
MAKING A CHOICE BETWEEN FDDS AND BDDS
IN THE PROCEEDINGS OF IWLS2005

J. E. Rice

Dept. of Math & Computer Science
University of Lethbridge

Lethbridge, Alberta, CANADA
Email: j.rice@uleth.ca

ABSTRACT

Much work has recently focused on DD variants; in partic-
ular those that use alternate decompositions such as FDDs
and KDDs. The problem is that with addition of these de-
compositions the complexity of the structure is increased,
with the possibility of additional computation time being re-
quired for determining variable ordering or decomposition
choices. We propose to reduce this by adding a preprocess-
ing step that selects, in general, whether a BDD or FDD
structure is a better choice for a given function or class of
functions. This decision is based on the analysis of a func-
tion’s autocorrelation coefficients. Preliminary work begin-
ning an investigation into how best to make this decision is
presented.

1. INTRODUCTION

Decision diagrams (DDs) are often used for efficient rep-
resentation and manipulation of Boolean functions. There
are many variants of DDs, each with a variety of uses and
applications. The original data structure of this type is the
binary decision diagram (BDD) which was introduced by
Akers [1, 2] and popularized as reduced, ordered BDDs
(ROBDDs or OBDDs) by Bryant [3]. Many other types of
decision diagrams have since been proposed [4].

Some of the simplest variants remain true to the original
structure, simply allowing alternative decompositions of the
function at each node. One example of this type of DD is the
ordered functional decision diagram (OFDD) [5, 6]. It has
been shown that there are certain types of Boolean functions
for which there is no “good” (meaning non-exponential in
size) OBDD representation [7]. Futher work has shown
that for some Boolean functions the OFDD representation
can be exponentially smaller than the OBDD representa-
tion, and vice versa [8, 9]. These same authors have sug-
gested a hybrid DD consisting of decompositions types al-
lowed in both the OBDD and OFDD, called an ordered Kro-
necker decision diagram (OKDD) [10], or sometimes an or-

dered Kronecker functional decisional diagram (OKFDD).
However, in order to build a minimally (or close to) sized
OKFDD, not only the variable ordering must be consid-
ered, but also the decomposition types at each node. Both of
these can have a considerable effect on the size of the result-
ing DD, and are also very difficult problems [11]. Various
heuristics have been developed to solve this problem [10].

In this work we suggest an additional preprocessing step
that may be used to reduce the time required in deciding
upon decomposition types for each node. This preprocess-
ing is based on the generation of the function’s autocor-
relation coefficients. Based on these values we determine
whetherin generala function is better suited to a FDD type
or BDD type. We cannot always achieve minimality in the
KDDs thus generated, but in many cases, particularly those
heavily dependent on decomposition choice and/or variable
ordering, we can always improve upon the non-optimized
sized, and in some cases this preprocessing can also reduce
the time required to optimize the DD.

2. BACKGROUND

In this section we present some background and notation
pertinent to the remainder of the paper.

2.1. Decision Diagrams

Decision diagrams were first introduced as BDDs by Lee [2]
and later by Akers [1]. A decision diagram (DD) overxn :=
(x1, x2, . . . , xn) is a rooted directed acyclic graphG =
(V,E) with vertex setv containing two types of vertices,
non-terminal (or non-leaf) vertices and terminal (or leaf)
vertices. A non-terminal vertexv is labeled with a vari-
able fromXn, which is the decision variable forv, and has
exactly two successors denoted bylow(v) andhigh(v). A
terminal vertexv is labeled with a 0 or 1 and has no succes-
sors [9].

BDDs are commonly used in their canonical form of a
Reduced Ordered BDD (ROBDD). It is generally under-

stood that when using the term BDD one is referring to a
ROBDD. A ROBDD meets two main specifications:

• a BDD is a reduced BDD if it contains no vertex
whose left subgraph is equal to its right subgraph, nor
does it contain distinct verticesv andv′ such that the
subgraph rooted byv andv′ are isomorphic.

• a BDD is an ordered BDD if on every path from the
root node to an output, the variables are encountered
in the specified order.

