
Configurable Hardware Solutions for Computing
Autocorrelation Coefficients: a Case Study

to be presented at FPGA2005

J. E. Rice
University of Lethbridge

Dept. of Math & Computer
Science

Lethbridge, Alberta, Canada

j.rice@uleth.ca

K. B. Kent
University of New Brunswick
Faculty of Computer Science
Fredericton, New Brunswick,

Canada

ken@unb.ca

ABSTRACT
There are many computationally intensive problems in the
area of digital design and logic synthesis. Some of these
have no “good” solution; that is, simply by their definition
they have exponential run-times. In order to overcome this,
we examine the possibility of a configurable hardware solu-
tion to speed up one such problem. The computation of the
problem is carried out on a Field Programmable Gate Array
(FPGA), where the problem is encoded in such a way that
within certain parameters, the design of the solution need
not be changed for working with a variety of benchmark
circuits. This saves considerably on compilation and config-
uration times. The use of configurable hardware, however,
still allows for configuration in situations where the param-
eters change significantly enough to require an altered ap-
proach. We examine two implementations of the problem,
which in this case consists of computing the autocorrelation
coefficients for a Boolean function.

Categories and Subject Descriptors
B.7.1 [Hardware]: Integrated CircuitsTypes and Designs

General Terms
Design

1. INTRODUCTION
1.1 Configurable Hardware
One technique for accelerating computation is to introduce
configurable hardware solutions. This has been done for
the computation of various problems such as image com-
pression [3], string matching [5], and problems such as the
Hamiltonian cycle problem [10]. In this work we apply this
technique to the computation of a mathematical transform
known as the autocorrelation transform. By making use of

hardware to perform all or part of the algorithm it is possi-
ble to not only speed up the computations, but also to do
some of them in parallel. The application of configurable
hardware to this problem was first introduced in [6].

1.2 Application
Boolean functions are functions for which the inputs and the
output(s) are restricted to the Boolean domain. If a trans-
form such as the autocorrelation transform is applied to the
output vector of a Boolean function, the result is a repre-
sentation of the function in a non-Boolean domain. This
representation is generally referred to as the autocorrelation
coefficients of the function.

The autocorrelation coefficients provide a measure of the
function’s similarity to itself, shifted by a given amount.
This is also called the cross-correlation, or convolution func-
tion. The autocorrelation coefficients have been used in var-
ious areas including optimisation and synthesis of combina-
tional logic [12], variable ordering for ROBDDs [8], and to
compute the estimate C(f) of a function’s complexity [12,
4]. However, the commonly used methods of computation
are exponential in the number of inputs to the function(s),
which somewhat limits their practical use. Prior work [6]
demonstrated that there is value in implementing this par-
ticular problem in hardware in order to overcome this prob-
lem of exponential computation requirements; however, the
choice of algorithm, architecture, and other variables play a
large role in the degree of success.

1.3 The Approaches
In this paper we compare two approaches to the problem.
The first approach, based on the initial work in [6], uses an
instance-specific approach based on a BDD representation
of the input. Additional work is introduced that improves
resource usage. The second approach is a parameter-specific
approach, also attempting to maximise resource usage.

2. BACKGROUND
2.1 The Autocorrelation Transform
The autocorrelation function is defined as follows [4]:

B f f (u) =

2n−1∑
v=0

f(v) · f(v ⊕ u) (1)

The superscripts f f are generally omitted. Values for u
range from 0 to 2n − 1 where n is the number of inputs
to the Boolean function f(X). Clearly there are 2n possible
coefficients B(u) that may be computed for a given function.
The brute-force application of this equation, even for a single
value of u requires an exponential number of operations.
However, as discussed in the following sections there are
various techniques that may be employed that reduce the
computation requirements to a certain extent.

For multiple-output functions a second step must be per-
formed to combine the autocorrelation function for each of
the individual functions into the total autocorrelation func-
tion. Only single-output functions are considered in this
paper.

2.2 Approach 1
In the first approach a Binary Decision Diagram (BDD) [2,
1] is used in the representation of the function for which the
coefficients are to be computed. This technique is based on
a software technique introduced in [7]. The use of BDDs sig-
nificantly reduces the amount of processing required, simply
due to the fact that most Boolean functions have a fairly
compact BDD representation. This has the added advan-
tage in this work of ensuring that the problem is compact
enough to be implemented on our chosen device.

