
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 18

Template Matching with Ranking for Toffoli Circuits

Md Zamilur Rahman

Departmentof Mathematics and Computer Science

University of Lethbridge

Lethbridge, AB, Canada

Email: mdzamilur.rahman [AT] uleth.ca

Jacqueline E. Rice

Departmentof Mathematics and Computer Science

University of Lethbridge

Lethbridge, AB, Canada

Abstract—Circuit realizations generated by reversible logic

synthesis approaches may not be optimal, thus it is

common to apply post-synthesis optimization techniques.

This paper proposes an algorithm that uses a ranking

system for identifying the best match with circuit-

reduction templates. These templates incorporate both

positive and negative control Toffoli gates. A reduction in

quantum cost was achieved for 86 of the 110 circuits. On

average a 21.34% reduction in quantum cost was achieved,

and in some cases up to 53.58% reduction was obtained.
Keywords-reversible logic; Toffoli gate; template matching;

quantum cost; gate count

I. INTRODUCTION

Research into reversible logic synthesis has begun to attract

much attention due to the potential use of reversible logic in

areas such as quantum computing [20], optical computing [3],

and nanotechnology [16]. In particular, heatgeneration and

dissipation are serious problems in today's traditional circuit

technologies. In 1961 Landauer observed that the amount of

energy dissipated for each lost bit of information is 𝐾𝑇𝑙𝑛2,

where 𝐾is Boltzmann's constant 1.3807 × 10−23𝐽𝐾−1and 𝑇 is

the temperature [8]. Over millions of operations this becomes

a significant amount of energy. However,in [1] Bennett

showed that in order to not dissipate energy a system must be

logically reversible. Research on reversible circuits may also

be attracting attention due to the discovery of powerful

quantum algorithms in the mid-1990s [20], as quantum

circuits are inherently reversible. Interested readers can refer

to [20] for a detaileddiscussion of quantum computing. In

reversible circuits no information is lost as the underlying

functions are all bijective. Thus fan-out and feedback

operations are not allowed. Such features of reversible circuits

prevent the use of existing algorithms and tools for circuit

synthesis and optimization, thus leading to the need for logic

synthesis approaches that are specifically targeted to reversible

circuits. After an initial logic synthesis approach is applied the

resulting circuit is often not optimal, leading to the need for an

optimization phase as shown in Figure 1. The main focus of

this paper is to offer an improved optimization phase

incorporating the application of templates. This work builds

on the proposal from [22], in which a set of templates for

positive and negative control Toffoli gates was proposed.

The remainder of the paper is organized as follows. The

following section gives an overview of the Toffoli gate and

the cost metrics of a reversible circuit, followed by a

description of template matching as a post-synthesis

optimizationapproach. In section 3 we describe the basic

template matching algorithm, the moving rule version that was

proposed in [22], and the rank-based algorithm that is

proposed in this work. Section 4 gives the results based on

benchmarks as compared to both non-optimized circuits and to

other techniques from the literature. Section 5 concludes the

paper and provides possible directions for future work.

II. BACKGROUND

[13] states that if an 𝑛-input 𝑛-output function (gate) is a
bijection then it is reversible. In other words, a reversible
function (gate) has the same number of inputs and outputs and
there is a one-to-one mapping between its input and output
vectors. Traditional logic gates other than the NOT gate are not
reversible. Reversible gates that have been proposed include
Toffoli [24], Fredkin [7], and Peres [21] gates. In this work we
focus only on the family of Toffoli gates.

A. Toffoli gates

An 𝑛-bit Toffoli gate or Multiple Control Toffoli (MCT)

gate is a reversible gate with 𝑛 inputs and 𝑛 outputs where

(𝑖1, 𝑖2, … , 𝑖𝑛) is the input vector, (𝑜1, 𝑜2, … , 𝑜𝑛)is the output

vector, and 𝑜𝑗 = 𝑖𝑗 where 𝑗 = (1, 2, … , 𝑛 − 1) and 𝑜𝑛 =

𝑖1,𝑖2,…,𝑖𝑛−1⊕𝑖𝑛. The first 𝑛−1 bits are known as controls

and the last 𝑛𝑡𝑕 bit is known as the target. The MCT gate

passes all the inputs to the outputs unchanged and inverts the

target bit when all control bits have the value 1.When 𝑛 =
1there are no controls and this gate is known as a NOT gate.

When 𝑛 = 2 the gate is known as a controlled-NOT (CNOT)

gate or Feynman gate. For the sake of simplicity, we assume

that the nth bit is the target; however, thetarget bit could be

any of the n bits with which the gate interacts.