There are many variants on the basic BDD structure, in-
cluding edge-inverters, edge-values, and alternate sink val-
ues. The reader is directed to [4] for an overview of DD
variants. In this work we are interested in the use of alter-
nate decompositions for the nodes. A BDD is based on the
Shannon decomposition,

fv = xifxi=0 + xifxi=i (1)

while a functional decision diagram (FDD) is based on the
Davio decompositions. The positive Davio decomposition
is defined as

f = fxi=0 ⊕ xi(fxi=0 ⊕ fxi=0) (2)

and the negative Davio decomposition as

f = fxi=1 ⊕ xi(fxi=0 ⊕ fxi=1). (3)

In each definition the notationfxi=1 (fxi=0) denotes the
cofactor off with respect toxi = 1 (xi = 0). In the case
where a decision diagram is built using one or more of these
decompositions then the notation used is usually that of

di = S : xiflow(v) + xifhigh(v)

di = pD : flow(v) ⊕ xifhigh(v)

di = nD : flow(v) ⊕ xifhigh(v)

wheredi refers to the decomposition for theith level,v is a
node in the decision diagram at leveli andflow(v)(fhigh(v))
is the function represented by the decision diagram rooted
at low(v) (high(v)).

A Kronecker functional decision diagram (KFDD) is a
DD in which a variable label and a decomposition choice
from S (Shannon), pD (positive Davio) or nD (negative Davio)
are associated with each node. For pD and nD nodes the re-
duction rules differ from those used for S nodes:

S,D: delete a nodev′ whose label is identical to the label
of another nodev and whose successors are identical
to the successors ofv and redirect the edges points to
v′ to point tov.

S: delete a nodev whose two outgoing edges point to
the same nodev′ and connect the incoming edges of
v to v′.

D: delete a nodev whose successorhigh(v) points to
the terminal 0 and connect the incoming edges of the
deleted node tolow(v).

2.2. The Autocorrelation Transform

The autocorrelation function is defined as follows [12]:

B ff (τ) =
2n−1∑
v=0

f(v) · f(v ⊕ τ) (4)

The superscriptsff are generally omitted. Values forτ
range from0 to 2n − 1 wheren is the number of inputs to
the Boolean functionf(X). The autocorrelation function or
transform, when applied to the outputs off(X), transforms
the outputs from a two-valued domain to the domain of the
real numbers. The resulting coefficients may be referred to
as the autocorrelation spectra of the function.

The outputs of the function may be encoded as0 for
false and1 for true, or+1 for false and−1 for true. The
first is referred to as{0, 1} encoding, and if used results in
the autocorrelation coefficients being referred to asB(τ).
The{+1,−1} coefficients are referred to asC(τ). The co-
efficients are generally grouped by the weight of the value
of τ used in their computation; for instance, first order co-
efficients are all those coefficients for which|τ | = 1.

3. TECHNIQUE

Work in [13] identified the following:

Theorem 3.1 C(τi) = −2n if and only if the functionf(X)
has a decomposition

f(X) = f∗(X)⊕ xi

wheref∗(X) is independent ofxi and τi is a first-order
autocorrelation coefficient relating to variablexi.

From the nature of the autocorrelation transform, negative
first-order coefficients indicate that the variable in question
is connected to some sort of internal structure best described
with the XOR operator. Our hypothesis is that this informa-
tion can also be used to identify functions which are better
described using a FDD over a BDD, since the nature of an
efficient FDD is also inherently linked to the XOR operator.

Our technique was as follows. For each benchmark,

• generate then first order autocorrelation coefficients,

• visually examine the coefficients to determine if they
were primarily negative in value, and

• select a decomposition for the ENTIRE DD based on
this examination.

4. EXPERIMENTAL RESULTS

Based on the technique above, we used PUMA [14, 15]
to build KDDs for each of the benchmarks. Three sets of
KDDs were generated:

• one set using the option -b 3 which used the sifting
heuristicOKFDD DTL Siftingto select both variable
ordering and decomposition choice,

• one set which fixed the decomposition choice at either
S or pD, depending on the autocorrelation values, but
allowed the sifting heuristicOKFDD Siftingto select
the variable ordering, and

• a comparison set which did not use any ordering or
decomposition choice heuristic.