The theory behind an instance-specific approach is that for
some classes of problems it may be possible to utilise a con-
figurable device not for a general problem, but rather for
a specific instance of a problem. For certain applications
with desirable characteristics this can achieve a high per-
formance increase [10]. Some characteristics that make the
calculation of a problem suitable for this computation tech-
nique are that:

1. the computation is intensive and time consuming; this
is a required characteristic needed to offset the penalty
for generation of the hardware design, and

2. the computation is relatively self-contained. This is
suitable to allow the generated hardware design to be
compact enough to fit within an available re-programmable
device.

A software application, using a generic circuit solution, is
then used to create a circuit description to compute the
solution for a specific input case. Both the generic circuit
and the instance-specific circuit are specified in some manner
that is accepted by the traditional CAD design tools being
used, for example VHDL or verilog.

One problem that may arise in the circuit generation lies in
how to choose amongst various levels of parallelism. The
level of parallelism must be based both on the problem and
on the characteristics of the FPGA. Certain amounts of par-
allelism will be inherent to the chosen approach; however,
the tools used in the generation of the instance-specific cir-
cuit should be aware of the target environment and how the
resulting circuit will be placed and routed. At the early
stages in the design flow this information is not known and

therefore must be predicted with a reasonable level of ac-
curacy in order to maximise the usage of the available re-
sources.

2.3 Approach 2
The second approach is based on a significantly different al-
gorithm, also introduced in [7]. This technique requires that
the input function be pre-processed, in software, such that
the input to the FPGA is a list of disjoint cubes describing
the on-set of the problem. The reader is directed to [11] for
one algorithm for the computation of disjoint cube lists. The
hardware is then used to implement a series of comparisons
of the disjoint cubes, each of which compute a contribution
to the overall coefficient values.

Unlike the above approach, the second approach can best
be described as parameter-specific. Rather than requiring
a new circuit for every new instance of the problem, we
design a circuit that may be used for many instances of the
problem, as long as they fall within certain parameters. One
advantage over the above approach is that configuration is
required far less often. However, the circuit is – of necessity
– not optimally designed for any particular instance.

3. CIRCUIT ARCHITECTURES
3.1 Instance-Specific Circuit Architecture
The hardware architecture used in approach 1 is described
in detail in [6]. Briefly, the hardware architecture for this
solution consists of three main components: a function com-
ponent, the calculator, and the controller. This architecture
is depicted in Figure 1. The function component contains
the logic function for which the autocorrelation coefficients
are being computed. Two instances of this component are
used, one for each function calculation that is required for
each summation. This component contains an embedding of
the BDD representation of the logic function. The most im-
portant aspect of this is that it provides a means of storing
the function that, in general, will not require exponential
size. The calculator is responsible for performing the logic

Calculator

Controller

Function

Function

Figure 1: Architecture of the instance-specific de-
sign used in approach 1.

exclusive-or and summations of the autocorrelation function
on inputs that are received from the function component(s).
The controller process, as the name suggests, controls the
overall computation process and the storing of its results.
The controller is also responsible for sending inputs to each
of the functions for computation.

3.2 Parameter-Specific Circuit Architecture

Figure 2: Architecture of the parameter-specific de-
sign used in approach 2.

Briefly, the process for computing B(u) is as follows:

• for each cube in the disjoint cube list

– compute cube ⊕ u

– search for the new cube or one containing it in
the cube list

– if found add 2 to the sum register as the contri-
bution to the coefficient

Complete details are given in [7].

As shown in Figure 2, a daughter-board with on-board SRAM
for storage of the input function was utilised. One of the
keys to this algorithm is that the number of don’t cares in
each cube must be counted. This is done by the hardware
solution, and is optimised by counting both halves of each
cube word in parallel. We should note that there is a limit
of one memory access to the SRAM per clock cycle; thus the
design was optimised to minimise SRAM accesses and store
any intermediate results on-chip.

3.3 Space Utilisation
As was found in both approaches, computation of the au-
tocorrelation transform is a highly parallel problem. Many
of the tasks performed in the process are not dependent on
their ordering; thus there is the flexibility to add a certain
degree of parallelism to the solutions. However, in each ap-
proach, it was necessary to balance the addition of parallel
computing components with the additional complexity and
overhead such additions required.

