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ABSTRACT
A revision of an ESOP-based Toffoli gate cascade synthesis
technique [1] is presented. The cost metric used previously
was replaced with a new cost metric based on autocorrela-
tion coefficients to determine the placements of Toffoli gates.
The algorithm remains capable of generating reversible cir-
cuits for large functions within reasonable time.

Index Terms— reversible logic, logic synthesis, ESOP,
toffoli gates

1. INTRODUCTION

Moore’s law states that the number of transistors on a chip
doubles every two years [2]. Holding true to this law, tech-
nologies have been getting smaller yet increasing in perfor-
mance over the last few decades. This trend, however, must
stop eventually when components reach their physical shrink-
ing limits. In addition, Landauer’s principle states that each
bit of information lost must dissipate a certain amount of en-
ergy [3]. In other words, there is a minimum energy cost for
current irreversible logic operations [4]. Some researchers be-
lieve that computing may reach this bound, and computing
may stop improving by as early as 2015 [4]. As we approach
both these limits, new ideas must be considered in order to
continue improving computer performance.

Reversible computing is one solution to consider. Bennett
showed that circuits must be reversible in order to not dis-
sipate any power [5]. In fact, it is theoretically possible for
reversible logic operations to re-use up to 100% of the en-
ergy that an irreversible logic operation will otherwise dissi-
pate [3], meaning that the lower bound on energy cost would
no longer apply. Not only does reversible computing have
this interesting property, but it is also linked with quantum
computing since all quantum gates are also reversible [6].

This paper revisits the exclusive-or sum-of-products (ESOP)
based toffoli gate cascade generation technique described in
[1]. This technique synthesizes functions in ESOP represen-
tation into a cascade of reversible Toffoli gates. However,
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rather than using the alpha/beta cost metric to optimize the
number of signal lines, an autocorrelation coefficient-based
cost function was used instead. The purpose of this work was
to determine whether or not this new cost metric could pro-
duce more optimal circuits than the previous method.

The next section provides the necessary background on
reversible logic, ESOP representation, and autocorrelation co-
efficients, finishing off with an overview of related work. We
then explain briefly the ESOP mapping method, followed by
an explanation of the changes made from [1]. The following
section describes our experimental results and findings. The
last section discusses our conclusions and suggestions for fu-
ture work.

2. BACKGROUND

2.1. Reversible Logic

A logical gate or function is considered reversible if and only
if it is bijective (one-to-one and onto) [7]. In other words, for
each n-bit input, there is a unique corresponding n-bit out-
put. The traditional NOT gate is reversible, but the traditional
AND gate is not, as shown by their truth tables in Figure 1.

x f(x)
0 1
1 0

x y f(x, y)
00 0
01 0
10 0
11 1

(a) (b)

Fig. 1. (a) NOT gate (reversible) and (b) AND gate (non-
reversible)

Various reversible gates exist, but only NOT and Toffoli
gates will be used and discussed in this paper. An n× n Tof-
foli gate inverts the nth “target” line if and only if the other
n − 1 “control” lines are 1 [8]. The control lines remain un-
changed. The NOT gate is a special case of the Toffoli gate
in which there are no control lines. The NOT gate can also
be described as (x) → (x ⊕ 1). Likewise, the behavior of



an n-input Toffoli gate can be written as (x1, x2, ..., xn) →
(x1, x2, ..., xn−1, x1x2...xn−1 ⊕ xn) [1]. Figure 2 shows the
NOT gate, a Toffoli gate with one control line, and a Toffoli
gate with n− 1 control lines.

t !t t c1 ⊕ t

c1 c1

t c1 ... cn-1 ⊕ t

cn-1 cn-1

c1 c1

(a) (b) (c)

Fig. 2. (a) NOT gate (b) TOF2 gate (c) TOFN gate

Because feedback and fanout are restricted when synthe-
sizing reversible circuits, generated circuits are produced with
the cascade structure [8]. Control lines run from left to right,
and gates are placed in sequence one after another along the
signal lines, creating a cascade of gates.

2.2. ESOP Representation

Exclusive-or sum-of-products (ESOP) representations are very
similar to the more traditional sum-of-products (SOP) repre-
sentations as they are both used in traditional logic synthe-
sis [1]. Given f(a, b, c) = ab + ac in SOP form, replac-
ing + (or) with ⊕ (exclusive-or) will give a new function
g(a, b, c) = ab ⊕ ac, which is in ESOP form. Like the or-
operator, the exor-operator is also associative.

