categorized as: 

 same or different size gates having the same target 

line, or 

 same or different size gates having different target 

lines. 

Different target line Toffoli gates can be further classified as: 

 different target line Toffoli gates having targets on any 

line, or 

 different target line Toffoli gates having targets 

always other than control lines. 

The templates used in this work were developed by 

considering the various ways in which two Toffoli gates with 

the same target line can appear in a circuit. Templates 1-5 can 

be applied to two adjacent Toffoli gates 

𝑇1 𝐶1; 𝑡1 and 𝑇2 𝐶2; 𝑡2  where 𝐶𝑖  is the set of controls, 
 𝐶1 =  𝐶2 and 𝑡𝑖 is the target,  𝑡1 =  𝑡2 . In templates 1-4, 

two gates share the same control line while in template 5 one 

of the controls of one gate is on a different line. Templates 6-7 

can be applied to two different size Toffoli gates 

𝑇1 𝐶1; 𝑡1 and 𝑇2 𝐶2; 𝑡2 where 𝐶𝑖  is the set of controls, 
 𝐶1 >  𝐶2  or  𝐶1 <  𝐶2 , and 𝑡𝑖 is the target,  𝑡1 =  𝑡2 . In 

template 6 the two gates may differ, but only by at most 1 line. 

In template 7, the difference in the size of two Toffoli gates is 

at least 1. In all cases we are interested in Toffoli gates that 

have the same target line. Details of the templates are given in 

[22]. 

A. Basic Template Matching Algorithm [22] 

A basic template matching algorithm can be implemented 

as follows. Consider two adjacent gates 𝑔1  and 𝑔2  from the 

gate list of a circuit. This algorithm maintains two separate 

gate lists; the original list of gates, and a new list of gates that 

at the end of the algorithm will replace the original list. 

1. if𝑔1  and 𝑔2  have the same target line then we begin 

searching for templates 

a. if 𝑔1  and 𝑔2 match any of the templates then 

replace 𝑔1 and 𝑔2withthe equivalent gates from 

that template (i.e. 𝑔1 , 𝑔2 ,…) and addthe new 

gates at the end of the new gate list and then 

move on toconsider the next two gates (i.e. 𝑔3 

and 𝑔4) in the original gate list;go to step 1. 

b. if no match is found then add 𝑔1at the end of the 

new gate list, 𝑔2 and 𝑔3 become the gates under 

consideration; go to step 1. 

2. else add 𝑔1  and 𝑔2 at the end of new gate list and 

consider the next twogates (i.e. 𝑔3  and 𝑔4 ) in the 

original gate list; go to step 1. 

This algorithm is iterated until no further reduction is 

possible in quantumcost i.e., after each iteration the quantum 

cost of the new gate list is comparedto the quantum cost of the 

old gate list. If there is a reduction in quantum cost,then the 

new gate list becomes the old gate list, and a new iteration 

begins. 

B. Improved Algorithm [22] 

The ability to rearrange gates within a circuit without 

changing the functionality increases the possibilities for 

matching more templates. Gate rearrangements are generally 

performed based on the moving rule [10]. The moving rule 

preserves the functional behavior of a circuit while moving 

gates within the circuit. In the example circuit shown in Figure 

3a the gate count for this circuit is 7 and the quantum cost is 

15. After rearranging gates and applying templates the gate 

count of the new circuit is 7 and quantum is 11. The gate 

rearrangements and templates applied are shown in Figure 3. 

The basic template matching techniques along with the 

moving rule are described below. 

 

Moving Rule 

Two adjacent gates 𝑔 𝐶1; 𝑡1 and 𝑔 𝐶2; 𝑡2 in a reversible 

circuit can be interchanged iff𝐶1 ∩ 𝑡2 = Φ and 𝐶2 ∩ 𝑡1 = Φ, 

i.e. the target of each gate is not a control of the other gate 

[10]. From Figure 3a and 3b we can that the moving rule 

allows the first CNOT gate 𝑇 𝑥0; 𝑓1  to pass the second 

CNOT gate 𝑇 𝑥1; 𝑓0 because the target of the first gate is not 

the control of the second gate. This movement allows the 

application of template 6 on gates 2 and 3 and generates a new 

Toffoli gate with positive and negative controls. 

 

Basic Algorithm with Moving Rule 

It is possible to incorporate the moving rule into the basic 

algorithm as proposedin [22]: 

Consider two gates 𝑔1 and 𝑔2 from the gate list of a circuit. 