A negative-control Toffoli gate is a MCT gate that may

have one or more negative controls. The gate maps the n

inputs (𝑖1, 𝑖2, … , 𝑖𝑛) to the n outputs (𝑜1, 𝑜2, … , 𝑜𝑛) where

𝑜𝑗 = 𝑖𝑗 for 𝑗 = (1, 2, … , 𝑛 − 1) and 𝑜𝑛 = 𝑖1 , 𝑖2, … , 𝑖𝑛−1 ⊕

𝑖𝑛where 𝑖1 is a negative control. Like the original MCT gate a

MCT with negative controls gate passes all the inputs to the

outputs unchanged; however, the target bit is inverted when all

positive controls have value 1 and negative controls have

value 0.

We use ⊕ to represent the target line, ∙ to indicate a

positive control, and °to indicate a negative control line. A

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 19

Toffoli gate can also be written as 𝑇 𝐶; 𝑡 where 𝐶 is the set of

controls and 𝑡 is the target line. The size of a Toffoligate refers

to the number of controls plus target. Figure 2 illustrates

different versions of the Toffoli gate.

Figure 1. Toffoli gates.

Reversible circuits are created by cascading a series of
reversible gates in such a way that the desired computation
takes place.

B. Cost Metrics

A given reversible function may be realized in different

ways, resulting in different circuits. The following two metrics

are commonly used in evaluating the cost of different

realizations. Gate count is the simplest way to evaluate

different reversible circuits, and refers to a simple count of the

number of gates in a circuit. It does not, however, consider the

complexity of the circuit. For instance, if one circuit consists

of two 6-input Toffoli gates and an equivalent circuit consists

of three 2-input Toffoli gates, the first might seem preferable

as it has fewer gates but these gates are significantly more

complex in terms of quantum cost. The quantum cost of a gate

is defined as the number of basic quantum operations needed

to realize the gate [11]. Any reversible gate can be

decomposed into basic quantum (1 × 1 and 2 × 2) gates. The

NOT gate has a quantum cost of 1, as does the CNOT gate,

while a 3-bit Toffoli gate has a quantum cost of 5. In general,

as the number of controls for a gate increases so does the

quantum cost.

The quantum cost of an n-bit negative control Toffoli gate

with at least one positive control is exactly the same as the

cost of an 𝑛 -bit Toffoli gate. When all the controls are

negative, an extra cost of 2 is required if the gate is to be

implemented with zero or (𝑛 − 3) additional lines (referred to

as garbage lines, as their values are not of interest at the output

of the circuit) are used. An additional cost of 4 is required

when only one garbage line is used [15].

C. Logic Synthesis

Logic synthesis is the process of converting a logic

function into a high level circuit design in terms of gates. In

reversible logic we refer to this as a cascade of gates.

Reversible logic synthesis tools are used to generate a cascade

of gates that computes the desired function. The circuit

realizations obtained from different logic synthesis approaches

may not be optimal in terms of the number of gates used, the

quantum cost of those gates, and/or the number of lines (bits)

required. Post-synthesis optimization phases may be applied in

order to further reduce these costs as shown in Figure 1.

Figure 2. General flow in reversible logic synthesis approaches

An irreversible function can be embedded into a reversible

function by adding constant inputs and garbage outputs [11].

A variety of synthesis approaches are available including

those described in [6] and [17].

D. Template Matching

One post-synthesis optimization approach is template

matching. If a circuit is non-optimal then it may be possible to

decrease the size and quantum cost by replacing sequences of

gates with shorter sequences that are equivalent in

functionality. This is known as template matching [17].

The basic process of template matching is as follows: a

circuit is examined to find a subsequence of gates (more than

half) from a sequence that computes the identity; if such a

subsequence is found then the matched sequence of gates in

the circuit can be substituted with remaining sequence of gates

in the identity circuit. The reader is directed to [13] for further

details on the original template matching approach. These

identity circuits are referred to as templates. One approach to

template matching is to define all the templates up to a certain

size for a given gate library. For instance, all Fredkin-Toffoli

templates with less than six gates are given in [12], and all

Toffoli gate templates of size up to 7 and some templates of

size 9 can be found in [14].

However, the approach described above did not

incorporate negative control Toffoli gates. In [2], the authors

defined positive/negative control Toffoli gates as PNC gates.

They also suggest rules for merging, moving, and splitting of

PNC gates within a circuit so that the overall functionality of

the circuit is not affected. This allows simplification of the

circuit when e.g. identity circuits (templates) can be identified.