In approach 1, the architecture currently calculates one term
of the summation each clock cycle. Given no restriction on
design space, an obvious enhancement to the architecture
would be to replicate the function components. This repli-
cation would allow for multiple terms of the summation to
be computed in parallel during one clock cycle. Changes to
the controller and calculator in support of these replications
should require minimal design space. The function compo-
nent, however, is more demanding on design space. The size
requirements of this component is dependent on the size of
the BDD representation of the logic function. The problem
is that to create the design, some estimate of the space re-
quirements is required during the generation of the design
so that the optimal amount of parallelism can be built in to
the design.

In the parameter-specific design a slightly different approach
to the addition of parallelism was used. As shown in Fig-
ure 2, the u generator generates 64 values in parallel, which
are then passed in one clock cycle to the comparator. The
comparator is designed to have 64 comparator sub-components
in order to support this. Thus for the computation of a single
coefficient there is no real advantage, but for computations
of more than one coefficient up to 64 can be performed in
parallel.

4. EXPERIMENTAL RESULTS
The results given are for a series of single-output bench-
marks from the ISCAS 89 set with a maximum of 32 inputs,
as shown in Table 1. This is due to the limitations of a 32-bit

function inputs BDD size (nodes)
9symml 11 25
cm152a 11 16
co14 14 27
ex10 5 6
ex20 5 11
ex30 5 10
life 9 26
majority 5 8
max46 9 75
mux01 21 33
ryy6 16 21
sym10 10 31
xor5 5 6

Table 1: The functions used in these experiments
and their sizes in terms of inputs and BDD nodes.

word size and 219 cubes inherent to the second approach.
Extensions to larger functions are discussed in Section 5.

4.1 CLB Utilisation
4.1.1 Approach 1

In approach 1 each test utilised a varying amount of par-
allelism: 2 function computations (one summation term) in
parallel, 4, 6, 8 and so on with the maximum amount com-
puted in parallel being 14. For each test the percentage of
CLBs utilised was measured, along with the minimum pe-
riod (giving a maximum possible frequency) and the speed
of computation, calculated based on the frequency. These
experiments were conducted using the Xilinx Foundation 3.1
tool set targeting the XC 4062XLA FPGA. Table 2 presents
the complete results for one of the benchmarks, ryy6. The
first column lists the number of parallel computations that
were attempted. As illustrated by this table, it is possible
to maximise CLB usage through additional function com-
ponents; however, this has the result of lowering the clock
speed of the device. This drawback was not encountered
in the second approach. Additionally, the highest amount
of parallelism does not necessarily lead to the fastest com-
putation time. Finally, these results, while indicative of the
general results for other benchmarks, do not necessarily hold
for all benchmarks since this is an instance-specific approach
and the circuit will vary for each instance of the problem.
This is illustrated by the results shown in Table 3, which
shows the amount of parallelism (column 2) resulting in the
fastest computation for each of the benchmarks used when

CLB Computation Min. Max.
Usage time (sec) period (ns) freq. (MHz)

2 31% 100.17 23.323 42.876
4 35% 52.132 24.276 41.193
6 38% 34.511 24.106 41.483
8 42% 33.038 30.769 32.500
10 46% 32.828 38.217 26.166
12 49% 31.814 44.444 22.500
14 53% 34.905 56.889 17.578

Table 2: Complete CLB usage and timing results
for the benchmark ryy6 using the instance-specific
approach.

function CLB Computation Max.
Usage Time Freq. (MHz)

9symml 8 43% 17.944 ms 36.522
cm152a 12 50% 298.35 ms 27.268
co14 10 49% 1820.5 ms 29.491
ex10 8 40% .06962 ms 36.769
ex20 8 40% .07025 ms 36.438
ex30 10 44% .07187 ms 28.493
life 10 46% 18.104 ms 28.959
majority 12 47% .06767 ms 25.220
max46 10 61% 19.268 ms 27.210
mux01 10 48% 31188 sec 28.203
ryy6 12 49% 31.184 sec 22.500
sym10 8 43% 74.331 ms 35.267
xor5 10 44% 3556.7 ns 28.791

Table 3: Results showing the fastest computation
times and corresponding amount of parallelism for
approach 1 (instance-specific).