Table 1 shows the first-order autocorrelation coefficients
for each of the benchmarks used. The spectra are listed in
order, with the notation ofC×j being used to reduce space.
Where this notation is used the first numberC is the coeffi-
cient value and the second numberj is the number of times
C appears in the coefficient list. Table 2 shows a compar-
ison of the timings and DD-sizes for each of the generated
sets of DDs.

5. DISCUSSION

When examining the first-order autocorrelation coefficients,
clearly the functions ex1, ex2, parity, xor5, mylinear6 and
mylinear9 result in negative coefficients. In particular many
of them have coefficient values of−2n, thus fulfilling the
requirements of having a structure compatible with the⊕
operator, or even of being a linear function as described in
Theorem 3.1. This leads to our selection of a FDD for each
of these benchmarks. Examination of Table 2 shows that
for these functions, if the non-minimized version was not
already minimal then a reduction in size as compared to
this size was achieved. However for the benchmark ex2
although we still achieve reduction in size over the non-
minimized version, the KDD version built using the decom-
position and ordering heuristics achieves still further reduc-
tions.

The remaining benchmarks did not result in any nega-
tive coefficients, with the exception of a single negative co-
efficient for the majority benchmark. Thus for each of these
we chose a BDD structure. Again, in all cases if reduc-
tion from the non-minimized version was possible, then our
decision-diagram choice achieved it. However, it is inter-
esting to note that restricting the decomposition-type choice
did not always result in a lower processing time. In fact, as
can be seen in Table 2, many of the benchmarks for which
a BDD structure was chosen required 0.1 second longer to
build and minimize, as compared to the KDD structure. We

filename n time first order {+1, -1}
(sec) AC Coefficients

9sym 9 0.1 288 288 288 288 288 288 288 288 288
9symml 9 0.1 288 288 288 288 288 288 288 288 288
cm150a 21 19.4 0 1048576x4 1966080x16
cm152a 11 0.1 0 0 0 1536x8
co14 14 0.1 16328x14
ex1 5 0.1 -32 -32 -32 -32 -32
ex2 5 0.1 -12 12 -12 12 -20
ex3 6 0.1 16 16 16 8 8
life 9 0.1 120 120 120 120 120 120 120 120 400
majority 5 0.1 20 -12 20 20 20
max46 10 0.1 264x3 288 296 288 296x2 312
mux 21 17.9 0 1048576x4 1996080x16
parity 16 5.9 -65536x16
ryy6 16 0.1 60280x4 602296x2 57976

62296x2 39256x4 40696 21256 48256
sym10 10 0.2 652x10
t481 16 0.2 24576x4 40960x8 24576x4
xor5 5 0.5 -32 -32 -32 -32 -32
mylinear6 6 0.1 -64 -64 -64 -64 -64 -64
mylinear9 9 0.1 -512x9
6var1clique 6 0.1 48x6
6varxorclique 6 0.1 16 16 32 16 32 16
10var1clique 10 0.1 984x10
10varxorclique 10 0.2 128x10
15var1clique 15 0.1 32688x15
15varxorclique 15 2.3 2048 0 2048 0 2048 4096 2048x9

Table 1. First order autocorrelation spectra for each of the
benchmarks.

filename choice/timing/size kdd no min.
timing/size timing/size

9sym bdd/0.8/24 0.7/24 0.7/24
9symml bdd/0.8/24 0.7/24 0.7/24
cm150a bdd/46.6/32 313.9/25 1.9/131070
cm152a bdd/0.8/15 0.7/12 0.7/382
co14 bdd/0.9/26 0.7/26 0.7/26
ex3 bdd/0.9/8 0.7/8 0.7/10
life bdd/0.9/25 0.7/25 0.7/37
majority bdd/0.8/7 0.7/7 0.7/8
max46 bdd/0.9/74 0.7/74 0.7/74
mux bdd/28.1/32 158.8/25 2.8/131070
ryy6 bdd/0.9/21 0.7/21 0.7/23
sym10 bdd/0.9/30 0.7/30 0.7/30
t481 bdd/0.9/20 0.8/18 0.7/20
ex1 fdd/0.7/5 0.7/5 0.7/5
ex2 fdd/0.7/9 0.7/8 0.7/12
mylinear6 fdd/0.7/6 0.7/6 0.7/6
mylinear9 fdd/0.7/16 0.7/16 0.7/16
parity fdd/1.6/16 1.6/16 1.6/16
xor5 fdd/0.7/5 0.7/5 0.7/5
6var1clique bdd/1.0/11 0.7/10 0.7/16
6varxorclique bdd/0.9/10 0.7/8 0.8/11
10var1clique bdd/0.8/41 0.7/41 0.7/47
10varxorclique bdd/0.9/79 0.8/19 0.7/182
15var1clique bdd/0.9/92 0.7/93 0.7/106
15varxorclique bdd/2.1/414 1.9/35 1.7/558

