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Abstract 

An implementation of an algorithm for string matching, 
commonly used in DNA string analysis, using configurable 
technology is proposed. The design of the circuit allows for 
pipelining to provide a performance increase. The proposal 
is unique in that we suggest a design that is specific to cer-
tain parameters of the problem, but may be reused for any 
particular instance of the problem that matches these pa-
rameters. The use of a Field Programmable Gate Array 
allows the implementation to be instance specific, thus en-
suring maximal usage of the hardware. Analysis and pre-
liminary results based on a prototype implementation are 
presented. 

1 Introduction 

A recent solution to such difficult problems as DNA 
matching, Boolean satisfaction, and image compression [1, 
2, 3, 4] has been to make use of hardware in performing the 
most computationally-intensive portions of the algorithm. 
The problem is that design and fabrication of computer 
chips is generally very expensive. However, the use of Field 
Programmable Gate Array (FPGA) technology provides an 
alternative option that is far more feasible. By combining 
software and configurable hardware it is possible to retain 
the flexibility required to apply the algorithm to many dif-
ferent parameters, as well as gain the acceleration from im-
plementing a portion of the algorithm on the FPGA. In this 
work we propose a parameter-specific implementation in 
which a finite-state-machine (FSM) is implemented on a 
FPGA, allowing for very fast comparisons between the pat-
tern being sought and the sequences being searched. By 
parameter-specific we refer to the fact that the hardware 
design must be regenerated if either of the two fixed pa-
rameters required for the search are changed. These pa-
rameters are the length of the sequence being sought and the 
number of errors permitted in determining a match. This 

differs from instance-specific solutions in that our proposed 
solution may be applied to any number of problem in-
stances, as long as the given parameters remain fixed [9]. 
This work also addresses the issue of maximizing the usage 
of the FPGA, and presents a number of options and related 
issues for this aspect of the design. 

1.1 Common Approximate Substring Matching 

The problem to be solved is that of finding a similar pat-
tern of symbols within all of a given series of sequences, 
allowing a certain amount of error (see Figure 1) [10, 11]. 
The purpose behind this is that the discovery of sequence 
homology to a known protein or family of proteins often 
provides the first clues about the function of a newly se-
quenced gene [5]. Discovering homologous sequences and 
families frequently starts with searching for common motifs 
[5, 7]. Since the introduction of a fast method for comparing 
biological sequences, DNA and protein sequence compari-
son have become routine steps in biochemical characteriza-
tion [6]. This computation is critical for sequence analyses 
and tends to be very time consuming. 

 

Simplified Example 

TGACTCGACC 

TACTGCCTCG 

CTGGCTAATA 

ATTCCTGACT 

 

Figure 1: An example of common approximate 
substrings of length 5 with an error of 1. 

In the motif search the goal is to find similar sequences 
of symbols of a given length m within the database of DNA 
sequences. The number of errors that are allowed is fixed to 
a value of d. An error is encountered when a single symbol 
within the sequence being searched does not match the se-
quence being sought. In this work we limit the allowable 



errors to simple replacements of a particular symbol within 
another; shifts or gaps within the sequence are not consid-
ered. 

Finding these common approximate substrings is a two-
phase process [10]. First, substrings from each sequence 
that are within distance 2d from an initial reference se-
quence are located. If a substring is not within 2d of this 
reference substring it could not possibly be part of a solu-
tion set including this reference. This produces a reduced 
search space where a solution may exist. Second, these 
similar substrings are compared as a block, aligning the 
positions of the substrings into columns, and searched for a 
string that is within distance d of each similar substring (see 
Figure 2). The common approximate substring cannot exist 
without the corresponding substrings in each sequence be-
ing within 2d errors of each other [7]; for many uses of 
common approximate substrings, such as finding motifs and 
regions of high similarity, locating these similar substrings 
is often sufficient as they are statistically significant [8]. 

 

            
 

Figure 2: Narrowing down the original search 
space. 