A simplification algorithm utilizing these ruleswas proposed

in [2].

Templates and rules using both positive and negative

control Toffoli gates were proposed in [4]. They introduced

templates that allow for a substitution of a cascade of

(positively controlled) Toffoli gates with a single but an

equivalent (negatively controlled) Toffoli gate. In [4], 7

generalized rules were proposed for post-synthesis

optimization to reduce both the number of gates and the

quantum costs [4]. The proposed algorithm traverses the given

reversible circuit and checks for any possible rules until no

further reduction is possible. In [5], the authors proposed an

optimization algorithm that uses merging and replacement

rules to optimize the circuits and showed that their algorithm

was able to improve upon the results from [4].

[23] defined the negative/positive Toffoli gate as a Mixed

1i 11 io 

2i

1i

212 iio 

1o

3213 iiio 

1o

1o

2o

1o

3i

2i

1i

3i

2i

1i

3213 iiio 

1o

1o 2o

1o

(a) NOT gate (a) CNOT gate

(c) 3-bit Toffoli gate (d) Negative-control

Toffoli gate

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 20

Polarity Multiple Control Toffoli (MPMCT) gate and

proposed reduction rules that can be applied to MPMCT gates.

A process for applying these reduction rules was

alsoproposed.

III. PROPOSED APPROACH

In this section we give an overview of the previous work

that the proposed algorithm builds upon, and then describe the

new algorithm and how it improves upon the previous work.

[22] describes how Toffoli gates can appear in various ways

in a circuit. Basedon the target line, pairs of gates in a circuit

can be categorized as:

 same or different size gates having the same target

line, or

 same or different size gates having different target

lines.

Different target line Toffoli gates can be further classified as:

 different target line Toffoli gates having targets on any

line, or

 different target line Toffoli gates having targets

always other than control lines.

The templates used in this work were developed by

considering the various ways in which two Toffoli gates with

the same target line can appear in a circuit. Templates 1-5 can

be applied to two adjacent Toffoli gates

𝑇1 𝐶1; 𝑡1 and 𝑇2 𝐶2; 𝑡2 where 𝐶𝑖 is the set of controls,
 𝐶1 = 𝐶2 and 𝑡𝑖 is the target, 𝑡1 = 𝑡2 . In templates 1-4,

two gates share the same control line while in template 5 one

of the controls of one gate is on a different line. Templates 6-7

can be applied to two different size Toffoli gates

𝑇1 𝐶1; 𝑡1 and 𝑇2 𝐶2; 𝑡2 where 𝐶𝑖 is the set of controls,
 𝐶1 > 𝐶2 or 𝐶1 < 𝐶2 , and 𝑡𝑖 is the target, 𝑡1 = 𝑡2 . In

template 6 the two gates may differ, but only by at most 1 line.

In template 7, the difference in the size of two Toffoli gates is

at least 1. In all cases we are interested in Toffoli gates that

have the same target line. Details of the templates are given in

[22].

A. Basic Template Matching Algorithm [22]

A basic template matching algorithm can be implemented

as follows. Consider two adjacent gates 𝑔1 and 𝑔2 from the

gate list of a circuit. This algorithm maintains two separate

gate lists; the original list of gates, and a new list of gates that

at the end of the algorithm will replace the original list.

1. if𝑔1 and 𝑔2 have the same target line then we begin

searching for templates

a. if 𝑔1 and 𝑔2 match any of the templates then

replace 𝑔1 and 𝑔2withthe equivalent gates from

that template (i.e. 𝑔1 , 𝑔2 ,…) and addthe new

gates at the end of the new gate list and then

move on toconsider the next two gates (i.e. 𝑔3

and 𝑔4) in the original gate list;go to step 1.

b. if no match is found then add 𝑔1at the end of the

new gate list, 𝑔2 and 𝑔3 become the gates under

consideration; go to step 1.

2. else add 𝑔1 and 𝑔2 at the end of new gate list and

consider the next twogates (i.e. 𝑔3 and 𝑔4) in the

original gate list; go to step 1.

This algorithm is iterated until no further reduction is

possible in quantumcost i.e., after each iteration the quantum

cost of the new gate list is comparedto the quantum cost of the

old gate list. If there is a reduction in quantum cost,then the

new gate list becomes the old gate list, and a new iteration

begins.

B. Improved Algorithm [22]

The ability to rearrange gates within a circuit without

changing the functionality increases the possibilities for

matching more templates. Gate rearrangements are generally

performed based on the moving rule [10]. The moving rule

preserves the functional behavior of a circuit while moving

gates within the circuit. In the example circuit shown in Figure

3a the gate count for this circuit is 7 and the quantum cost is

15. After rearranging gates and applying templates the gate

count of the new circuit is 7 and quantum is 11. The gate

rearrangements and templates applied are shown in Figure 3.

