
A Lightweight Architecture for Secure Two-Party Mobile Payment

Y. Zhu and J. E. Rice
Dept. of Math & Computer Science

University of Lethbridge
4401 University Dr. W., Lethbridge, AB, Canada

{yunpu.zhu, j.rice}@uleth.ca

Abstract

The evolution of wireless networks and mobile devices
has resulted in increased concerns about performance and
security of mobile payment systems. In this paper we pro-
pose SA2pMP, a lightweight secured architecture for two-
party mobile payments. SA2pMP employs a lightweight
cryptography scheme that combines public key and symmet-
ric key cryptography systems (ECDSA and AES), as well as
a multi-factor authentication mechanism. These are cou-
pled with a transaction log strategy to satisfy the prop-
erties of confidentiality, authentication, integrity and non-
repudiation. We simulate SA2pMP in a context of money
transfer banking transaction, on three different emulators:
Sun Java Wireless Toolkit 2.5.2 for CLDC emulator, Sony
Ericsson SDK 2.5.0.3 Z800 emulator, and Nokia S60 3rd
Edition emulator. We also compare SA2pMP to some exist-
ing mobile payment platforms. The result of simulation and
comparison proves that SA2pMP is a lightweight secured
mechanism that is feasible and suitable for two-party mo-
bile payment transactions, e.g. mobile banking, over Java
ME enabled, resource-limited mobile devices.

1. Introduction

Wireless networks and mobile devices have been used
widely in more areas than ever. As an important wireless
network application in financial field mobile payment was
predicted to possess a bright future in becoming a success-
ful mobile service [18]. However, due to security problems,
it has not become a major medium for payment. In this pa-
per we propose a lightweight secured architecture for two
party involved mobile payments (SA2pMP). Our architec-
ture makes use of a lightweight cryptography scheme, a
multi-factor authentication mechanism along with a trans-
action log strategy to ensure all security requirements are
fulfilled. The simulations on Sun Java Wireless Toolkit
2.5.2 for CLDC emulator, Sony Ericsson SDK 2.5.0.3 Z800
emulator, and Nokia S60 3rd Edition emulator prove that

SA2pMP can be feasibly implemented in Java ME en-
abled mobile devices. Compared to various existing plat-
forms such as JASA [9], LSM [12], SET [28] and iKP [1],
SA2pMP is lightweight and better suited to two-party mo-
bile payment transactions over resource-limited mobile de-
vices. This work continues the proposal suggested in [20].

The rest of paper is organized as follows: Background
information will be introduced in section 2. In section 3,
SA2pMP’s network module, security mechanism and key
management will be described. Then in section 4, the
implementation will be introduced in a context of mobile
banking. The simulation will be described in section 5. Sec-
tion 6 will analyze the result of simulation, and make eval-
uations on time delay and code size. In section 3, SA2pMP
will be compared to some other existing mobile payment
platforms. We conclude this paper in section 8, and raise
issues for future work.

2. Background

Background information in this area is benefit in under-
standing the following sections. In our research, a mobile
device is defined as a handheld device with internet brows-
ing capability and other basic computational capabilities. A
mobile device can be viewed as an identifier for a partic-
ular individual as each individual generally has one’s own
mobile device which is not usually shared with others. Cur-
rently, numerous mobile devices accept the Java ME stan-
dard. A Java ME standard at least includes both a config-
uration like the Connected Limited Device Configuration
(CLDC) [23] and a profile like the Mobile Information De-
vice Profile (MIDP) [24]. Optional packages provide addi-
tionally capability in specific areas of functionality.

Mobile payment can be defined as any payment transac-
tion involving a mobile device [4]. We focus on account-
based payment systems which can be mobile phone-based,
smart card or credit card-based [7]. The parties involved
in two-party mobile payment transactions are assumed to
be a user and a financial service provider, normally a bank.

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.364

326

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.364

326

We also assume that transactions take place over the mobile
phone network [25].