1. if 𝑔1  and 𝑔2  have the same target line then we can 

check for templatematches: 

a. if 𝑔1  and 𝑔2  match any of the templates then 

replace 𝑔1 and 𝑔2 withthe equivalent gates from 

that template (i.e. 𝑔1 , 𝑔2 ,…) and addthe new 

gates to the new gate list and then move on to 

consider thenext two gates (i.e. 𝑔3  and 𝑔4 ) in 

the original gate list; go to step 1. 

b. if no match is found for any template then apply 

the moving rule: 

i. if 𝑔1 can pass 𝑔2 then interchange 𝑔1 and 

𝑔2 ; add 𝑔2  into the newgate list, 𝑔1  and 

𝑔3 become the gates under consideration; 

go tostep 1. 

ii. else add 𝑔1  and 𝑔2  to the new gate list 

and consider the next twogates from the 
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original gate list (i.e. 𝑔3  and 𝑔4 ); go to 

step 1. 

2. else apply moving rule to 𝑔1 and 𝑔2 

a. if 𝑔1  can pass 𝑔2  then interchange 𝑔1  and 𝑔2 ; 

add 𝑔2 into the new gatelist, 𝑔1 and 𝑔3 become 

the gates under consideration; go to step 1. 

b. else add 𝑔1  and 𝑔2  to the new gate list and 

consider the next twogates from the original 

gate list (i.e. 𝑔3 and 𝑔4)in the circuit; go tostep 

1. 

The algorithm continues until no further reduction is possible 

in quantumcost. After each iteration the quantum cost of the 

new gate list is compared tothe quantum cost of the old gate 

list. If there is a reduction in quantum cost,then the new gate 

list becomes the old gate list and a new iteration begins. 

Figure 3.  Illustration of applying moving rule 

C. Rank-based Template Matching Algorithm 

Neither of the previous two algorithms searched for the 

templates that offeredthe best match. In this section we 

propose a new algorithm which considers rankwhile applying 

templates. The rank of each template is found by 

consideringthe quantum cost savings that can be achieved 

when applying that template. 

Quantum Cost Savings in Template 

The template ranking strategies are summarized in Table 1 

and explained below. 

TABLE I.  QUANTUM COST OF SAVINGS OF DIFFERENT TEMPLATES 

Templates 
QC savings Min. QC 

savings 
Rank 

Template 1 2𝑝to𝑚 2 to 1 2 

Templates 
QC savings Min. QC 

savings 
Rank 

Template 2 2𝑥to0 2 to 0 1 

Template 3 2𝑥 to𝑦 10 to 1 3 

Template 4 2𝑥 to2𝑝 + 𝑦 10 to 3 4 

Template 5 2𝑥 to2𝑝 + 𝑥 10 to 7 5 

Template 6 𝑦 + 𝑥 to𝑥 6 to 5 6 

Template 7 𝑥 + 𝑦 to2𝑞 + 𝑦 18 to 15 7 

 

Template 1: Template 1 describes the case when a cascade 

of two CNOTgates can be replaced by a single NOT gate. If 

𝑚 and 𝑝  is the quantum cost ofthe NOT and CNOT gate, 

respectively, then the quantum cost is reduced from2𝑝 to 𝑚. 

Template 2: Template 2 can be applied to two 𝑛-bit Toffoli 

gates with thesame controls. In this case the two gates negate 

each other and the gate countand quantum cost savings is 

100%. 

Template 3: In template 3 two 𝑛 -bit Toffoli gates are 

replaced by one 𝑛 − 1 -bit Toffoli gate. If the quantum cost 

of a 𝑛-bit Toffoli gate is x and thatof the  𝑛 − 1 -bit Toffoli 

gate is 𝑦, then the quantum cost is reduced from 2𝑥 to𝑦. 

Template 4: Template 4 can be applied to two 𝑛-bit Toffoli 

gates with theconditions described in [22] where 𝑛 ≥ 3. The 

cascade is replaced by two CNOTgates and one  𝑛 − 1 -bit 

Toffoli gate where 𝑛 ≥ 2. If 𝑥 is the quantum costof an 𝑛-bit 

Toffoli gate, 𝑝 is the quantum cost of a CNOT gate, and 𝑦 is 

the quantum cost of an  𝑛 − 1 -bit Toffoli gate, then the 

quantum cost is reducedfrom 2𝑥 to 2𝑝 + 𝑦and the template is 

given a rank of 4. 

Template 5: In template 5 the cascade of two 𝑛-bit Toffoli 

gates is replacedby two CNOT gates and one 𝑛-bit Toffoli 

gate. If 𝑥 and 𝑝 is the quantum costof an 𝑛-bit Toffoli gate and 

a CNOT gate, respectively, then the quantum costis reduced 

from 2𝑥 to 2𝑝 + 𝑥. 