The basic template matching techniques along with the

moving rule are described below.

Moving Rule

Two adjacent gates 𝑔 𝐶1; 𝑡1 and 𝑔 𝐶2; 𝑡2 in a reversible

circuit can be interchanged iff𝐶1 ∩ 𝑡2 = Φ and 𝐶2 ∩ 𝑡1 = Φ,

i.e. the target of each gate is not a control of the other gate

[10]. From Figure 3a and 3b we can that the moving rule

allows the first CNOT gate 𝑇 𝑥0; 𝑓1 to pass the second

CNOT gate 𝑇 𝑥1; 𝑓0 because the target of the first gate is not

the control of the second gate. This movement allows the

application of template 6 on gates 2 and 3 and generates a new

Toffoli gate with positive and negative controls.

Basic Algorithm with Moving Rule

It is possible to incorporate the moving rule into the basic

algorithm as proposedin [22]:

Consider two gates 𝑔1 and 𝑔2 from the gate list of a circuit.

1. if 𝑔1 and 𝑔2 have the same target line then we can

check for templatematches:

a. if 𝑔1 and 𝑔2 match any of the templates then

replace 𝑔1 and 𝑔2 withthe equivalent gates from

that template (i.e. 𝑔1 , 𝑔2 ,…) and addthe new

gates to the new gate list and then move on to

consider thenext two gates (i.e. 𝑔3 and 𝑔4) in

the original gate list; go to step 1.

b. if no match is found for any template then apply

the moving rule:

i. if 𝑔1 can pass 𝑔2 then interchange 𝑔1 and

𝑔2 ; add 𝑔2 into the newgate list, 𝑔1 and

𝑔3 become the gates under consideration;

go tostep 1.

ii. else add 𝑔1 and 𝑔2 to the new gate list

and consider the next twogates from the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 21

original gate list (i.e. 𝑔3 and 𝑔4); go to

step 1.

2. else apply moving rule to 𝑔1 and 𝑔2

a. if 𝑔1 can pass 𝑔2 then interchange 𝑔1 and 𝑔2 ;

add 𝑔2 into the new gatelist, 𝑔1 and 𝑔3 become

the gates under consideration; go to step 1.

b. else add 𝑔1 and 𝑔2 to the new gate list and

consider the next twogates from the original

gate list (i.e. 𝑔3 and 𝑔4)in the circuit; go tostep

1.

The algorithm continues until no further reduction is possible

in quantumcost. After each iteration the quantum cost of the

new gate list is compared tothe quantum cost of the old gate

list. If there is a reduction in quantum cost,then the new gate

list becomes the old gate list and a new iteration begins.

Figure 3. Illustration of applying moving rule

C. Rank-based Template Matching Algorithm

Neither of the previous two algorithms searched for the

templates that offeredthe best match. In this section we

propose a new algorithm which considers rankwhile applying

templates. The rank of each template is found by

consideringthe quantum cost savings that can be achieved

when applying that template.

Quantum Cost Savings in Template

The template ranking strategies are summarized in Table 1

and explained below.

TABLE I. QUANTUM COST OF SAVINGS OF DIFFERENT TEMPLATES

Templates
QC savings Min. QC

savings
Rank

Template 1 2𝑝to𝑚 2 to 1 2

Templates
QC savings Min. QC

savings
Rank

Template 2 2𝑥to0 2 to 0 1

Template 3 2𝑥 to𝑦 10 to 1 3

Template 4 2𝑥 to2𝑝 + 𝑦 10 to 3 4

Template 5 2𝑥 to2𝑝 + 𝑥 10 to 7 5

Template 6 𝑦 + 𝑥 to𝑥 6 to 5 6

Template 7 𝑥 + 𝑦 to2𝑞 + 𝑦 18 to 15 7

Template 1: Template 1 describes the case when a cascade

of two CNOTgates can be replaced by a single NOT gate. If

𝑚 and 𝑝 is the quantum cost ofthe NOT and CNOT gate,

respectively, then the quantum cost is reduced from2𝑝 to 𝑚.

Template 2: Template 2 can be applied to two 𝑛-bit Toffoli

gates with thesame controls. In this case the two gates negate

each other and the gate countand quantum cost savings is

100%.