The security architecture implemented on the application
layer is independent of the lower layers’ security protocols,
and it does not require modifications to the current wireless
network’s infrastructure and protocols. Our architecture is
proposed on the application layer.

To design a secured mobile application system, four se-
curity requirements should be satisfied [8]. These four re-
quirements include:

• Confidentiality: The confidential information must be
secured from an unauthorized party.

• Authentication: Authentication ensures two parties
with right accessing to a system.

• Integrity: Systems must be guaranteed to have not been
corrupted by outside parties.

• Non-repudiation: The user must not deny the per-
formed transaction and must provide proof in case that
this situation occurs.

3. Proposed Architecture

We propose a new lightweight secured architecture for
two-party mobile payment namely SA2pMP. A mobile bank
is employed as the context to describe our architecture.
Adopted from [14], table 1 summarizes the requirements
resulting from the security concerns, and technologies rec-
ommended to address them. The third column of Table 1
describes the specific solutions proposed in this paper for
addressing each of the concerns.

Security Technology Solution

Authentication Possession mobile device

Knowledge PIN

Property userid/password

Digital Signature

Integrity Digital Signature ECDSA

Non-repudiation Digital Signature

Log Biz-Transaction Log

Confidentiality Encryto/Decrypto AES

Table 1. Security requirements for mobile
transactions, along with the technologies rec-
ommended for these requirements and solu-
tions to address them.

3.1. Network Module

In a banking transaction there are two parties involved:
the user and the bank. The user taking part in our banking
transaction is also the mobile device’s holder and owner.
As illustrated in Figure 1, the mobile device connects with
a network gateway through mobile networks provided by
a mobile network operator. Wired networks connect the
banking system and the network gateway. Except for con-
straints in network bandwidth and mobile devices, this
physical network architecture is transparent to the mobile
banking platform.

Transaction Log

Figure 1. Network module for SA2pMP.

3.2. Security Mechanism

The security mechanism of SA2pMP mainly includes
three parts: a lightweight cryptography scheme, a multiple-
factor authentication strategy and a distributed transaction
log strategy.

Lightweight Cryptography Scheme SA2pMP employs
the Advanced Encryption Standard (AES) [2] to perform
data’s encryption and decryption. The AES with 256-bit
key size is used. SA2pMP utilizes the Elliptic Curve Dig-
ital Signature Algorithm (ECDSA) [27] to mainly protect
non-repudiation because of its low computational cost and
short key size, both of which reduce the overhead in a wire-
less and resource constraint environment [30]. Specifically,
elliptic curves are over the prime field Fp which is best for
software applications [6]; the key size is 192 bits which has
an equal security level to the Digital Signature Algorithm
(DSA) with the key size of 1024 bits [13]. We use ECD-
SAprime192 to name the ECDSA’s implementation way.
SA2pMP also makes use of SHA-1 [17] to calculate a mes-
sage digest for producing the digital signature.

Figure 2 illustrates how cryptography algorithms pro-
cessed in SA2pMP. The communication layer represents a

327327

public wireless network environment. The transaction mes-
sage (msg) must be protected from third party eavesdrop-
ping in the communication layer, so we use the signature
layer and the encryption layer to process msg. The plain-
text message is signed before being encrypted. This method
is named as “Sign-and-Encrypt” [3]. The digital signature
layer is not intended to be independent of the encryption
layer, therefore, we utilize an added identifier to cross these
two layers. We conjunct the Subscriber Identifier Mod-
ule number (SIM), the PHone IDentifier (PHID), and the
user’s bank ACcount number (ACID) to the added identi-
fier: IDC .

Encryption Layer

Signature Layer

msg msg

msg

msg

Communication Layer

msg

msg

Added
Identifier

Added
Identifier

prime

Figure 2. lightweight cryptography scheme
for SA2pMP.