Template 6: Template 6 can be applied to two different 

size Toffoli gateswith the conditions described in [22]. If the 

quantum cost of an 𝑛-bit Toffoligate is 𝑥 and an  𝑛 − 1 -bit 

Toffoli gate is 𝑦, then the quantum cost is reducedfrom 𝑦 +
𝑥to 𝑥 and the template is given a rank of 6. 

Template 7: Template 7 can be applied to the various 

situations discussedin [22]. If 𝑥 is the quantum cost of an 𝑛-bit 

Toffoli gate, 𝑞 is the quantum cost ofa3-bit Toffoli gate, and 𝑦 

is the quantum cost of an  𝑛 − 1 -bit Toffoli gate, thenthe 

quantum cost is reduced from 𝑥 + 𝑦to 2𝑞 + 𝑦and the template 

is assigneda rank of 7. 

As an example of how these rankings are used, we 

consider an arbitrary circuit shown in Figure 4a where the 

circuit has three Toffoligates. All the gates have the same 

target line. We can see that gates 1 and 2satisfy the conditions 

to apply template 4. Now we set rank 4 for gates 1 and 2and 

save it. According to the moving rule gate 1 can pass gate 2 

since none ofthe controls of either gate is the target of the 

other gate. As shown in Figure 4b,we can see that gates 1 and 

3 satisfy the conditions to apply template 7. We setrank 7 for 
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gates 1 and 3. Now we compare the new rank (7) with the 

previousrank (4). The new rank is higher than the previous 

thus we apply template 4on gates 1 and 2 and replace with the 

new set of gates as shown in Figure 4c.In each iteration for 

each gate in a circuit and considering the moving rule 

wecompare the rank and take the best pair that offers the best 

savings in quantumcost after applying different templates. 

Figure 4.  Illustration of rank-based template matching algorithm 

Basic Rank-based Algorithm 

The algorithm is as follows: consider two gates ( 𝑔𝑖  and 

𝑔𝑖+1,  1 ≤ 𝑖 ≤ 𝑛 where 𝑖  is the index of a gate and 𝑛 is the 

number of gates in a circuit) from a circuit. 

1. If 𝑔𝑖  and 𝑔𝑖+1 have the same target, then the algorithm 

searches for templates and sets the rank as described 

in Table 1. 

2. If 𝑔𝑖can pass𝑔𝑖+1 , then we consider 𝑔𝑖  and the next 

gate after 𝑔𝑖+1  (i.e.𝑔𝑖+2 ) from the circuit. If 𝑔𝑖  and 

𝑔𝑖+2 have the same target, then thealgorithm searches 

for templates and sets the rank. 

3. Now we compare the new rank with the previous rank 

and update theprevious rank with the new rank if the 

new rank is less than the previousrank at this stage. 

4. Next, if gate 𝑔𝑖  can also pass 𝑔𝑖+2, then we consider 

𝑔𝑖  with the next gateof 𝑔𝑖+2 and check conditions to 

apply templates and update the previousrank with the 

new rank. 

5. After considering 𝑔𝑖  with all the other gates in the 

circuit, we get the bestrank for 𝑔𝑖  and 𝑔𝑗 ,  𝑖 + 1 ≤ 𝑗 ≤

𝑛. 

6. We then apply the template on 𝑔𝑖  and 𝑔𝑗  and replace 

the gates with thenew set of gates (i.e. 𝑔1 , 𝑔2 ,…). 

In this way, the algorithm searches for all possible matches 

and replaces thegate list with the new gate list with highest 

rank. 

 

Modification 1 

In the rank-based algorithm described in section 3.3, we 

applied templates basedon the highest ranking template 

matching the gates under consideration, gate𝑔𝑖  and 𝑔𝑗  . We 

did not consider that the gate 𝑔𝑗  paired with gate 𝑔𝑘  can have 

ahigher rank. In this algorithm we consider the highest rank 

among all allowablegate pairs before applying templates. The 

previous algorithm visits all the gatesin a circuit to check the 

conditions and select the best template. In this case, atthe 

beginning, the algorithm indexes all the gates by the target and 

generatessub-gate lists for each different target. It then goes on 

to preprocess each gatefor all the sub-gate lists and store ranks 

and the pair gate. The next step is toassign rank to gates by 

considering the moving rule and then applying templatesbased 

on the rank listed in Table 1. This algorithm iterates over each 

gate fromeach sub-gate list and thus reduces the number of 

iterations compared to theprevious approaches. For some of 

the cases we get slightly improved resultscompared to the 

results listed in Table 2, but the average results are almost 

same(16.39% improvement over non-post-processed circuits). 