In this paper we outline the FPGA implementation for 
both phases of this algorithm. Substrings of the first se-
quence are compared to substrings from each of the other 
sequences, with desired distance k = 2d (where d is the 
number of errors allowed for the common approximate sub-
string). When a match to each sequence is found, the entire 
matching set of substrings will be recorded as a set of simi-
lar regions, and can be analyzed in parallel to search the 
space they span for a common substring within distance d. 

2 Hardware Design 

The completed hardware design uses the Common Ap-
proximate Substring algorithm that was described in Section 
1. The hardware retrieves sequences of length l from an 
external input memory, performs the Common Approximate 
Substring algorithm and stores resulting substrings in the 
external memory. The following subsections describe the 
system in detail. 

2.1 A Black-Box View 

The typical data-path of the sequence and its substrings 
is shown in Figure 3 as the solid arrows. In Stage 1, a sub-
string of length m is taken from the sequence. This substring 
is initially compared with a reference substring to check that 
it is within 2d errors of that reference. The substring is then 
passed to Stage 2 and a new sequence is fetched for Stage 1. 
In Stage 2, the m-length substring is compared against all 
substrings in a comparison memory to determine all sub-
strings that are within d errors of this substring. The com-
parison memory was previously seeded with all m-length 
substrings that are within d errors of the reference substring. 

 

 
 

Figure 3: Black box system view. 

The design is pipelined such that both the comparison in 
Stage 1 and the comparison in Stage 2 can occur at the same 
time on different substrings. While Stage 2 is working on a 
previously passed substring, reducing the potential solution 
space, Stage 1 is working on a new substring from a new 
sequence. 
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If the substring, in Stage 2, is found to not be within d er-
rors of any existing substrings, then a back-track request is 
placed to Stage 1 (represented by the broken arrow in Fig-
ure 3). Otherwise, it is passed to an external output memory 
which will contain the solution substrings. Contained with 
each substring is the location of the parent sequence it was 
fetched from in the input memory and the substring’s loca-
tion within its parent sequence. 

2.2 Design Modules 

The chip design contains four modules, each with its 
own purpose and functionality. The four modules are: the 
Interface, the Seeker, the Seeker Result Queue and the Veri-
fier. We fully designed and implemented the Interface, 
Seeker and Verifier ourselves; the Seeker Result Queue is 
implemented using an IP core. 

2.2.1 Interface 

This module interfaces with the external input memory 
and the Seeker. The Interface retrieves sequences from the 
external memory and passes them along to the Seeker. If 
word alignment is required (the external memory is not as 
wide as a sequence) the Interface continues fetching from 
memory until it has fetched the entire sequence. If the last 
line fetched from memory contains the end of one sequence 
and the beginning of the next sequence, then the Interface 
only keeps the characters it needs for the sequence and 
stores the starting location of the next sequence in a place-
ment buffer. It will then pass the completed sequence on to 
the Seeker. 

The Interface also handles back-track requests. A back-
track request occurs when a substring is passed through the 
system to the Verifier that has more than d errors (see sec-
tion 2.2.5 for more detail). The Interface responds to this 
request by retrieving the incorrect substring’s parent se-
quence and passing it along to the Seeker again. 

2.2.2 Seeker 

The very first sequence that the Seeker receives from the 
Interface is used as a reference sequence. From this se-
quence, the Seeker takes an m-length substring of characters 
and holds this as the reference substring. This reference 
substring is also passed along to the other modules of the 
system as the first member of the solution set. When the 
Seeker receives future sequences from the Interface they are 
manipulated as follows: 

1. an m-length substring is taken from the sequence 

2. this substring is compared to the reference sub-
string 

3. if there are less than 2d errors between them, the 
substring is passed to the Seeker Result Queue 

4. if this is not the case, a new m-length substring is 
taken from the sequence by shifting left by one 
character 

This process repeats from step 2 until all possible m-
length substrings have been taken from the sequence. If the 
Seeker proceeds to perform the comparison on all possible 
substrings from the sequence and none are within 2d errors 
of the reference, a new reference is fetched and the whole 
process begins again. A new reference is obtained by taking 
a new substring from the very first sequence and holding it 
as the reference substring. 