Multi-factor Authentication Strategy Authentication
concerns that a communicating entity is the one it claims
to be [22]. To meet recommendations in [5], SA2pMP pro-
vides a strong authentication. To satisfy this we chose these
factors from [15]:

• Something you have: A mobile device, as well as a
Personal Identification Number (PIN) offered by mo-
bile network operators, is possessed by the user.

• Something you know: A password for transactions of-
fered by banks is the knowledge of the user.

• Something the user is or does: Digital signature can be
looked as a behavior of the user.

Transaction Log Strategy Along with the digital signa-
ture a distributed transaction log strategy is used to ensure
non-repudiation. The transaction log server is a security
mechanism to protect a bank from a false repudiation. If a
user refuses to admit to participating in a mobile transac-
tion, the transaction log server can provide the transaction
records as proof. In Figure 1, the transaction log is dis-
tributively located in the network gateway which physically
belongs to the wireless network operator. The wireless net-
work operator is not the same business unit with the bank, in
that it objectively takes the role as the third trusted auditor.

3.3. Key Management

Secure methods of key management are important to a
secured mobile payment system. In practice most attacks
on public key systems will be aimed at the key manage-
ment [21]. In our architecture the two key pairs required are
used both for digital signature, and encryption.

Digital Signature Key Management To keep the private
key secret we propose to generate the key pair in the mo-
bile device. A Key Generation function is called to gener-
ate a key pair when no valid key pair exists in the system.
The keys must then be distributed and stored. The private
key is stored in the mobile device, either using File-Store-
in-JAR or Record-Store-in-RMS [20]. The public key is
transferred to the authentication server in the bank side and
then stored in a public key depository. This process can run
off-line, not competing with other transaction or communi-
cation processing for computational resources. A renewal
of a key pair must initiated by the banking server after the
current key pair expires. Once the server detects that re-
newal is needed, a notice (such as SMS) must be sent to the
mobile device to generate a new key pair.

Encryption Key Management Generation of the encryp-
tion key takes place on the bank server. Encryption and de-
cryption share the same secret key, which clearly cannot be
transferred over the open wireless network due to the risk
of interception. The encryption key is proposed to be stored
in the program application jar package; then users would
be issued the key along with the application package when
they register for mobile banking services. The bank side’s
security measures are assumed to be sufficient.

4. Implementation

For space reasons, full implementation details cannot be
included in this paper. The more detailed explanation of the
bank modules, mobile client modules and server compo-
nents can be referred in [20]. The architecture’s implemen-
tation is divided into a mobile client and a banking server.
Figures 3(A) and 3(B) illustrate the proposed designs for the
client architecture and the server architecture for SA2pMP.

SA2pMP Mobile Client Architecture The client portion
of the proposed SA2pMP is built on Java ME enabled mo-
bile devices. As Figure 3(A) depicts, the mobile client sys-
tem is composed of the four modules described below.

• Business Logic Module: The BLM is in charge of all
particular business functions.

• Security Module: The SM is to be responsible for se-
curity issues.

• Communication Module: The CM is the module in
charge of the network link.

328328

Mobile Client Mobile Banking Platform Server

Http(s) Req/Rep

Business Req/Rep

Log Operation

Key Application & Distribution

Banking Biz Job

Http(s) Req/Rep

(A) (B)

Figure 3. (A) Mobile client architecture for
SA2pMP. (B) Mobile banking server architec-
ture for SA2pMP.

• Key Management Module: The KMM is in charge of
key management as described in Section 3.3.

SA2pMP Server Architecture Figure 3B) illustrates the
proposed architecture for the MBP server, which consists of
the components described below.

• Key Management Server: KMS deals with maintain-
ing the digital signature’s public key and the encryp-
tion key, as well as initiating messages notifying the
user the renew the key pair currently in use.

• Authentication Server: The AS is in charge of authen-
tication service.

• Business Logic Server: The BLS handles all legal
business requests.

• Transaction Log Server: The TLS maintains the log
files for banking transactions.