One reason behind thesimilar results despite the additional 

gates being considered is that One of theobservations to get 

almost similar results is that this algorithm applies 

templatesamong all the gates. If we apply template 4, 5, or 7 

and then if one of the controlsof the next gates has a target on 

this line, then the gate cannot move. However,if we apply 

template 1, 2, 3, or 6 before applying template 4, 5, or 7, then 

allthe gates after these gates can move in the circuit by 

following the moving rule;this increases the chances to apply 

more templates. 

 

Modification 2 

Based on the results from the previous algorithm, we re-

ranked the templatesby considering the number of 

increased/decreased gates in the template. If weapply 

templates 1, 2, 3, and 6, the number of gates decreases to 1; on 

theother hand, if we apply templates 4, 5, and 7, the number of 

gates increasesto 3. Based on this observation we re-ranked 

template 6 as rank 4, template4 as rank 5, and template 5 as 

rank 6 and kept templates 1, 2, 3, and 7 asrank 2, 1, 3, and 7, 

respectively. The algorithm works in the same way as 

thealgorithm described in the previous section. Overall we get 

slightly improvedresults (17.22% improvement over non-post-

processed circuits) compared to theapproach proposed in 

section 3.3 (16.64%) and section 3.3.3 (16.39%). 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The templates and moving rule algorithm from [22] and the 

new rank-based algorithm were implemented in Java. Tests 

were run on an Intel Core 2 Duo CPU T6670 @ 2.20GHz_2 

system running Ubuntu 13.04 with 2GB main memory for 110 

benchmark circuits. All benchmarks used in this work were 

obtained from RevLib [25] and preprocessed by applying the 

improved shared cube synthesis approach from [19]. All the 

resulting circuits are verified using QMDD (Quantum 

Multiple-valued Decision Diagrams) [18]. Using QMDD, we 

compare the resulting circuits (after applying templates) with 

the input circuits in order to ensure that the behavior of the 

circuit has not been modified.  

The run time of all the tested benchmarks was under 

114,299 milliseconds(ms), and our experiments showed that 

each circuit was iterated over at most 7 times.  

When comparing the rank-based algorithm with the moving 

rule algorithm [22] 56 benchmarks showed improvement. The 
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results are summarized in Table 2. Both the moving rule and 

rank-based results are compared to the circuits obtained from 

the improved shared cube synthesis approach [19] in terms of 

quantum cost and gate count. In this table PrevGC/PrevQC 

(column 2 and 3) refers to the gate count/quantum cost 

obtained from the circuit generated by the improved shared 

cube synthesis approach. The % Improvement for the moving 

rule and rank-based algorithms indicate the improvement in 

size as compared to the shared cube synthesis. For the 

improved 56 circuits the average quantum cost reduction is 

23.80% compared to the improved shared cube synthesis 

approach. 

TABLE II.  RESULTS FROM THE MOVING RULE AND RANK-BASED 

ALGORITHM 

Circuit 
[19] [22] rank-based 

GC/QC 
GC/%Imp

r. 

QC/%Imp

r. 

GC/%Imp

r. 

QC/%Imp

r. 

cm85a_127 48/2206 54/-12.50 
1232/44.1

5 
55/-14.58 

1024/53.5

8 

4mod5_8 4/21 4/0.00 13/38.10 5/-25.00 10/52.38 

adr4_93 41/645 41/0.00 489/24.19 38/7.32 330/48.84 

bw_116 287/637 94/67.25 387/39.25 77/73.17 332/47.88 

C7552_119 89/399 32/64.04 250/37.34 29/67.42 210/47.37 

decod_137 89/399 32/64.04 250/37.34 29/67.42 210/47.37 

0410184_85 
218/763

6 

256/-

17.43 

5662/25.8

5 

257/-

17.89 

4631/39.3

5 

add6_92 
153/513

5 
159/-3.92 

3714/27.6

7 
154/-0.65 

3267/36.3

8 

rd73_69 43/856 52/-20.93 619/27.69 51/-18.60 581/32.13 

ham15_30 114/263 46/59.65 183/30.42 45/60.53 179/31.94 

clip_124 78/3824 80/-2.56 
2803/26.7

0 
85/-8.97 

2726/28.7

1 

3_17_6 11/28 9/18.18 22/21.43 7/36.36 20/28.57 

sym6_63 13/721 16/-23.08 571/20.80 17/-30.77 521/27.74 

sqrt8_205 22/466 23/-4.55 393/15.67 24/-9.09 339/27.25 

urf2_73 
479/874

2 
254/46.97 

7453/14.7

4 
272/43.22 

6395/26.8

5 

dc1_142 31/127 18/41.94 97/23.62 19/38.71 93/26.77 

dc2_143 51/1084 39/23.53 906/16.42 38/25.49 794/26.75 

cycle10_2_

61 
42/1273 46/-9.52 

1004/21.1

3 
45/-7.14 934/26.63 

max46_177 42/4524 52/-23.81 
3540/21.7

5 
54/-28.57 

3324/26.5

3 

hwb8_64 
480/819

5 
261/45.63 

7158/12.6

5 
270/43.75 

6172/24.6

9 

 