utilising the instance-specific approach. Figure 3 shows a
graph relating the percentages of overall CLB usage, per-
formance, and clock rates to the amount of parallelism in-
troduced. This seems to indicate that the range of 8 to 12
function components in parallel will provide an increase in
performance, depending on the function. This corresponds
to usage of the device ranging from 43% to 61% of the
available CLBs. For most functions, roughly 50% usage is
likely to provide the best performance. The overall maxi-
mum clock rate for the generated circuits began to degrade
rather quickly beyond the threshold of 6 function compo-
nents. An important contributing factor to the performance
is not just the number of CLBs used, but also the density
of the circuit. Increasing the level of parallelism beyond
12 consistently begins a decrease in overall performance. It
was also observed that increasing the number of function
components to above 14 resulted in the circuit failing to
synthesise. This is attributed to the density of the rout-
ing necessary with respect to the controller and calculator
components. Regardless of the number of CLBs available,
beyond this threshold the synthesis tools cannot place and
route the circuit. To demonstrate the importance of place
and route in the maximisation of resource usage, the overall
circuit design is modified to relieve some of the contention of
routing at the controller component. To achieve this design
goal, the calculator component is modified to sum several
functional results instead of just a single sum. While this
increases the incoming communication at the calculator, it

0

20

40

60

80

100

120

2 4 6 8 10 12 14

Function Parallelism

Pe
rc

en
ta

ge

Performance CLB Usage Clock Rate

Figure 3: Percentages of overall CLB usage, perfor-
mance, and clock rates in relation to the amount of
parallelism for approach 1.

reduces the number of calculator components in the overall
design, thus reducing the amount of communication with
the controller . Table 4 shows results for these higher per-
formance circuits, utilising greater levels of parallelism than
was achievable with the original design (column 1). Clearly
the additional parallelism still affects the clock rate, but as
reflected in the speed-up in the computation speed the ad-
vantages of the added parallel computations outweigh this
disadvantage up to a certain point.

CLB Computation Min. Max.
Usage Time Period Freq.

(sec.) (ns) (MHz)
16 60% 19.866 37.003 27.025
18 57% 17.958 37.629 26.575
20 68% 27.716 64.531 15.496
24 82% 24.414 68.212 14.66

Table 4: Results for ryy6 when using improved cir-
cuit design for approach 1.

4.1.2 Approach 2
For approach 2 the Xilinx Virtex 812E chip was targeted
with Xilinx ISE version 5.2i used for place and route. This
chip contains 18,816 4 input LUTs as CLBs (approximately
200,000 logic gates). The design was implemented using
a variety of options, namely a varying number of bits for
storage of each cube and a varying number of coefficient
being computed in parallel. Table 5 gives the resulting CLB
usage, broken down by logic and routing requirements. It
should be noted that for approach 1 all results were obtained
by simulation, while in approach 2 the results were obtained
by actual execution on the targeted device.

4.1.3 Comparisons
With the improved design for approach 1, it was possible to
utilise up to 82% of the CLBs for a particular design. With
the best combination of variables for approach 2, 78% of the

Cube parallel LUTs LUTs for LUT
Bits coeffs for logic routing Usage
32 64 13933 891 78%
26 64 12696 696 71%
21 64 11722 502 62%
15 64 10554 307 57 %
10 64 9588 176 51%
32 32 7412 477 41%
10 32 5119 114 27%
32 1 956 81 5%

Table 5: Space usage of the Xilinx Virtex 812E
chip for various scenarios of the second (parameter-
specific) approach.

CLBs were utilised. The CLB utilisation therefore seems to
be comparable for the two approaches.

4.2 Timing Comparisons
Comparing the timing results of the various approaches for
computing the autocorrelation coefficients is not a trivial
matter; in approach 1 there is a considerable amount of
overhead in the generation for each instance’s design and in
the download and configuration of the device, while in ap-
proach 2 this time applies to each set of parameters that is
used, and there is also preprocessing of the input function
to be considered. espresso -Ddisjoint [9] is used to create
the disjoint cube list, which required less than 1 second in
nearly all cases. Additionally, the cube lists must be pre-
pared as 32 bit words for the DMA transfers; this required
less than 0.1 seconds in all cases. If we assume that all
preprocessing and solution generation/configuration is pre-
viously done, then Tables 7 and 6 provide a comparison of
approach 1, sequential and parallel versions of approach 2,
and two software solutions implemented on an Intel Pen-
tium 4 and SUN SPARC. The software solutions are based
on approach 2, utilising a disjoint cube list.

approach 1 approach 2 approach 2
best result 64 parallel no parallel

(varied) (26 MHz) (26 MHz)
9symml 0.01794 0.2940 1.0069
cm152a 0.2984 0.2680 0.3181
co14 1.821 0.2490 0.4480
ex10 0.00006962 0.2650 0.3024
ex20 0.00007025 0.2680 0.2934
ex30 0.00007187 0.3010 0.2968
life 0.01810 0.2760 0.6843
majority 0.00006767 0.2680 0.3102
max46 0.01927 0.2750 0.3349
mux01 31188 24.5830 309.2230
ryy6 31.814 2.1330 32.8776
sym10 0.07433 1.1740 27.9384
xor5 0.3557 0.2700 0.3058

Table 6: Times in seconds to compute all 2n coeffi-
cients for each of the various hardware approaches.