5. Simulation

Our simulation operated on an IBM IntelliStation M Pro
PC, with Pentium 4 CPU 2.80GHz and 2GB RAM. The op-
erating system is Windows XP Professional SP3. The im-
plementation of cryptographical algorithms makes use of a
third party cryptography API provider namely Bouncy Cas-
tle. SA2pMP is evaluated on three different mobile de-
vice emulator platforms: Sun Java Wireless Toolkit 2.5.2
for CLDC emulator, Nokia S60 3rd Edition emulator and
Sony Ericsson SDK 2.5.0.3 Z800 emulator. All these three
platforms support CLDC-1.1 and MIDP-2.0.

Transaction Process The simulation is designed for a
mobile banking context with a money transfer transac-
tion. In the following equations, Client communicates with
(Bank). PWD denotes the password for accessing Bank.

Ja
va

M
E

M
ob

ile
 C

lie
nt

JavaEE Bank Server

UserID/Password
PIN Number

Mobile Client Possession

Authentication Confirmation
Business List

Encrypting(PlainText, Signature)

Signing(PlainText, added ID)

Encrypted(Data)

Transaction Confirmation
Transaction Log

1 2

3

4

5

6

7

10

8

9

11

Figure 4. Secured transaction process.

Encrypt and Decrypt denote the encryption and decryp-
tion operations. V erify denotes the process of authenti-
cation verification, while DV erify denotes verifying the
digital signature. AuthConfirm denotes an authentication
confirmation, while BizConfirm denotes a business con-
firmation. BizT ransaction denotes a business transaction
process. Bizlist denotes the authorized business transaction
list. TD denotes transaction data. DS denotes a digital sig-
nature. RKS and PKS denotes the private key and the
public key for generating the digital signature, while KE

denotes the encryption key. The h is a hash function, and
crypto msg is an encrypted message. TLog is an activ-
ity recording transaction log on the network Gateway. As
Figure 4 illustrates, a secured transaction is processed as
follows.

1. Client sends an authentication request to Bank.

Client− > Bank : (ACID, PWD, IDC) (1)

2. Bank verifies the authentication request.

Bank : V erify(ACID,PWD, IDC) (2)

3. Bank responds a confirmation to Client.

Bank− > Client : (AuthConfirm, Bizlist) (3)

329329

4. Client generates a transaction message.

Client : msg < −TD (4)

5. Client computes a digital signature.

Client : DS = DSign(IDC , h(msg),RKS) (5)

6. Client encrypts the signed message.

Client : crypto msg = Encrypt(DS + msg,KE) (6)

7. Client sends an encrypted message to Bank.

Client− > Bank : crypto msg (7)

8. Bank decrypts encrypted message.

Bank : DS + msg = Decrypt(crypto msg,KE) (8)

9. Bank verifies the digital signature.

Bank : Y es/No = DV erify(DS, h(msg), PKS) (9)

10. If the step responds true, the business transaction is
started.

Bank : BizTransaction (10)

11. Bank responds a transaction confirmation to Client,
and records a transaction log.

Bank− > Client : BizConfirm (11)

Gateway : TLog (12)

Data Transformation In a money transfer transaction,
some information needs to be recorded. FAcID refers the
bank account number from which the money will be trans-
ferred. TAcID denotes the bank account number to which
the money is transferred. Amt denotes the money amount.
T ime denotes the time when money transfer transaction is
initiated. After the user submits the business record infor-
mation, a string RawText connects four parameters together
by a “&”sign.

RawText = FAcID + TAcID + Amt + T ime (13)

Then RawText is added with IDC . In the simulated
money transfer transaction, PText has the length of 312 bits.
The digital signature is computed from PText. The signed

Time Delay: Nokia S60 Emulator

0

100

200

300

400

500

600

700

800

Round

Ti
m

e
D

el
ay

(m
s)

Time Delay on Sign Time Delay on Verify

Time Delay on Sign 531 463 532 516 506 625 526 526 505 511
Time Delay on Verify 656 677 688 693 698 734 733 703 724 714

1 2 3 4 5 6 7 8 9 10

Figure 5. Time delay on Nokia Emulator (ms).