In order to situate our work against other work in the 

literature we also compared the ranking algorithm's results 

with the results from [4] and [5]. Theresults are listed in Table 

3 sorted in order of quantum cost improvement. The column 

RevLibGC/QC represents the gate count and quantum cost of 

the circuit obtained from RevLib. The gate count and quantum 

cost of these circuits are calculated based on the values in [9]. 

The column NewGC/QC gives the gate count and quantum 

cost resulting from the proposed rank-based template 

matching algorithm. Compared to [4] and [5], the average 

quantum cost reduction for the top 19 circuits is 13.19% and 

9.40%, respectively. 

TABLE III.  RESULTS FROM THE MOVING RULE AND RANK-BASED 

ALGORITHMS 

Circuit 

RevLib 

[25] 
[4] [5] 

rank-

based 
Impr. 

GC/QC GC/QC GC/QC GC/QC 
GC/QC 

(%) 

sym9_148 210/4368 
154/366

8 

143/343

3 
276/2189 

40.32/36.

24 

sym6_145 36/777 31/647 23/517 48/408 
36.94/21.

08 

max46_240 107/5444 51/4498 52/4538 112/3632 
19.25/19.

96 

add6_196 229/6455 
179/600

5 

167/553

4 
244/4581 

23.71/17.

22 

clip_206 174/6731 
111/653

5 

109/611

9 
173/5462 

16.42/10.

74 

life_238 107/6766 57/5740 57/5744 99/5210 9.23/9.30 

sym9_193 
129/1419

3 

58/1274

7 

63/1309

0 

124/1192

9 
6.42/8.87 

9symml_195 
129/1419

3 

58/1274

7 

62/1302

6 

124/1192

9 
6.42/8.42 

alu4_201 
1063/553

88 

523/464

13 

529/467

64 

1013/430

97 
7.14/7.84 

mux_246 35/1078 20/804 20/804 42/742 7.71/7.71 

tial_265 
1041/562

03 

516/471

45 

522/475

56 

981/4439

4 
5.84/6.65 

apla_203 80/3438 74/3438 64/3024 78/2839 
17.42/6.1

2 

f51m_233 
663/3740

0 

358/333

33 

355/328

82 

637/3098

1 
7.06/5.78 

dc2_222 75/1886 55/1789 53/1688 78/1592 
11.01/5.6

9 

mod5adder_

306 
96/292 84/281 70/270 72/265 5.69/1.85 

hwb5_300 88/276 80/270 67/259 67/255 5.56/1.54 

in2_236 
405/2380

2 

283/231

46 

250/206

00 

394/2028

9 

12.34/1.5

1 

alu2_199 157/5654 87/4776 87/4611 147/4561 4.50/1.08 

cycle10_293 78/202 74/199 57/186 56/184 7.54/1.08 

Average     
13.19/9.4

0 

 

V. CONCLUSION AND FUTURE WORK 

The proposed approach for post-synthesis optimization 
consider templates that make use of both positive and negative 
control Toffoli gates and uses a ranking system to find the best 
possible match that will locally result in the highest savings in 
quantum cost. The approach has been experimentally 
demonstrated to obtain improvements over a popular non-
optimized approach (shared cube), and also gives further 
improvement over comparable works in the literature ([4] and 
[5]). 

Future work may pursue several avenues related to this 
work, including identifying additional templates, particularly 
for Toffoli gates with different target lines, and also improving 
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the template matching algorithm. Of course, the issue of 
template matching with negative controls has not yet been 
thoroughly studied, and as we pursue this work a broader 
investigation will also be required. All positive control Toffoli 
gate templates of size 7 and some templates of size 9 are listed 
in [14]. Other templates for Toffoli gates with positive and 
negative controls were proposed in [2, 4, 5, 23]; however, 
finding and classifying a complete set of templates for positive 
and negative control Toffoli gate is another direction for further 
research. Garbage/line count reduction through the application 
of templates is also a possible research direction. 
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