From the tables several interesting results are obtained. First,
for all of the benchmarks with the exception of ex20, the
Intel Pentium 4 outperformed the Sun SPARC using the

Intel SUN
Pentium 4 SPARC
(2.66GHz) (500MHz)

9symml 0.4160 6.2250
cm152a 0.0400 0.1350
co14 0.1050 1.2030
ex10 0.0001 0.0040
ex20 0.0170 0.0030
ex30 0.0001 0.0020
life 0.1790 3.2750
majority 0.0001 0.0020
max46 0.0430 0.3940
mux01 440.4620 7837.2870
ryy6 15.6440 338.1470
sym10 14.1680 383.2700
xor5 0.0001 0.0150

Table 7: Times in seconds to compute all 2n coeffi-
cients for each of the various software implementa-
tions.

same software implementation. When comparing the two
versions of approach 2, with and without parallelism, the
parallel version outperformed the sequential version in ev-
ery benchmark except ex30. This is attributed to the small
size of the benchmark as demonstrated by the extremely low
computation times required for all implementations. In such
a small time frame, the overhead of performing the parallel
computations outweighs the gains in performance.

In comparisons of the results from the various hardware and
software implementations we can see that it is possible to
achieve a performance gain of up to 18 times through the use
of parallelism in hardware. However, as above, given a small
benchmark, the parallel version can provide a performance
decrease. For the ex2 benchmark software outperformed
hardware by a factor of approximately 18.

Comparing the two hardware approaches is very interest-
ing. The parameter-specific version provides more “con-
sistent” results while the instance-specific version provides
a great deal of speed-up in some cases while a significant
performance in some cases, most notably for the bench-
mark mux01. One must take into consideration here the
underlying approach; it is likely that the BDD approach
is simply not feasible for this particular benchmark. In-
deed, in comparisons between software and hardware for
these tests we must take into account that the underlying
approach of either a BDD or a cube-list will perform bet-
ter for some benchmarks and worse for others. In these
experiments the instance-specific BDD-based approach out-
performed the parameter-specific cube-list approach for 8
out of the 13 benchmarks. These correspond loosely to the
smaller of the benchmarks, in terms of numbers of inputs
variables. BDD size does not, however, seem to be a factor.
This can be seen in the fact that for sym10 the BDD has 31
nodes and the BDD approach still out-performs the other
approaches. On the other hand the BDD for mux01 has 33
nodes and the BDD approach is significantly slower than all
the other implementations.

5. CONCLUSION

This paper reports the results of implementing a problem
used in logic synthesis, the computation of a logic function’s
autocorrelation transform. Two configurable hardware ap-
proaches are used and are compared to software implemen-
tations on two common platforms.

It is clear that the use of configurable hardware can provide
some speed-up in the computation of this problem. Fur-
ther work is required to identify which approach, instance-
specific or parameter-specific, would be most beneficial and
furthermore, which underlying algorithm is best suited to
benchmark in question as this clearly has an effect in the
performance of each of the approaches. Additionally, we
have demonstrated that the addition of parallelism in each
approach can lead to speed-up of the computation, but that
there is a limited amount that may be added, beyond which
the additional complexity of the circuit outweighs the ad-
vantage of the added circuitry.

As mentioned earlier, the techniques used are currently lim-
ited to fairly small functions, and only to single-output func-
tions. Computation for multiple-output functions is cur-
rently being investigated, and would require some modifica-
tion of each of the techniques. However, the parallelism cur-
rently implemented could be rededicated to the computation
for multiple outputs, and would be a relatively straightfor-
ward modification. Approach 1 is limited only by the the
size of the BDD for the logic function, and so this compu-
tation technique can be extended to larger functions if they
have relatively small BDD sizes. Approach 2 is currently
limited by a 32 bit word size for storing cubes, but this could
be modified to allow larger word sizes, and if necessary, mul-
tiple downloads to the daughter-board’s SRAM from the
host computer. Thus neither of these current limitations
present a major drawback to the hardware techniques.