Template 3: In template 3 two 𝑛 -bit Toffoli gates are

replaced by one 𝑛 − 1 -bit Toffoli gate. If the quantum cost

of a 𝑛-bit Toffoli gate is x and thatof the 𝑛 − 1 -bit Toffoli

gate is 𝑦, then the quantum cost is reduced from 2𝑥 to𝑦.

Template 4: Template 4 can be applied to two 𝑛-bit Toffoli

gates with theconditions described in [22] where 𝑛 ≥ 3. The

cascade is replaced by two CNOTgates and one 𝑛 − 1 -bit

Toffoli gate where 𝑛 ≥ 2. If 𝑥 is the quantum costof an 𝑛-bit

Toffoli gate, 𝑝 is the quantum cost of a CNOT gate, and 𝑦 is

the quantum cost of an 𝑛 − 1 -bit Toffoli gate, then the

quantum cost is reducedfrom 2𝑥 to 2𝑝 + 𝑦and the template is

given a rank of 4.

Template 5: In template 5 the cascade of two 𝑛-bit Toffoli

gates is replacedby two CNOT gates and one 𝑛-bit Toffoli

gate. If 𝑥 and 𝑝 is the quantum costof an 𝑛-bit Toffoli gate and

a CNOT gate, respectively, then the quantum costis reduced

from 2𝑥 to 2𝑝 + 𝑥.

Template 6: Template 6 can be applied to two different

size Toffoli gateswith the conditions described in [22]. If the

quantum cost of an 𝑛-bit Toffoligate is 𝑥 and an 𝑛 − 1 -bit

Toffoli gate is 𝑦, then the quantum cost is reducedfrom 𝑦 +
𝑥to 𝑥 and the template is given a rank of 6.

Template 7: Template 7 can be applied to the various

situations discussedin [22]. If 𝑥 is the quantum cost of an 𝑛-bit

Toffoli gate, 𝑞 is the quantum cost ofa3-bit Toffoli gate, and 𝑦

is the quantum cost of an 𝑛 − 1 -bit Toffoli gate, thenthe

quantum cost is reduced from 𝑥 + 𝑦to 2𝑞 + 𝑦and the template

is assigneda rank of 7.

As an example of how these rankings are used, we

consider an arbitrary circuit shown in Figure 4a where the

circuit has three Toffoligates. All the gates have the same

target line. We can see that gates 1 and 2satisfy the conditions

to apply template 4. Now we set rank 4 for gates 1 and 2and

save it. According to the moving rule gate 1 can pass gate 2

since none ofthe controls of either gate is the target of the

other gate. As shown in Figure 4b,we can see that gates 1 and

3 satisfy the conditions to apply template 7. We setrank 7 for

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 22

gates 1 and 3. Now we compare the new rank (7) with the

previousrank (4). The new rank is higher than the previous

thus we apply template 4on gates 1 and 2 and replace with the

new set of gates as shown in Figure 4c.In each iteration for

each gate in a circuit and considering the moving rule

wecompare the rank and take the best pair that offers the best

savings in quantumcost after applying different templates.

Figure 4. Illustration of rank-based template matching algorithm

Basic Rank-based Algorithm

The algorithm is as follows: consider two gates (𝑔𝑖 and

𝑔𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 where 𝑖 is the index of a gate and 𝑛 is the

number of gates in a circuit) from a circuit.

1. If 𝑔𝑖 and 𝑔𝑖+1 have the same target, then the algorithm

searches for templates and sets the rank as described

in Table 1.

2. If 𝑔𝑖can pass𝑔𝑖+1 , then we consider 𝑔𝑖 and the next

gate after 𝑔𝑖+1 (i.e.𝑔𝑖+2) from the circuit. If 𝑔𝑖 and

𝑔𝑖+2 have the same target, then thealgorithm searches

for templates and sets the rank.

3. Now we compare the new rank with the previous rank

and update theprevious rank with the new rank if the

new rank is less than the previousrank at this stage.

4. Next, if gate 𝑔𝑖 can also pass 𝑔𝑖+2, then we consider

𝑔𝑖 with the next gateof 𝑔𝑖+2 and check conditions to

apply templates and update the previousrank with the

new rank.

5. After considering 𝑔𝑖 with all the other gates in the

circuit, we get the bestrank for 𝑔𝑖 and 𝑔𝑗 , 𝑖 + 1 ≤ 𝑗 ≤

𝑛.

6. We then apply the template on 𝑔𝑖 and 𝑔𝑗 and replace

the gates with thenew set of gates (i.e. 𝑔1 , 𝑔2 ,…).

In this way, the algorithm searches for all possible matches

and replaces thegate list with the new gate list with highest

rank.