ECDSA Sign&Verify on Sony Ericsson Z800 Emulator

2000

2500

3000

3500

4000

4500

Round

Ti
m

e
D

el
ay

(m
s)

Time Delay on Sign Time Delay on Verify

Time Delay on Sign 2984 3124 2995 3034 2995 3144 3234 3115 3104 3074
Time Delay on Verify 4006 4036 3936 3995 4035 4196 3986 4156 3906 3996

1 2 3 4 5 6 7 8 9 10

Figure 6. Time delay on Sony Ericsson Emu-
lator (ms).

message TempText will be followed by a symmetric encryp-
tion operation. EnText is ready to be sent to the bank server.

PText = RawText + IDC (14)

TempText = PText + DSign(h(PText), RKS) (15)

EnText = Encrypt(TempText) (16)

We run the same MIDlet suite in different emulators to
measure the time delay caused by cryptographical operation
for the goal of security. Figure 5, 6, 7 illustrate the time cost
on these three different emulator platforms.

6. Evaluation

To evaluate the feasibility of SA2pMp, we consider the
processing time delay for the cryptographical operations
and the JAR-file size of the MIDlet suite in the mobile de-
vice.

6.1. Time Delay Evaluation

330330

ECDSA Sign&Verify on Sun WTK Emulator

2000

2500

3000

3500

4000

4500

Round

Ti
m

e
D

el
ay

(m
s)

Time Delay on Sign Time Delay on Verify

Time Delay on Sign 3244 3095 3244 3125 3194 3195 3135 3184 3214 3155
Time Delay on Verify 4066 4186 4216 4246 4297 4156 4196 4186 4136 4166

1 2 3 4 5 6 7 8 9 10

Figure 7. Time delay on Sun WTK Emulator
(ms).

Time Delay Criteria To make an evaluation on time de-
lay, we need to discuss the time delay criteria. Although the
response should be as quick as possible, the basic advice
regarding response time delay was categorized in [16].

• 100 milliseconds is the time limit for users to feel that
the system is reacting instantaneously.

• 1,000 milliseconds is the time limit for users who
thought the system stayed uninterrupted.

• 10,000 milliseconds is the time limit for keeping the
user’s attention focused.

Time Delay Evaluation Method Considering the busi-
ness system employing our secured architecture, the total
time delay T can be evaluated as:

T = TCBiz + TCSec + TCom + TSSec + TSBiz (17)

TCBiz denotes the time delay for the business computa-
tion on a mobile client. TCSec denotes the time delay for
the goal of security. Almost all of the security time delay is
cost by cryptographical computation, including digital sig-
nature sign and encryption. TCom denotes the time delay on
network communication. TSSec denotes the time delay cost
by security operation on the server side. TSBiz denotes the
time delay the business transaction. As the bank server is
built on a rich-resource computer server platform, the com-
putational speed is quite fast, and the transaction log is writ-
ten simultaneously, so we consider the operation on bank
server side to be instantaneous. As TCBiz and TCom are
not spent in the security module, we do not consider them
in evaluating extra time delay for security. To consider the
extra time delay for the goal of security, we use the param-
eter of TCSec. Referred by equation 15 and equation 16,
TCSec can be illustrated as:

TCSec = Tencrypt(DSign(msg)+msg)

= Tencrypt + TDSign + T+

(18)

In our simulation, the time delay for AES256 encryption
or decryption is less than 1 millisecond, so we consider en-
cryption to operate instantaneously, Tencrypt ≈ 0. The time
delay T+ for string connecting operation is considered to
be instantaneous as well. The digital signature’s operation
is largest time cost for security, and so we use TDSign to
evaluate TCSec.