Table 2. Comparisons of DD-sizes (nodes) and time to
build (sec.) for the autocorrelation-selected decomposition
type, using the DTL and ordering heuristic, and using no
ordering or decomposition choice heuristic.

suspect that this is due to some overhead required in restrict-
ing the DD type to a BDD.

Of particular interest are the benchmarks cm150a and
cm152a. If no minimization is performed then the num-
ber of nodes in the KDD is 131070 and 782, respectively.
The KDD heuristics can bring this down to 25 and 12, but
the time required, particularly for cm150a, is significant
(313.9 seconds). However, if we restrict the decomposi-
tion type to Shannon and perform ordering heuristics we
can minimize to 32 and 15 nodes, respectively, requiring
(for cm150a) only 46.6 seconds. The same test, only using
a FDD structure, was also performed, resulting in 32 nodes
and requiring 64.9 seconds; still an improvement over the
non-minimized KDD in terms of size, and an improvement
over the more than 5 minutes required for the full decompo-
sition and ordering heuristics, although not as good in either
case as the BDD results.

The reader will likely have noticed that there are a num-
ber of circuits included that are not part of the standard
benchmark set: mylinear6, mylinear9, and 4 clique circuits.
These were created in an effort to build circuits that would
have a definite advantage when built using a BDD or FDD.
For the linear circuits this was not as successful as we had
anticipated. The DD representations for the linear circuits
were equally small using either a FDD or BDD structure.
This leads us to the conclusion that although small autocor-
relation coefficients certainly have some relationship to an
XOR structure, this does not always indicate that a FDD
representation will be advantageous over a BDD represen-
tation. This is an area where future investigation will con-
tinue.

The 6 clique circuits also presented some interesting de-
velopments. Designed based on the results in [9], the au-
thors of [9] identify the following theorem:

Theorem 5.1 For any orderπ of the variablesxi,j and and
decomposition type listd = (d1,2, . . . , dn−1,n) ∈ {pD, nD}n(n−1)/2

it holds:

1. 1 − cldn,3 has OBDDs of sizeO(n5) but only free

FDDs of size2Ω(n2).

2. ⊕ − cldn,3 has OFDDs of sizeO(n3) but only free

BDDs of size2Ω(n2).

We therefore created the circuits 6var1clique, 6varxorclique,
10var1clique, 10varxorclique 15var1clique and 15varxor-
clique based on the definitions of the1−cldn,3 and⊕−cldn,3
functions as given in [9]. The intent was to test first of all
if, for these relatively small-sized circuits, the theoretical
results were evident, and secondly, whether the autocor-
relation coefficients would provide any indication of these
theoretical results. Table 3 shows the results listed as the
timing in seconds/number of nodes for a BDD, FDD, and

KDD structure, each using the ordering and/or decomposi-
tion choice heuristics, with the last column listing the KDD
results if no heuristics are used. It is clear from Table 3

filename bdd fdd kdd kdd results
results results results with no heuristics

6var1clique 1.0/11 0.7/13 0.7/10 0.7/16
6varxorclique 0.9/10 0.7/8 0.7/8 0.8/11
10var1clique 0.8/41 0.7/96 0.7/41 0.7/47
10varxorclique 0.9/79 0.7/20 0.8/19 0.7/182
15var1clique 0.9/92 0.8/645 0.7/93 0.7/106
15varxorclique 2.1/414 1.8/33 1.9/35 1.7/558