Modification 1

In the rank-based algorithm described in section 3.3, we

applied templates basedon the highest ranking template

matching the gates under consideration, gate𝑔𝑖 and 𝑔𝑗 . We

did not consider that the gate 𝑔𝑗 paired with gate 𝑔𝑘 can have

ahigher rank. In this algorithm we consider the highest rank

among all allowablegate pairs before applying templates. The

previous algorithm visits all the gatesin a circuit to check the

conditions and select the best template. In this case, atthe

beginning, the algorithm indexes all the gates by the target and

generatessub-gate lists for each different target. It then goes on

to preprocess each gatefor all the sub-gate lists and store ranks

and the pair gate. The next step is toassign rank to gates by

considering the moving rule and then applying templatesbased

on the rank listed in Table 1. This algorithm iterates over each

gate fromeach sub-gate list and thus reduces the number of

iterations compared to theprevious approaches. For some of

the cases we get slightly improved resultscompared to the

results listed in Table 2, but the average results are almost

same(16.39% improvement over non-post-processed circuits).

One reason behind thesimilar results despite the additional

gates being considered is that One of theobservations to get

almost similar results is that this algorithm applies

templatesamong all the gates. If we apply template 4, 5, or 7

and then if one of the controlsof the next gates has a target on

this line, then the gate cannot move. However,if we apply

template 1, 2, 3, or 6 before applying template 4, 5, or 7, then

allthe gates after these gates can move in the circuit by

following the moving rule;this increases the chances to apply

more templates.

Modification 2

Based on the results from the previous algorithm, we re-

ranked the templatesby considering the number of

increased/decreased gates in the template. If weapply

templates 1, 2, 3, and 6, the number of gates decreases to 1; on

theother hand, if we apply templates 4, 5, and 7, the number of

gates increasesto 3. Based on this observation we re-ranked

template 6 as rank 4, template4 as rank 5, and template 5 as

rank 6 and kept templates 1, 2, 3, and 7 asrank 2, 1, 3, and 7,

respectively. The algorithm works in the same way as

thealgorithm described in the previous section. Overall we get

slightly improvedresults (17.22% improvement over non-post-

processed circuits) compared to theapproach proposed in

section 3.3 (16.64%) and section 3.3.3 (16.39%).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The templates and moving rule algorithm from [22] and the

new rank-based algorithm were implemented in Java. Tests

were run on an Intel Core 2 Duo CPU T6670 @ 2.20GHz_2

system running Ubuntu 13.04 with 2GB main memory for 110

benchmark circuits. All benchmarks used in this work were

obtained from RevLib [25] and preprocessed by applying the

improved shared cube synthesis approach from [19]. All the

resulting circuits are verified using QMDD (Quantum

Multiple-valued Decision Diagrams) [18]. Using QMDD, we

compare the resulting circuits (after applying templates) with

the input circuits in order to ensure that the behavior of the

circuit has not been modified.

The run time of all the tested benchmarks was under

114,299 milliseconds(ms), and our experiments showed that

each circuit was iterated over at most 7 times.

When comparing the rank-based algorithm with the moving

rule algorithm [22] 56 benchmarks showed improvement. The

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 23

results are summarized in Table 2. Both the moving rule and

rank-based results are compared to the circuits obtained from

the improved shared cube synthesis approach [19] in terms of

quantum cost and gate count. In this table PrevGC/PrevQC

(column 2 and 3) refers to the gate count/quantum cost

obtained from the circuit generated by the improved shared

cube synthesis approach. The % Improvement for the moving

rule and rank-based algorithms indicate the improvement in

size as compared to the shared cube synthesis. For the

improved 56 circuits the average quantum cost reduction is

23.80% compared to the improved shared cube synthesis

approach.

TABLE II. RESULTS FROM THE MOVING RULE AND RANK-BASED

ALGORITHM

Circuit
[19] [22] rank-based

GC/QC
GC/%Imp

r.

QC/%Imp

r.

GC/%Imp

r.