2.2.3 Seeker Result Queue 

The Seeker Result Queue exists only for the purpose of 
being a temporary resting place for substrings between 
modules. The Seeker module passes substrings that pass the 
first comparison test to this module. The Seeker tags each 
substring with the address of its parent in the input memory 
and the substring’s location within its parent. These sub-
strings wait here to be retrieved by the Verifier module. 

2.2.4 Verifier 

The second comparison test that the design performs is 
completed by the Verifier. The Verifier module interfaces 
with the Seeker Result Queue, the external output memory 
and the comparison memory to perform the test. The com-
parison begins when the Verifier retrieves a new input sub-
string from the Seeker Result Queue.  

If this is the first substring the Verifier has fetched then it 
begins the process of seeding the comparison memory. It 
takes this substring and performs all possible permutations 
that create m-length substrings within d errors of the refer-
ence substring. These substrings are all stored in the com-
parison memory along with a tag.  

The tag is added for the process of eliminating substrings 
that would not be part of the solution set. Subsequent input 
substrings passed to the Verifier are compared to all sub-
strings in the comparison memory. When an input substring 
is being compared to substrings in the comparison memory 
and is found to not be within d errors of a comparison sub-
string, that comparison substring is tagged. If the input sub-
string proceeds to tag all substrings that were not previously 
tagged then a back-track request is placed. The Verifier 
sends the appropriate signal to the Interface and resets all 
substrings that were recently tagged. Otherwise, the input 
substring is placed in the external output memory as a 
member of the solution set. 



2.2.5 Back-Track Requests 

As the substring is passed through the system it carries 
with it (in a locator sequence) the location of its parent se-
quence in the input memory and the substring’s location 
within its parent sequence. When the Verifier encounters a 
situation where it needs to send a back-track request, it only 
needs to send this locator sequence to the Interface. 

The Interface takes this information and retrieves the ap-
propriate starting sequence from the input memory. The 
Interface then passes this sequence along to the Seeker as if 
it were any other sequence it fetches. The difference in this 
case is the Interface also sends part of the locator with the 
sequence. It sends the location of the substring within the 
parent sequence. With this information the Seeker skips 
forward in the sequence to the point indicated by the locator 
and begins processing the sequence from this point. 

3 Hardware Implementation 

The final design is implemented targeting a Stratix 
EP1S40F780 device on the Altera Nios Development board 
containing 1 Mbyte SRAM (16-bit wide), 16 Mbytes 
SDRAM (32-bit wide) and 8 Mbytes Flash on-board memo-
ries [12]. The implementation is completed and simulated 
using the Altera Quartus II Development tools. Figure 4 is a 

detailed schematic of the system as implemented using the 
aforementioned development environment. For simplicity, 
the external memory used to store the sequences to process 
and store results is omitted. This memory is connected to 
the Interface component in the schematic using standard 
memory interface read/write, address, and data signals. Cur-
rently, the operating frequency of the design is 65.44 MHz 
and utilizes 14% of the available logical element (LE) re-
sources within the FPGA.  

4 Circuit Operation 

The implementation processes sequences at a rate of 
one character comparison per clock tick. This one compari-
son being completed consists of a comparison performed by 
the Seeker and one by the Verifier at the exact same time. 
The parallelism of the system allows this to occur. At the 
same time a substring is being checked against the reference 
substring in the Seeker, another earlier substring is being 
checked against the output memory in the Verifier.  

Simple test cases were used to retrieve results and verify 
the design. These test cases were composed of 8 sequences 
with 8 characters in each sequence. The test parameters 
involved finding a length-5 substring in each sequence that 
had at most 2 errors between it and any other length-5 sub-
string in the solution. These test cases are defined in Table 

Figure 4. Block Diagram/Schematic of the hardware implementation in the Altera Quartus II tools. 