Table 3. Results (timing, sec/number of nodes) for files
representing1− cldn,3 and⊕− cldn,3 functions as defined in
[9].

that a BDD is the better choice for the1-clique functions
while a FDD is the better choice for the⊕-clique func-
tions. In fact, for the larger functions (10var, 15var) the
BDD/FDD representation is smaller than the KDD repre-
sentation, which seems unusual. However, the point to be
noted here is that the autocorrelation coefficients as listed
in Table 1 did not identify, via the existence of negative co-
efficients, the fact that a FDD structure should be chosen
for the⊕-clique functions. Either our subset of coefficients
does not contain the information required, or our identifica-
tion of negative coefficients is not sufficient for determin-
ing the choice between a BDD or FDD. Table 4 shows the
complete autocorrelation spectra for the 6 clique functions.
Note that the ordering of the values is not preserved, unlike
in Table 1. This is useful as an analytic tool to determine
an overall pattern, but as a preprocessing tool, particularly
for use on large functions, generation of the complete spec-
tra is infeasible due to the fact that each function results
in 2n autocorrelation coefficients, and generation of these
can be extremely computationally time-consuming. How-
ever, for our purposes of investigation, this table highlights
some very interesting things. In particular, we can identify

filename n complete AC spectra
6var1clique 6 64x1 48x57 56x6
6varxorclique 6 64x1 16x48 0x9 32x6
10var1clique 10 1024x1 994x993 992x15 1000x15
10varxorclique 10 1024x1 128x100 0x315 64x552 -64x40

256x15 -256x1
15var1clique 15 32768x1 32688x32622 32704x45 32696x100
15varxorclique 15 32768x1 2048x162 0x16182 -2048x3

512x8058 4096x28 1024x757 -1024x99
-512x1142 -256x1956 256x4380

Table 4. The complete autocorrelation spectral for each of
the clique functions.

filename sum of ac spectra avg of ac spectra
6var1clique 3072 48.76
6varxorclique 960 15.24
10var1clique 1016922 994.06
10varxorclique 48152 48.05
15var1clique 1071089216 32688.05
15varxorclique 5275648 161

Table 5. The sums and averages for the autocorrelation
spectral of the1-clique and⊕-clique functions.

a significant difference in the autocorrelation values in the
1-clique functions as compared to the⊕-clique functions.
The1-clique functions result in quite high values for the co-
efficients, in many cases close to the maximum value of2n.
The⊕-clique functions result in much lower values, close
to or below zero in many cases. The exception is, of course,
the first coefficient, or zero coefficient, which always has the
value2n. Table 5 gives the sums and averages of the coeffi-
cients for these files. Note that the zero coefficient is disre-
garded in both computations. For all the1-clique functions,
the average value is remarkably close to2n, while for the
⊕-clique functions the average is significantly lower. The
hypothesis of lower coefficient values indicating a choice of
a FDD structure is borne out by these values.

6. CONCLUSIONS AND FUTURE WORK

In this work we propose the use of a preprocessing step to
determine if a function can be better represented by a FDD
or BDD structure. The goal is to remove the necessity of
determining a decomposition-type list after the DD is built,
thus reducing the time needed for heuristics to determine
this and to possibly improve the performance of variable or-
dering heuristics. Previous work in [13] has indicated that
there is much useful information present in a function’s au-
tocorrelation coefficients, and suggested some applications.
We propose that the autocorrelation spectra of a function
can also be used in determining the best choice of FDD or
BDD structure.

Results suggest that in many cases we can pre-determine
a good structure by examination of only then first-order au-
tocorrelation coefficients. However, when functions known
to have a good FDD structure and poor BDD structure such
as the⊕− cldn,3 functions as proposed in [9] are tested, pre-
processing based on only the first-order coefficients does
not identify the correct choice of FDD. However, the cur-
rent heuristic for this decision is not only based on only a
small subset of the autocorrelation coefficients, but is also
based on simply identifying yes/no whether a majority of
this subset consists of negative values. Clearly many refine-
ments are possible.