Time Delay Evaluation Result Table 2 calculates the av-
erage time delay on ECDSA sign and verification in mil-
liseconds on the three different emulator platforms. The
simulation on Nokia S60 is most positive. The average time
delay of signing on Nokia S60 is 524.1 ms, which is much
better than the data on Sony Ericsson Z800 (3080.3 ms) and
on Sun WTK QwertyDevice (3178.5 ms). The same situ-
ation applies to verification. Verification costs more time
than signing. Following the time delay criteria proposed
in [16], the time delay on Nokia S60 is less than 1,000 mil-
liseconds, then the system appears to stay uninterrupted to
users. The time delay on Sony Ericsson Z800 or WTK Qw-
ertyDevice is between 1,000 milliseconds and 10,000 mil-
liseconds, therefore, the system still keeps users’ attention
focused although they notice a delay.

Nokia Sony Ericsson Sun WTK

Sign 524.1 3080.3 3178.5

Verify 702 4024.8 4185.1

Table 2. Average time delay (ms).

Though our software application is running on JVM,
some mobile devices have more efficient implementations.
Seeing from our experiment, the Symbian based Nokia
S60 has more efficient implementation than Sony Ericsson
Z800. Neglecting the difference in platform, we roughly
compared our simulations to other ECDSA’s Java ME im-
plementations [26] [29] [11]. The results from [26] [29]
suggests that ECDSA could be performed faster, while the
emulation data of [11] is less efficient than our data on
Nokia S60 emulator.

By evaluating extra time delay for security, SA2pMP is
feasible for implementing on mobile devices.

6.2. Code Size Evaluation

A MIDlet suite with an API library normally has a large
JAR-file. However, mobile devices usually have their own
size limitation for implementing MIDlet suites. For exam-
ple, CLDC 1.0 specifies that the minimum base memory
available for the Java platform is 160KB [10]. Furthermore,

331331

the large JAR size may cause program be initiated or the ap-
plication be installed over-the-air (OTA) slowly. As imple-
menting SA2pMP only uses a small part of API, the JAR-
file size will be shrink if the unused code of Bouncy Castle
API library is not contained in MIDlet suites. Obfuscation
can be used to effectively reduce the size of Java class [19].

In our simulation, the mobile client application,
MoBankClient.jar has a size of 130 KB, which is feasible
for a CLDC 1.0 platform. In this JAR-file the security pack-
age is only a small part (the rest part of JAR-file is business
package, the size of which is depended on the complexity of
business transaction). That means our API library meets the
requirement for code size and is feasible to be implemented
on CLDC 1.0 mobile devices.

7. Comparison

We provide a comparison with some existing secu-
rity mobile payment architectures. JASA provides end-to-
end client authentication, data confidentiality and integrity;
however, it can not guarantee non-repudiation. SET and iKP
are two credit-card payment protocols which were designed
originally for electronic commerce. Although they are im-
plemented successfully for e-commerce on wired network,
they are too heavy-loaded to operate in resource-limited en-
vironments. LSM utilizes a wireless protocol gateway to
meet the four security requirements of mobile commerce.
However, the security gap lying on the wireless protocol
gateway harms that the cryptography key pair need to be
protected from any third party interference. Table 3 illus-
trates our comparison between JASA, SET and iKP, LSM
and SA2pMP.

JASA utilizes AES, which only fulfills the security re-
quirements for authentication, integrity and confidentiality,
but not non-repudiation. LSM, SET and iKP employ RSA,
which is too heavyweight in computation for a resource-
limited mobile device. SA2pMP designed a light scheme
combining both AES and ECDSA.

Regarding with the authentication strategy, JASA, LSM,
SET and iKP utilize single-factor authentication, which is
not enough to secure a financial application. SA2pMP im-
plements a multi-factor authentication strategy, which pro-
tects a stronger security in authentication.