QC/%Imp

r.

cm85a_127 48/2206 54/-12.50
1232/44.1

5
55/-14.58

1024/53.5

8

4mod5_8 4/21 4/0.00 13/38.10 5/-25.00 10/52.38

adr4_93 41/645 41/0.00 489/24.19 38/7.32 330/48.84

bw_116 287/637 94/67.25 387/39.25 77/73.17 332/47.88

C7552_119 89/399 32/64.04 250/37.34 29/67.42 210/47.37

decod_137 89/399 32/64.04 250/37.34 29/67.42 210/47.37

0410184_85
218/763

6

256/-

17.43

5662/25.8

5

257/-

17.89

4631/39.3

5

add6_92
153/513

5
159/-3.92

3714/27.6

7
154/-0.65

3267/36.3

8

rd73_69 43/856 52/-20.93 619/27.69 51/-18.60 581/32.13

ham15_30 114/263 46/59.65 183/30.42 45/60.53 179/31.94

clip_124 78/3824 80/-2.56
2803/26.7

0
85/-8.97

2726/28.7

1

3_17_6 11/28 9/18.18 22/21.43 7/36.36 20/28.57

sym6_63 13/721 16/-23.08 571/20.80 17/-30.77 521/27.74

sqrt8_205 22/466 23/-4.55 393/15.67 24/-9.09 339/27.25

urf2_73
479/874

2
254/46.97

7453/14.7

4
272/43.22

6395/26.8

5

dc1_142 31/127 18/41.94 97/23.62 19/38.71 93/26.77

dc2_143 51/1084 39/23.53 906/16.42 38/25.49 794/26.75

cycle10_2_

61
42/1273 46/-9.52

1004/21.1

3
45/-7.14 934/26.63

max46_177 42/4524 52/-23.81
3540/21.7

5
54/-28.57

3324/26.5

3

hwb8_64
480/819

5
261/45.63

7158/12.6

5
270/43.75

6172/24.6

9

In order to situate our work against other work in the

literature we also compared the ranking algorithm's results

with the results from [4] and [5]. Theresults are listed in Table

3 sorted in order of quantum cost improvement. The column

RevLibGC/QC represents the gate count and quantum cost of

the circuit obtained from RevLib. The gate count and quantum

cost of these circuits are calculated based on the values in [9].

The column NewGC/QC gives the gate count and quantum

cost resulting from the proposed rank-based template

matching algorithm. Compared to [4] and [5], the average

quantum cost reduction for the top 19 circuits is 13.19% and

9.40%, respectively.

TABLE III. RESULTS FROM THE MOVING RULE AND RANK-BASED

ALGORITHMS

Circuit

RevLib

[25]
[4] [5]

rank-

based
Impr.

GC/QC GC/QC GC/QC GC/QC
GC/QC

(%)

sym9_148 210/4368
154/366

8

143/343

3
276/2189

40.32/36.

24

sym6_145 36/777 31/647 23/517 48/408
36.94/21.

08

max46_240 107/5444 51/4498 52/4538 112/3632
19.25/19.

96

add6_196 229/6455
179/600

5

167/553

4
244/4581

23.71/17.

22

clip_206 174/6731
111/653

5

109/611

9
173/5462

16.42/10.

74

life_238 107/6766 57/5740 57/5744 99/5210 9.23/9.30

sym9_193
129/1419

3

58/1274

7

63/1309

0

124/1192

9
6.42/8.87

9symml_195
129/1419

3

58/1274

7

62/1302

6

124/1192

9
6.42/8.42

alu4_201
1063/553

88

523/464

13

529/467

64

1013/430

97
7.14/7.84

mux_246 35/1078 20/804 20/804 42/742 7.71/7.71

tial_265
1041/562

03

516/471

45

522/475

56

981/4439

4
5.84/6.65

apla_203 80/3438 74/3438 64/3024 78/2839
17.42/6.1

2

f51m_233
663/3740

0

358/333

33

355/328

82

637/3098

1
7.06/5.78

dc2_222 75/1886 55/1789 53/1688 78/1592
11.01/5.6

9

mod5adder_

306
96/292 84/281 70/270 72/265 5.69/1.85

hwb5_300 88/276 80/270 67/259 67/255 5.56/1.54

in2_236
405/2380

2

283/231

46

250/206

00

394/2028

9

12.34/1.5

1

alu2_199 157/5654 87/4776 87/4611 147/4561 4.50/1.08

cycle10_293 78/202 74/199 57/186 56/184 7.54/1.08

Average
13.19/9.4

0

V. CONCLUSION AND FUTURE WORK

The proposed approach for post-synthesis optimization
consider templates that make use of both positive and negative
control Toffoli gates and uses a ranking system to find the best
possible match that will locally result in the highest savings in
quantum cost. The approach has been experimentally
demonstrated to obtain improvements over a popular non-
optimized approach (shared cube), and also gives further
improvement over comparable works in the literature ([4] and
[5]).

