
ANTISYMMETRIES IN THE REALIZATION OF BOOLEAN
FUNCTIONS

J. E. Rice and J. C. Muzio

VLSI Design and Test Group, Dept. of Computer Science
University of Victoria, BC, Canada

[jrice, jmuzio]@csr.uvic.ca

ABSTRACT
New symmetries of degree two are introduced, along with
spectral techniques for identifying these symmetries. Some
applications of these symmetries are discussed, in particular
their application to the construction of binary decision dia-
grams and the implementation of Boolean functions.

1. INTRODUCTION

Partial symmetries exist in most Boolean functions, particu-
larly those used in practical applications. Both total and par-
tial symmetry properties are commonly used in synthesis of
digital circuits [1], [2], [3], [4], particularly in the reduction
of the size of Binary Decision Diagram (BDD) representa-
tion of functions [5], [6].

Various literature on partial and total symmetries exists
(see section 2.2). However, most of the documented sym-
metry properties depend on the identification of two identi-
fical subfunctions within a Boolean function. In this paper
we examine partial symmetries that occur when one of the
subfunctions is not identical to the other, but is instead the
inverse of the other. We refer to these as antisymmetries,
certain types of which were introduced by Tsai and Marek-
Sadowska in [3] as skew-symmetries.

Symmetries, whether partial or total, are useful if they
can be detected and provide assistance in terms of a func-
tion’s implementation or representation. We present a method
for detecting any antisymmetry of degree two based on the
function’s spectral coefficients. We also demonstrate exam-
ples of their use in logic synthesis or minimization of func-
tion realizations, and hypothesize that the antisymmetries can
be incorporated into known methods for BDD minimization.

2. PRELIMINARIES

In this section essential notations and definitions are presented.
We assume throughout this paper that all Boolean functions
are completely specified. We also assume that the reader is
familiar with common representations of Boolean functions
such as Karnaugh-maps and truth tables, and introduce only
the representations pertinent to this paper.

2.1. Notation
Subfunctions based on two variables are used through-
out this paper. Without loss of generality we label them
allowing us to simplify the definitions and use the following
notation:

2.2. Symmetries
Many types of symmetries exist, such as total symmetries,
equivalence and nonequivalence symmetries [1], quasisym-
metries [7] and partial symmetries [7], [5]. In this section
we define the symmetries on which our work is based.

Let be a completely specified Boolean func-
tion and be the corresponding set of vari-
ables. A function is said to be symmetric with respect to
a set if remains unchanged for all permutations
of the variables in . If then we say that the func-
tion is totally symmetric, otherwise we say that it is partially
symmetric over the variables in [8].

A symmetry of degree two is a partial symmetry in which
the two subfunctions that are identical are independent of
two of the function’svariables. Our antisymmetries are based
on Hurst et. al’s. definitions of equivalence, nonequivalence
and single-variable symmetries, which are all symmetries of
degree two [1].

A Boolean function is said to possess an equivalence
symmetry if there exist two variables such
that . This is written . Non-equivalence
symmetries are written and are defined as

, and a third type of symmetry called single-variable sym-
metries are written or and are de-
fined as or .

2.3. Spectral Coefficients
The spectral coefficients of a Boolean function are a repre-
sentation of the function that is not restricted to the



domain. If the outputs of a Boolean function are encoded as
then we use to refer to the output vector of the

function1.
The spectral coefficient vector for is defined as

(1)

where is some transform matrix such as the Hadamard,
Walsh or Rademacher-Walsh matrix [1].

The spectral coefficient vector can be subdivided into sub-
vectors according to which variables are related to the partic-
ular coefficient. This subdivision is as follows when based
on variables and : is the top quarter of the co-
efficients2, is the second quarter, is the third quarter,
and is the last quarter of the coefficients.

Similarly, we define the spectral coefficient vectors for
these subfunctions described at the beginning of this section
as follows:

where is the output vector for and so on.
The relationship between , , , and to , ,

, and is as follows [1]:

(2)

2.4. BDDs
Binary Decision Diagrams (BDDs) were first introduced by
Lee [9] and later by Akers [10].

A BDD is defined as [11]

a binary directed acyclic graph with two leaves
TRUE and FALSE, in which each non-leaf node
is labeled with a variable and has two out-edges,
one pointing to the subgraph that is evaluated if
the node label evaluates to TRUE and the other
pointing to the subgraph that is evaluated if the
node label evaluates to FALSE.

Every node in the BDD represents either a literal in the
Boolean function, or its complement. Every non-leaf node
has two outward edges leading to two other nodes. If the
node has a value of “1” (TRUE) then, to obtain the value of
the expression, one follows the edge marked “1” and eval-
uates that node. Similarly, if the node has a value of “0”
(FALSE), one follows the edge marked “0” and evaluates
that node. This process is repeated until a leaf node with the

1the encoded output vector is generally referred to as .
2Note that this assumes the Hadamard ordering of the spectral vector

value “1” or “0” is reached reached, and the evaluation is
complete. The direction of the edges from each node is not
explicitly marked, but is understood to be from the root to-
wards the leaf nodes.