From the perspective of computational requirements,
JASA has the advantage in computational requirements as
it only implements AES. LSM utilizes the wireless net-
work gateway as the agent of the mobile device. On mo-
bile devices portion of LSM computational requirement is
lightweight. SET and iKP are not originally designed for
mobile payment, thus for mobile devices the computational
requirement is heavyweight. SA2pMP balances the security
and the computational complexity. The light cryptography

JASA SET & iKP LSM SA2pMP

M-Payment
√

No
√ √

2-Party
√

(1)KP
√ √

Crypto- AES RSA RSA ECDSA

Algorithm AES

Authent- Single Single Single Multi

-ication -Factor -Factor -Factor -Factor

Non- No
√ √ √

Repudiation

Java ME
√

- -
√

Computation Light Heavy Light Light

Requirement weight weight weight weight

3rd-Party Low High High Medium

involved

Table 3. Comparison.

scheme is lightweight in computational requirement with-
out sacrificing security protection.

Non-repudiation is a key requirement for a comprehen-
sive security. In all architectures listed in Table 3, only
JASA did not suggest approaches to solve the false repu-
diation problem. Besides a digital signatures employment,
SA2pMP utilizes a distributed transaction log strategy to
provide a defensive approach to keep non-repudiation.

Although inter-enterprise collaboration is prevalent, no
enterprise wants the third party be involved overmuch. LSM
stored its cryptography key pair in the network protocol
gateway, which leads an excessive involvement of third
party. SET and iKP require a high third-party involvement,
as they rely on the trusted third party to offer the key pairs.
As JASA does not employ any third party in its architecture,
it had a low third-party involvement. SA2pMP utilizes the
network gateway in its distributed transaction log strategy.
The approach avoiding the third partys excessive involve-
ment; meanwhile, it contributes the non-repudiations pro-
tecting.

Moreover, both JASA and SA2pMP target Java ME plat-
form, while LSM, SET and (iKP) are not targeted to any
platform. All of them can be used for mobile payment and
for two-party mobile payment transaction.

8. Conclusion and future work

We have proposed a lightweight secured architecture for
two-party mobile payments. While other architectures and
protocols have been proposed, they either are not well suited
for resource-limited mobile devices or they do not satisfy

332332

all of the parties’ concerns regarding security on mobile
transactions. Our architecture, named as SA2pMP, is im-
plemented in a Java ME enabled mobile client, with a mo-
bile banking server supporting it, likely implemented in
Java EE. The proposed architecture employs a lightweight
cryptography mechanism combining symmetric and public
key algorithms (AES and ECDSA), a multi-factor authen-
tication strategy utilizing mobile devices’ natural benefits,
and a distributed transaction log strategy to meet the se-
curity requirements of integrity, authentication, confiden-
tiality and non-repudiation. Through the simulations based
on three different brands of mobile devices’ emulators, we
show SA2pMP is feasible to be implemented in some mo-
bile devices without unacceptable delay. Compared to some
other existing mobile payment platforms, SA2pMP is fea-
sible and well-suited to protect security for two-party pay-
ment transaction over resource-limited mobile devices.

The future work will be focused on promoting operation
speed of cryptographical algorithms. The simulations will
be carried out on real mobile devices.

References

[1] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk,
M. Steiner, G. Tsudik, E. V. Herreweghen, and M. Waidner.
Design, implementation, and deployment of the iKP secure
electronic payment system. Selected Areas in Communica-
tions, IEEE Journal, 18:611–627, April 2000.

[2] J. Daemen and V. Rijmen. The block cipher rijndael. Smart
Card. Research and Applications, LNCS1820:277–284, De-
cember 2006.

[3] D. Davis. Defective sign & encrypt in S/MIME,
PKCS#7,MOSS, PEM, PGP, and XML. In Proceedings of
the General Track: 2002 USENIX Annual Technical Confer-
ence, pages 65–78, June 2001.

[4] P. C. Deans. E-Commerce and M-Commerce Technologies.
IRM Press, 2004.

[5] Federal Financial Institutions Examination Council. Authen-
tication in an Internet Banking Environment.