Future work may pursue several avenues related to this
work, including identifying additional templates, particularly
for Toffoli gates with different target lines, and also improving

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 05– Issue 01, January 2016

www.ijcit.com 24

the template matching algorithm. Of course, the issue of
template matching with negative controls has not yet been
thoroughly studied, and as we pursue this work a broader
investigation will also be required. All positive control Toffoli
gate templates of size 7 and some templates of size 9 are listed
in [14]. Other templates for Toffoli gates with positive and
negative controls were proposed in [2, 4, 5, 23]; however,
finding and classifying a complete set of templates for positive
and negative control Toffoli gate is another direction for further
research. Garbage/line count reduction through the application
of templates is also a possible research direction.

ACKNOWLEDGMENT

This research was funded by a grant from the Natural

Sciences and EngineeringResearch Council of Canada

(NSERC).

REFERENCES

[1] C. H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, 17(6):525-532, November 1973.

[2] Xueyun Cheng, Zhijin Guan, WeiWang, and Lingling Zhu. A
simplification algorithm for reversible logic network of positive/negative
control gates. In Fuzzy Systems and Knowledge Discovery (FSKD),
2012 9th International Conference on, pages 2442-2446, May 2012.

[3] R. Cuykendall and D. R. Andersen. Reversible optical computing
circuits. Optics Letters, 12(7):542-544, 1987.

[4] K. Datta, G. Rathi, R. Wille, I. Sengupta, H. Rahaman, and R. Drechsler.
Exploiting negative control lines in the optimization of reversible
circuits. In Gerhard W. Dueck and D. Michael Miller, editors,
Reversible Computation,volume 7948 of Lecture Notes in Computer
Science, pages 209-220. Springer Berlin Heidelberg, 2013.

[5] K. Datta, I Sengupta, and H. Rahaman. A post-synthesis optimization
technique for reversible circuits exploiting negative control lines.
Computers, IEEE Transactions on, 64(4):pages 1208-1214, 2015.

[6] K. Fazel, M. A. Thornton, and J. E. Rice. ESOP-based Toffoli gate
cascade generation. In Communications, Computers and Signal
Processing, 2007. PacRim 2007. IEEE Pacific Rim Conference on,
pages 206-209, 2007.

[7] E. Fredkin and T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21:219-253, 1982.

[8] R. Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 44(1.2):261-269,
2000.

[9] D. Maslov. Reversible logic synthesis benchmarks page,
http://www.cs.uvic.ca/~dmaslov/.

[10] D. Maslov. Reversible Logic Synthesis. PhD thesis, University of New
Brunswick, 2003.

[11] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage.
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 23(11):1497-1509, 2004.

[12] D. Maslov, G. W. Dueck, and D. M. Miller. Fredkin/Toffoli templates
for reversible logic synthesis. In Computer Aided Design, 2003.
ICCAD-2003. International Conference on, pages 256-261, Nov 2003.

[13] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis
with templates. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 24(6):807-817, 2005.

[14] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis
of reversible Toffoli networks. ACM Transactions on Design
Automation of Electronic Systems, 12(4):42-1-42-28, September 2007.

[15] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum
circuit simplification and level compaction. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 27(3):436-444,
March2008.

[16] R. C. Merkle. Reversible electronic logic using switches.
Nanotechnology,4:21-40, 1993.

[17] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Automation
Conference, 2003. Proceedings, pages 318-323, 2003.

[18] D. M. Miller and M. A. Thornton. QMDD: A decision diagram structure
for reversible and quantum circuits. In Multiple-Valued Logic, 2006.
ISMVL 2006. 36th International Symposium on, pages 30{35, May
2006.

[19] N. M. Nayeem. Synthesis and Testing of Toffoli Circuits. Master's
thesis, University of Lethbridge, 2011.

[20] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[21] A. Peres. Reversible logic and quantum computers. Physical Review
A,32(6):3266-3276, 1985.

[22] M. Z. Rahman and J. E. Rice. Templates for positive and negative
control Toffoli networks. In Shigeru Yamashita and Shin-ichi Minato,
editors, Reversible Computation, volume 8507 of Lecture Notes in
Computer Science, pages 125-136. Springer International Publishing,
2014.

[23] Z. Sasanian. Technology Mapping and Optimization for Reversible and
Quantum Circuits. PhD thesis, University of Victoria, 2012

[24] T. Toffoli. Reversible computing. Tech Memo LCS/TM-151, MIT Lab
for Computer Science, 1980.

[25] R. Wille, D. Gro_e, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
An online resource for reversible functions and reversible circuits. In
Int'l Symp. on Multi-Valued Logic, pages 220-225, 2008. RevLib is
available at http://www.revlib.org.