2.3. Autocorrelation Transform

The autocorrelation transform is used to transform a function
to the spectral domain [9]. The correlation transform is de-
fined as [10]

Bfg(τ) =
2n−1∑
v=0

f(v) · g(v ⊕ τ) (1)

When f and g are equal functions, Equation (1) becomes the
autocorrelation transform. The superscripts are usually omit-
ted when f and g are the same function. Applying the auto-
correlation transform compares a function with itself, shifted
by an amount, τ [10]. The results of the applications are
called the autocorrelation coefficients of the function [9]. For
this study we use only the first order coefficients; that is, the
binary value of τ has one and only one number of ones. These
coefficients are of interest because they give a measure of how
dependent a function is on a particular variable. For exam-
ple, assuming a variable ordering of xyz, computing B(001)
would give the measure for z. In theory, the higher the coef-
ficient, the less dependent the function is on a variable. Like-
wise, the lower the coefficient, the more dependent it is [9].

x3x2x1 f(X)
000 0
001 1
010 0
011 1
100 0
101 1
110 1
111 1

Table 1. Truth table for f(X) = x1x2 + x3

Below is an example of howB(τ) is computed given the func-
tion f(X) = x1x2+x3 and τ = 100. The truth table is shown
in Table 1.

B(001) =
2n−1∑
v=0

f(v) · f(v ⊕ 001)

= [f(000) · f(000⊕ 001)] + ...

+[f(111) · f(111⊕ 001)]
= [f(000) · f(001)] + ...+ [f(111) · f(110)]
= [0 · 1] + [1 · 0] + [0 · 1] + [1 · 0] + [0 · 1]

+[1 · 0] + [1 · 1] + [1 · 1]
= 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1
= 2

It is also possible to calculate autocorrelation coefficients
for multiple output functions by combining the autocorrela-
tion function for each individual function into the total auto-
correlation function [9].

2.4. Related Work

There are a variety of synthesis techniques for reversible logic
in the literature, for instance [7, 8, 11, 12, 13] and [14], to
name just a few. Here we briefly describe some such tech-
niques which also utilize an ESOP or similar representation.
Gupta et al. [12] present a reversible logic synthesis tech-
nique based on a related representation, the positive- polarity
Reed-Muller (PPRM) expansion. They utilize a tree structure
to enable investigation of all possible factors of each term,
rather than use an approach requiring one gate for each term
in the expansion. This allows the construction of a circuit that
shares factors. The PPRM representation, while canonical, is
a special type of ESOP, with a more rigorous definition, and
thus will almost always have more terms than the ESOP rep-
resentation used in our work. Maslov and Dueck have also
conducted an analytical comparison of their technique and
EXOR PLAs, a structure that can implement ESOP repre-
sentations [13]. They find that their reversible cascade with
minimal garbage (RCMG) model compares favorably to an
EXOR PLA, particularly for one class of functions for which



the ESOP representation has exponential complexity. How-
ever, their analysis is based entirely on circuit complexity. Fi-
nally, Perkowski and other researchers have also looked into
using ESOPs as a starting point for reversible logic synthe-
sis [14]. In [14] a new class of reversible gates is introduced,
allowing modification of two qubits, but requiring a signifi-
cantly higher level of complexity. The technique in [14] also
requires a factorization of each of the ESOPs representing the
multiple outputs.

3. ESOP MAPPING METHOD

The basic algorithm for generating a cascade of Toffoli gates
from an ESOP representation remains unchanged from [1].
We assume a function is given in an ESOP cube-list repre-
sentation. 2n+m signal lines are required in the final circuit,
where n is the number of inputs and m is the number of out-
puts. 2n lines are required for the inputs and their inverse.
Then, for each cube in the cube-list for each output, a Toffoli
gate is generated [1]. Figure 3, taken from [1], outlines the
described algorithm.

basicCascadeGen(esop)
cascade.toffoliList = empty;
//create signals
foreach i in esop.inputs
cascade.addQubit(i, positive);
cascade.addQubit(i, negative);

foreach o in esop.outputs
//add a constant 0 qubit for each output
cascade.addQubit(o, constant 0)

//create TOF gates
foreach c in esop.cubes
foreach o in esop.outputs

If c in onset(o)
//add a toffoli gate
t = new ToffoliGate
t.target = cascade.getQubit(output)
foreach literal in c
t.addControl(cascade.getQubit(literal))

cascade.addToffoli(t)

Fig. 3. Algorithm for Mapping ESOP Representations to a
Cascade of Toffoli Gates

4. OPTIMIZATION

As discussed in the previous section, the basic algorithm pro-
duces 2n signal lines for the inputs alone. It is likely, how-
ever, that a lot of the signal lines, inverses in particular, will
never be used. Since it is possible to get the negated input
lines by using a NOT gate whenever necessary, we try to or-
der the given cube-list (gates) in such a way that would allow
the least number of NOT gates. We are able to move the gates
around freely in the cascade because the cube-list is in ESOP
representation, which is associative.