This work has presented some investigations that illus-

trate that the hypothesis in [13] on which this theory is based
does have validity in this application. However, a number of
hurdles must be overcome. Of primary concern, any heuris-
tics used must be based on asubsetof the autocorrelation
spectra; it is infeasible to compute and examine2n values
for even small values ofn. However, to date only the sub-
set consisting of first-order coefficients has been examined,
and so there are many other possibilities to consider. Ad-
ditionally, techniques for approximating the autocorrelation
spectra have been published [16], and these may be of use
in this application. Future work must address how best to
compute the most useful information from the autocorrela-
tion coefficients, and how to make use of this information.
An additional area of interest consists of identifying func-
tions which result in some identifiable properties within the
autocorrelation coefficients, as begun in [17], and how these
properties may then be used in the context of this work.

7. REFERENCES

[1] S. Akers, “Binary Decision Diagrams,”IEEE Trans.
on Comp., vol. C-27, no. 6, pp. 509–516, June 1978.

[2] C. Y. Lee, “Representation of Switching Circuits by
Binary Decision Diagrams,”Bell System Technical
Journal, pp. 958–999, 1959.

[3] R. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,”IEEE Trans. on Comp., vol.
C-35, no. 8, pp. 677–691, Aug. 1986.

[4] R. Drechsler and D. Sieling, “Binary Decision Dia-
grams in Theory and Practice,”Int. Journal on Soft-
ware Tools for Technology Transfer (STTT), pp. 112–
136, May 2001.

[5] U. Kebschull, E. Schubert, and W. Rosenstiel, “Mul-
tilevel Logic Synthesis Based on Functional Decision
Diagrams,” inProceedings of the 3rd European Con-
ference on Design Automation, 1992, pp. 43 – 47.

[6] U. Kebschull and W. Rosenstiel, “Efficient Graph-
based Computation and Manipulation of Functional
Decision Diagrams,” inProceedings of the 4th Eu-
ropean Conference on Design Automation, 1993, pp.
278–282.

[7] R. E. Bryant, “On the Complexity of VLSI Imple-
mentations and Graph Representations of Boolean
Functions with Application to Integer Multiplication,”
IEEE Trans. on Comp., vol. 40, no. 2, pp. 205–213,
Feb. 1991.

[8] B. Becker, R. Drechsler, and R. Werchner, “On the
Relation Between BDDs and FDDs,”Information and
Computation, vol. 123(2), pp. 185–197, 1995.

[9] B. Becker, R. Drechsler, and M. Theobald, “OKFDDs
versus OBDDs and OFDDs,” inProceedings of the In-
ternational Colloquium on Automata, Languages and
Programming (ICALP), 1995, pp. 475–486.

[10] R. Drechsler and B. Becker, “Ordered Kronecker
Functional Decision Diagrams – A Data Structure for
Representation and Manipulation of Boolean Func-
tions,” Trans. on CAD, vol. 17, no. 10, pp. 965–973,
October 1998.

[11] R. Drechsler, B. Becker, and A. Jahnke, “On Vari-
able Ordering and Decomposition Type Choice in
OKFDDs,” IEEE Trans. on Computers, vol. 47, no. 12,
pp. 1398–1403, Dec. 1998.

[12] M. Karpovsky,Finite Orthogonal Series in the Design
of Digital Devices. John Wiley & Sons, 1976.

[13] J. E. Rice, “Autocorrelation Coefficients in the Repre-
sentation and Classification of Switching Functions,”
Ph.D. dissertation, University of Victoria, 2003.

[14] A. Hett, “PUMA,” 1995, decision dia-
gram software, see http://ira.informatik.uni-
freiburg.de/software/puma/pumamain.html.

[15] R. Drechsler and B. Becker, “Dynamic Minimiza-
tion of OKFDDs,” inProceedings of the International
Conference on Computer Design: VLSI in Computers
and Processors (ICCD), 1995, pp. 602–607.

[16] D. Wessels, “Efficient Approximation of Spectral and
Autocorrelation Coefficients,” inProceedings of the
IEEE Region Ten Conference on Digital Signal Pro-
cessing Applications (TENCON), 1996.

[17] J. E. Rice and R. Jansen, “Symmetrical, Dual and Lin-
ear Functions and Their Autocorrelation Coefficients,”
submitted to IWLS2005.