[6] A. Fernandes. Elliptic curve cryptography. Dr. Dobb’s Jour-
nal, December 1999.

[7] J. Gao, J. Cai, K. Patel, and S. Shim. A wireless payment
system. In Embedded Software and Systems, 2005. Second
International Conference on, volume 16-18, page 8, 2005.

[8] W. C. Hu, C.-W. Lee, and W. Kou. Advances in Security
and Payment Method in Mobile Commerce. Idea Group Inc.,
2004.

[9] W. Itani and A. Kayssi. J2ME application-layer end-to-end
security for m-commerce. Journal of Network and Com-
puter Applications, 27:13–32, 2004.

[10] Java Community Process. JSR 139: Con-
nected limited device configuration 1.1.
http://www.jcp.org/en/jsr/detail?id=139.

[11] M. Kilas. Digital signatures on nfc tags. Master’s thesis,
KTH Royal Institute of Technology, Sweden, March 2009.

[12] K.-Y. Lam, S.-L. Chung, M. Gu, and J.-G. Sun. Lightweight
security for mobile commerce transactions. Computer Com-
munications, 26:2052–2060, 2003.

[13] A. K. Lenstra and E. R. Verheul. Selecting cryptographic
key sizes. Lecture Notes in Computer Science, 1751:446–
465, 1999.

[14] K. Linck, K. Pousttchi, and D. Wiedemann. Security issues
in mobile payment from the customer viewpoint. In Pro-
ceedings of the 14th European Conference on Information
Systems(ECIS 2006), Ljungberg, 2006.

[15] E. Maiwarld. Fundamentals of Network Security. McGraw-
Hill Professional, 2004.

[16] J. Nielsen. Usability Engineering. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1995.

[17] NIST. FIPS PUB 180-3: Federal Information Processing
Standards Publication, Secure Hash Standard (SHS). Tech-
nical report, National Institute of Standards and Technology,
October 2008.

[18] J. Ondrus and Y. Pigneur. A disruption analysis in the mobile
payment market. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (HICSS’05) -
Track 3 p. 84c, September 2005.

[19] C. E. Ortiz. Obfuscating your midlet suite.
http://developers.sun.com/mobility/midp/ttips/midletsize/,
October 2009.

[20] J. E. Rice and Y. Zhu. A proposed architecture for secure
two-party mobile payment. In 2009 IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Pro-
cessing, August 2009.

[21] RSA Laboratories. RSA Laboratories’ Frequently Asked
Questions About Today’s Cryptography, Version 4.1. RSA
Security Inc., 2000.

[22] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice. Pearson Prentice Hall, third edition edi-
tion, 2006.

[23] Sun Microsystems. Connected Limited Device Con-
figuration (CLDC): JSR 30, JSR 139 Overview.
http://java.sun.com/products/cldc/overview.html.

[24] Sun Microsystems. Mobile Information De-
vice Profile (MIDP): JSR 37, JSR 118 Overview.
http://java.sun.com/products/midp/overview.html.

[25] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.
[26] S. Tillich and J. Großschadl. A survey of public-key cryp-

tography on J2ME-enabled mobile devices. Lecture notes in
computer science, pages 935–944.

[27] S. Vanstone. Responses to NISTs Proposal. Communica-
tions of the ACM, 35:50–52, July 1992.

[28] VISA & Mastercard. SET Secure Electronic Transaction
Specification, 1997.

[29] J. Zheng, Z. Shao, S. Huang, and T. Yu. Security of two
signature schemes based on two hard problems. In Commu-
nication Technology, ICCT 2008. 11th IEEE International
Conference on, pages 745 – 748, Nov 2008.

[30] X. Zhong, D. Guanzhong, and Y. Deming. An efficient
ECDSA-based signature scheme for wireless networks.
Wuhan University Journal of Natural Sciences, 11(6):1707–
1710, November 2006.

333333