In this work, we use and calculate autocorrelation coef-
ficients in our algorithm to determine how a given cube-list
should be reordered. The autocorrelation coefficient of each

input variable is calculated, and the cube-list is reordered ac-
cording to the variable with the lowest coefficient. All the
cubes with the non-negated form, including don’t cares, of
the variable are moved to the beginning of the cascade, and
all the cubes with the negated form are moved to the end. As
stated earlier, the lower the coefficient, the more dependent
the function is on that variable [9]. In theory, this certain vari-
able should be dealt with first. The list is then split into two
cube-lists. One list contains cubes of the non-negated form
of the variable, and the other list contains the cubes with the
negated form. Within each of these lists, autocorrelation co-
efficients are calculated again, and the lists are reordered and
split once again according to the new values. The process
continues until no more splits can be made.

For example, given an abitrary ESOP cube list, the auto-
correlation coefficients were found to be 6, 4, 6, and 6 for a,
b, c, and d respectively. Since b has the lowest autocorrela-
tion coefficient, the cube-list is reordered according to b. It
is then split into two lists, one with the non-negative values
of b and the other with the negative values of b. In each new
list, autocorrelation coefficients are recalculated again. More
re-orderings and splits are made as necessary. See Figures 4
and 5 for the corresponding cube-lists.

.i 4

.o 1

.type esop
–01 1
1-0- 1 0001: 6
000- 1 0010: 4*
01-1 1 0100: 6
10-1 1 1000: 6
.e
(a) (b)

Fig. 4. (a) ESOP cube-list (b) Autocorrelation Coefficients

.i 4

.o 1

.type esop .i 4
01-1 .i 4 .o 1
10-1 .o 1 .type esop
–01 .type esop –01
1-0- 01-1 1-0-
000- 10-1 000-
.e .e .e
(a) (b) (c)

Fig. 5. (a) Reordered ESOP cube-list (b) List 1 (c) List 2

Because the program provided for generating autocorre-
lation coefficients only works on inputs with a single output,
m-output functions are divided into m different cube-lists of
one output. Each of these cube-lists go through the same pro-



cedure described above. After cascades are generated for each
separate output, necessary NOT gates are added to each cas-
cade to reset signal lines. They are then put in sequence one
after another for the final circuit.

Using this method reduces the number of signal lines from
2n+m to n+m.

reorder(cubes, polarity, vars)
if(cubes.isEmpty || vars.isEmpty)
return cubes

bestVar = calcBestVar(cubes, vars)
{pCubes, nCubes} = split(cubes, bestVar)
pReorder = reorder(pCubes, positive, vars bestVar)
nReorder = reorder(nCubes, negative, vars bestVar)
if(polarity==negative)
nReorderNots = addNots(nReordered, bestVar)

reorderedCubes = reconnect(pReorder, nReorderNots)
return reorderedCubes

cascadeGen(esop)
reorderedCubes = reorder(esop.cubes, positive, esop.vars)
cascade = convertCubesToToffoli(reorderedCubes)
removeExtraNots(cascade)

Fig. 6. Algorithm for NOT gate insertion

5. EXPERIMENTAL RESULTS

The purpose of this work is to determine if using autocorre-
lation coefficients in our algorithm can reduce and produce
more optimal circuits than the previous method of using the
alpha/beta cost metric. We took the implementation of EXORCISM-
4 [15] used in [1] and modified the cost function to reorder
cube-lists using the lowest autocorrelation coefficient rather
than the lowest cost metric. The experiments were run on
a 3.00GHz Intel(R) Pentium(R) 4 machine with 1GB RAM
running CentOS release 5.3. The benchmarks used are the
same as in [16], where the total number of variables are less
than or equal to 31. This is because we wanted to use tem-
plate matching on the resulting cascades as was done in [16],
but the process has been omitted in this work.

Table 2 shows the results obtained. The following infor-
mation is given for each input:

• circuit: circuit name

• num signals: total number of inputs and outputs

• gates α = 0: the number of gates in the cascade pro-
duced with α = 0 in the previous method

• time α = 0: the time, to the nearest second, it took
to minimize and generate the final circuit using the al-
pha/beta cost metric

• gates AC: the number of gates in the cascade produced
using autocorrelation coefficients

• time AC: the time, to the nearest second, it took to mini-
mize and generate the final circuit using autocorrelation
coefficients

Interestingly, 79/79 benchmarks generated cascades suc-
cessfully with the autocorrelation coefficient method, while
only 78/79 cascades were generated successfully using the
alpha/beta cost metric. It is uncertain as to why this is the
case. Although the autocorrelation coefficient method ran
sucessfully on more benchmarks than the alpha/beta method,
it is clear that the previous method, on average, generates bet-
ter results. The alpha/beta method also ran about four times
faster than the autocorrelation method, taking a total of about
316 seconds compared to 1318 seconds of the newer method.
The following list summarizes our results:

• 14/79 (17.7%) of resulting cascades had the same num-
ber of gates

• 9/79 (11.4%) of resulting cascades had less gates than
the alpha/beta method

– 3/9 (33.3%) of these had about half as many gates
as the alpha/beta method

– 1/9 (0.1%) of these only generated a circuit with
the AC method and not the alpha/beta method

• 56/79 (70.9%) of resulting cascades had more gates
than the alpha/beta method

– 6/56 (0.1%) of these had about two times as many
gates as the alpha/beta method

– 1/56 (0.01%) of these had over three times as many
gates as the alpha/beta method

6. CONCLUSIONS AND FUTURE WORK

Using autocorrelation coefficients to optimize signal lines in
the presented ESOP-based algorithm may still be effective.
The number of gates in many of our generated cascades are
comparable to the cascades generated using the alpha/beta
method. It is still possible to optimize the number of gates
in the resulting cascades, in fact. Adding NOT gates to reset
signal lines is not always necessary. It is possible to check
for redundancy and eliminate many of these extra gates, but
due to time constraints, we were unable to include it in this
work. Other optimization methods such as template matching
can also be applied.

Although the synthesis times are a lot slower than using
the previous cost metric, it is still manageable. The current
implementation was written to be functional only. Efficiency
and speed were not considered at all at this point since our
aim was to see if using autocorrelation coefficients was even
probable. Other future work includes modifying the autocor-
relation program to work with multiple output functions. This
would prevent the algorithm from running multiple times, and
the number of gates could potentially reduce.



num gates time gates time
circuit signals α = 0 α = 0 AC AC
ex1 6 7 0 7 0
ex2 6 14 0 12 1
ex3 6 7 0 7 1
majority 6 8 0 8 0
xor5 6 7 0 7 1
C17 7 11 0 12 1
cm82a 8 25 0 29 1
f2 8 21 1 33 2
rd53 8 27 0 36 1
con1 9 24 0 24 2
9sym 10 147 0 151 5
9symml 10 147 0 151 5
life 10 123 0 132 4
life min 10 123 0 132 3
max46 10 127 0 127 4
rd73 10 86 0 105 3
sqn 10 82 0 118 4
dc1 11 43 0 69 3
sym10 11 225 1 229 7
wim 11 29 0 49 2
z4 11 55 0 76 3
z4ml 11 55 0 76 3
cm152a 12 19 0 19 1
rd84 12 127 0 168 7
sqrt8 12 43 0 70 3
adr4 13 60 0 54 3
dist 13 196 0 291 9
log8mod 13 N/A N/A 116 5
radd 13 62 0 40 2
root 13 111 0 196 7
squar5 13 48 1 49 3
clip 14 183 0 230 10
cm42a 14 54 0 67 3
cm85a 14 70 0 91 4
pm1 14 54 0 67 3
sao2 14 104 0 166 8
co14 15 50 0 50 2
dc2 15 83 0 145 7
misex1 15 56 0 114 5
alu2 16 182 0 229 12

Table 2. Table showing gate counts and runtime for previous
vs. new technique.

num gates time gates time
circuit signals α = 0 α = 0 AC AC
example2 16 182 0 229 11
inc 16 100 0 174 9
mlp4 16 139 1 191 6
5xp1 17 91 0 133 6
parity 17 32 1 32 6
ryy6 17 44 0 44 2
t481 17 21 0 21 3
x2 17 41 0 74 4
alu3 18 98 0 150 8
dk27 18 25 0 59 5
sqr6 18 90 0 98 4
add6 19 265 1 150 5
alu1 20 36 0 53 4
cmb 20 18 0 42 3
ex1010 20 2768 137 2761 79
C7552 21 92 0 79 5
decod 21 92 0 79 4
dk17 21 54 0 167 9
pcler8 21 22 0 47 5
alu4 22 1194 4 1687 70
apla 22 84 0 243 11
cm150a 22 60 0 60 10
f51m 22 731 4 1075 47
mux 22 42 0 42 35
tial 22 1184 6 1707 74
b12 24 70 0 121 9
cordic 25 2533 24 3522 193
cu 25 50 0 119 8
gary 26 377 0 673 43
in0 26 377 0 673 43
pcle 28 27 0 53 9
apex4 28 5505 105 2449 73
cm151a 28 35 0 67 12
misex3 28 1829 17 2320 95
misex3c 28 1808 12 970 50
table3 28 1062 0 2142 102
cm163a 29 45 1 68 9
in2 29 426 0 695 44
frg1 31 241 0 359 34

Table 3. Continuation of Table 2.
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