 



1. Test Case A consists of 8 sequences which have a solu-
tion (the solution is the highlighted substrings). Test Case B 
has no solution and is an example of a worst-case scenario 
for testing the system. 

Test Case A Test Case B 

ACTGTTTT 

AGTTTAGC 

GCATTTTT 

AAAGGTTT 

GGCGTATT 

TGGATTTT 

GTGCTCTT 

CCTGTGAT 

ACTGTTTT 

TATGTTTA 

GCATTTTT 

AAAGGTTT 

GGCGTATT 

TGGATTTT 

GTGCTCTT 

CCTGATAG 

 

Table 1: Simple test cases for the implementation. 

The worst-case scenario is defined by a test case where 
every m-length substring from each sequence is passed 
through the Seeker and the Verifier and only the last sub-
string results in the system determining there is no solution. 
This occurs when the only possible solution substring in 
each sequence is at the end of the sequence (top 7 high-
lighted substrings in Test Case B, Table 1) and that sub-
string in the last sequence is not within d errors of the rest 
of the solution (last highlighted substring in Test Case B, 
Table 1). 

Examining Test Case A in detail, the Interface begins the 
processing of the sequences by loading the first sequence 
(GGGGTTTT) into a buffer. The Interface then passes this 
sequence, along with its address in memory, to the Seeker 
and retrieves the next sequence to be passed along. 

The Seeker recognizes this sequence as the first sequence 
by determining that its memory address is 0 and places it in 
a reference buffer. The Seeker then retrieves a 5 character 
substring from the beginning of the sequence (GTTTT) to 
be the first reference substring. Sequences are processed 
from the right to the left so the beginning of the sequence is 
the rightmost character. This substring is sent to the Seeker 
Result Queue along with its address and its location in the 
sequence (currently both 0). The location of the substring 
within the sequence is called its position. 

The Verifier retrieves this reference substring from the 
Seeker Result Queue. As this is the first substring to be 
passed to the Verifier it begins the process of seeding the 
comparison memory. The Verifier proceeds to find all pos-
sible m-length strings of characters (in the character set) 
with a difference of d errors from the reference substring. 
These strings are stored in the comparison memory. An 
example of the beginning of the comparison memory is 

show in Table 2. The Verifier then passes the reference sub-
string along to the external output memory. 

When the Seeker receives the signal from the Interface 
that the second sequence (AGTTTAGC) is ready it retrieves 
it and stores it in a buffer. The Seeker takes a 5 character 
substring from the front of the sequence (TTAGC) and 
compares it, one character at a time, to the reference sub-
string (GTTTT). This comparison determines there are 4 
errors between these substrings which is equal to the 2d (or 
4) errors allowed. This substring is passed on to the Seeker 
Result Queue with the address 1 and position 0. 

 

Comparison 
Memory for A 

GTTTT  GATTA 

GTTTA  GCTTA 

GTTAA  GGTTA 

GTTCA  TTTTA 

GTTGA  ATTTA 

GTATA  CTTTA 

GTCTA  GTTAT 

GTGTA  ... 

 

Table 2: Sample comparison memory for test 
case A. 

The Verifier then fetches this second input substring 
(TTAGC) from the Seeker Result Queue and begins its 
comparison process. The Verifier fetches one substring 
stored in the comparison memory (GTTTT) and compares 
it, one character at a time, to the input substring (TTAGC). 
If the comparison substring fetched is tagged the Verifier 
ignores it and fetches the next comparison substring. In this 
case this is the first substring to be compared to the com-
parison substrings so none are tagged. This comparison 
determines there are 4 errors between these substrings. At 
this point, the Verifier tags the comparison substring with 
the input substring’s address (1). The Verifier then proceeds 
to repeat these steps for all substrings in the comparison 
memory. If the input substring happens to tag all of the 
comparison substrings (meaning TTAGC is not within d 
errors of any of the comparison substrings), then a back-
track request is sent to the Interface and the Verifier untags 
all comparison substrings tagged by the input substring. 