The major drawback, at least in the case of approach 1, is
the time required to generate an instance circuit and then
to configure the target device. This is a drawback of any
instance-specific approach, and requires that the instance of
the application being targeted be utilised often enough that
the overhead is offset by the time saved in using a hard-
ware approach. Approach 2 still requires this overhead, but
the additional time requirements are offset even further due
to the fact that this is a parameter-specific approach, and
therefore more instances can be solved without having to
configure the device. In fact, all of the sample benchmarks
investigated in this work were solved by one set of parame-
ters – the main restriction being the 32-bit word size. One
approach to this problem is to create many BIT (config-
uration) files for the problem,and have a preprocessor se-
lect the appropriate configuration for the instance function.
Fewer resources would then be required for smaller input
sizes which results in an increase in the clock rate. This
idea could be extended so that the host workstation records
the current FPGA configuration. With knowledge of the
configuration we can reduce runtime by ≈ 0.250 seconds.
This would be significant if we only needed to calculate one
coefficient, and would make much better use of the config-
urable aspects of the target FPGA.

6. FUTURE WORK

An interesting line of research begun in this paper is that
of the development of heuristics to “foresee” the optimal
amount of parallelism to introduce to a solution design, as
indicated by the experiments run with approach 1. Some
knowledge of the solution design is clearly required, as shown
by the improvements in Table 4. Additionally, knowledge
of the specific instance solution is required; for instance,
with a high number of inputs to the BDD representing the
logic function, additional CLBs must be utilised for routing
purposes only. When the number of CLBs utilised for logic
exceeds 50% of the total resources, routing becomes much
more difficult and adversely affects the performance.

Additional work is currently investigating these factors with
the goal of developing heuristics for predicting optimal par-
allelism in instance-specific configurable solutions.

7. ADDITIONAL AUTHORS
Additional authors: T. Ronda (University of Lethbridge,
email: troy.ronda@uleth.ca) and Z. Yong University of
New Brunswick, email: b15v3@unb.ca)

8. REFERENCES
[1] S. Akers. Binary Decision Diagrams. IEEE Trans. on

Comp., C-27(6):509–516, June 1978.

[2] R. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Comp.,
C-35(8):677–691, Aug. 1986.

[3] J. Heron, D. Trainor, and R. Woods. Image
Compression Algorithms Using Re-configurable Logic.
Technical report, Virtual Computer Corporation, year
unknown. downloaded from www.vcc.com.

[4] M. Karpovsky. Finite Orthogonal Series in the Design
of Digital Devices. John Wiley & Sons, 1976.

[5] H. Lee and F. Ercal. RMESH Algorithms For Parallel
String Matching. In Proceedings of the 3rd
International Symposium on Parallel Architectures,
Algorithms and Networks (I-SPAN’97), pages
223–226, 1997.

[6] J. Rice and K. Kent. Using Instance-Specific Circuits
to Compute Autocorrelation Coefficients. In
Proceedings of the First Annual Northeast Workshop
on Circuits and Systems (NEWCAS), 2003.

[7] J. E. Rice and J. C. Muzio. Methods for Calculating
Autocorrelation Coefficients. In Proceedings of the 4th
International Workshop on Boolean Problems, (IWSB
P2000), pages 69–76, 2000.

[8] J. E. Rice, J. C. Muzio, and M. Serra. The Use of
Autocorrelation Coefficients for Variable Ordering for
ROBDDs. In Proceedings of the 4th International
Workshop on Applications of th e Reed-Müller
Expansion in Circuit Design, 1999.

[9] R. Rudell. Espresso minimization tool man pages.

[10] M. Serra and K. Kent. Using FPGAs to Solve the
Hamiltonian Cycle Problem. In Proceedings of the
International Symposium on Circuits and Systems
(ISCAS), 2003.

[11] M. Thornton and L. Shivakumaraiah. Computation of
Disjoint Cube Representations Using a Maximal
Binate Variable Heuristic. In Proceedings of the IEEE
Southeastern Symposium on System Theory, pages
417–421, 2002.

[12] R. Tomczuk. Autocorrelation and Decomposition
Methods in Combinational Logic Design. PhD thesis,
University of Victoria, 1996.