The Verifier sends a signal to the Interface that a back-
track must occur and it sends the address (1) and position 
(0) of the problem substring. The Interface stores the ad-
dress of the sequence it is currently working on as the Inter-
face has been fetching sequences for the Seeker the whole 
time the Verifier has been working. It then fetches the se-



quence that contains the problem substring from memory 
address 1. It passes this sequence along to the Seeker with 
the address 1 and position 1. The Interface then continues 
working as normal, by fetching the sequence from the 
memory address it stored. 

The Seeker treats the sequence passed to it as it would 
any other sequence; except that it sees the position is not a 
0. When the position is not a 0 it must select 5 characters 
for the new substring starting at the specified position 
(which is 1), not the front of the sequence. The substring 
that is fetched (TTTAG) is compared to the reference sub-
string (GTTTT) as any other substring would. 

The process of retrieving a substring from a sequence, 
comparing it to a reference, comparing it to all substrings in 
the comparison memory and back-tracking if necessary re-
peats. The process only stops when one of the following 
occurs: every sequence has one substring in the external 
output memory, or the system has exhaustively searched all 
possible substrings in one of the sequences and not found a 
common substring within the allowed d errors of each other 
comparison substring and the reference (GTTTT). 

When the second case does occur the Seeker takes a new 
substring from the reference sequence in the reference 
buffer that is one character over from the previous substring 
(GGTTT). This becomes the new reference and the Seeker 
sends a signal to all other components that the reference has 
changed. At this point all of the other components reset to 
their initial states and the process begins again. 

5 Analysis & Results  

As character comparisons are the dominant cost to the 
system, we define our results on this basis. Let numsubs be 
the number of m-length substrings possible in a sequence, 
numseqs be the number of sequences, and seqlen be the length 
of a sequence. The number of m-length substrings possible 
in a sequence, numsubs is: 

numsubs = seqlen – m + 1. 

This number is also the same as the number of possible ref-
erence substrings in the reference sequence, numrefs.  

The maximum number of single character comparisons 
possible in both the Seeker and Verifier is: 

numcomp = numsubs * numseqs * numrefs * m 

Let the implementation clock rate be clkrate and clktick be 
the number of clock ticks per comparison. Currently, clktick 
is 1 in this implementation with a 4 character set. Assuming 
that the input sequences are created as such that no possible 
solution exists, the time the system takes to complete this 
scenario test case would be: 

rate

tickcomp

clk

clknum
time

*
=  

As an example, the test case defined in Test Case B 
above would result in 560 character comparisons being 
completed in total. 

The complexity of the execution increases as potential 
solutions exist in the input strings. Consider that each po-
tential solution results in the seeding of the Verifier memory 
with all possible solutions that can exist. Once seeded, each 
potentially matching substring is checked against all of 
these strings to remove potential solutions. To consider the 
complexity of this, the size of the memory required to con-
tain the potential solutions generated from the reference 
string is: 
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where c is the number of characters (i.e. A, C, T, G = 4). 
This can result in an increased runtime; however the input 
data typically does not generate a lot of potential solutions. 
We are currently in the process of executing several bench-
mark tests with the circuit design to provide specific test 
performance results. 

6 Future Work 

Future work to be completed on this project involves im-
proving the parallelization of the hardware design. As was 
seen from the results we obtained not all of the available 
resources on the FPGA chip are being utilized. By creating 
multiple copies of the Seeker, Seeker Result Queue and 
Verifier modules we would be able to begin each Seeker 
with a different reference substring from the initial sequence 
or place a different sequence for comparison to the same 
reference in each Seeker. Doing either would use some of 
the remaining unused resources on the FPGA to further 
increase performance.  

As well as parallelization the design could be made more 
flexible with the further use of parameterization. This would 
give the user the ability to define the parameters of the 
problem and the hardware could conform to the user speci-
fication. The user would be able to specify the length, l, of 
the input sequences, the length of the substring, m, to be 
taken and the number of errors, d, allowed between sub-
strings. From these parameters a circuit design could be 
generated to solve the appropriate size problem. 
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