BDDs are commonly used in their canonical form. This
simplified form has the property that any two equivalent Boolean
functions have the same canonical BDD if the same variable
ordering is used. This canonical form is called a ROBDD,
or Reduced Ordered Binary Decision Diagram. Again, it is
generally understood that when using the term BDD one is
referring to a ROBDD.

A ROBDD is a reduced BDD with a specified ordering
of variables. A ROBDD meets two main specifications:

a BDD is a reduced BDD if it contains no vertex whose
left subgraph is equal to its right subgraph, nor does
it contain distinct vertices and such that the sub-
graph rooted by and are isomorphic.
a BDD is an ordered BDD if on every path from the
root node to an output, the variables are encountered
in the specified order.

Another commonly used method of reducing the size of
a BDD is to introduce inverters. These are indicators on the
path to a subgraph that are used to mark that the subgraph is
inverted.

3. ANTISYMMETRIES OF DEGREE TWO

Based on the the equivalence, nonequivalence and single-
variable symmetries we introduce some additional types of
symmetries of degree two. We call these symmetries anti-
symmetries.

A Boolean function is said to possess an anti-equivalence
symmetry if

Table 1 summarizes the various types of antisymmetries
and their definitions.

Antisymmetry Definition

Table 1. Definitions and notation for the antisymmetries.

4. CONDITIONS AND TESTS FOR THE
ANTISYMMETRIES

[3], [6], and [12] each present methods of (anti)symmetry
detection based on BDDs. In this section we present both
conditions and tests for the antisymmetries based on the func-
tion’s spectral coefficients. Until recently, the spectral co-
efficients were considered too expensive to compute and so



this technique was not popular. However, Thornton et. al.
have presented methods for efficient calculation of the spec-
tral coefficients based on BDDs [13], thus making spectral
techniques feasible for many practical functions.

Based on the definitions of the various antisymmetries
we recall that can be defined as , or,
since the effect of negating a function is to change the sign
of all the spectral coefficients, we have . This is
the necessary condition for the anti-equivalence symmetry
on to exist.

Using Equation 2 we get . This is the test for
the existence of the anti-equivalence symmetry in a Boolean
function. This process can be extended to any variables
by selecting the appropriate subvectors and .

The table below summarizes the conditions and tests we
have derived for each of the antisymmetries:

Symmetry Condition Test

Table 2. Spectral conditions and tests for the antisymmetries
of degree two.

Detection of the antisymmetries is also relatively straight-
forward with the use of representations such as Karnaugh-
maps and BDDs. However, there is some dependency on
the chosen ordering of variables, particularly with the use of
Karnaugh-maps.

5. APPLICATIONS

5.1. BDD Minimization
The use of symmetries to minimize Binary Decision Dia-
gram (BDD) or related representations is well-documented
[6], [14], [15], [16], [17]. Much research has demonstrated
that a function’s symmetry properties may reduce the size of
the BDD or related data structure such as Functional Deci-
sion Diagrams (FDDs) [5], [15], [18], [19].

In particular, Scholl et. al. present a method of BDD
minimization based on symmetries [15]. This method is based
on heuristics which identify partial symmetries within a func-
tion. It is our hypothesis that such heuristics can be expanded
to incorporate the antisymmetries that we have defined. This
would allow identification of situations where an antisym-
metric portion of a function could be shared within the struc-
ture of the BDD.

Figure 1 shows a 4 variable Boolean function possessing
.

Figure 2 shows the BDD for this function. The branches
which could be shared due to the anti-equivalence symmetry

Fig. 1. The Karnaugh map for a Boolean function possess-
ing .

have been indicated by the boxes.

110 0101100100 100

2
x

2
x

2
x

2

x

3
x

3
x

4
x

1

x

x
1

x
1

x
1

x
1

x
1

x
1 1

x

Fig. 2. A BDD showing two branches which display an anti-
equivalence symmetry. Note that the left edge from each
node is the 0 edge while the right is the 1 edge.

5.2. Logic Synthesis Application
An example of how the antisymmetries in a function can re-
duce the complexity of the function’s logic implementation
is shown below.

Fig. 3. a) the Karnaugh map for
. b) the Karnaugh

map for .

Function , shown on the left in Figures 3 and 4, pos-
sesses the antisymmetry . Knowing this, we can
manipulate the function in such a way that results in a func-
tion of a reduced size, plus some additional logic to convert
the reduced function into the desired function. The reduced
function is shown on the right in Figures 3 and 4.

The advantage of using to implement the function is
that there is a greatly reduced number of blocks in the Karnaugh-
map. This leads to a smaller number of overall inputs be-
ing required, as well as possibly improving routing require-
ments on an FPGA-type implementation. Additionally,
clearly has many more symmetries that can be identified, and
repeating this process allows us to realize a circuit that has



Fx2
x3
x4

x1

x3

x1

x4

F*x2
x3
x4

Fig. 4. a) Representation of . b) Representation of
in terms of a reduced function, .

approximately one-half the complexity of that resulting di-
rectly from the original sum-of-products description.

6. CONCLUSIONS

We have presented symmetries of degree two that are based
on the inverse of a portion of a function. Prior symmetry
definitions have not incorporated this possibility, and thus
possible advantages may have been overlooked. We suggest
that making use of our definitions of the antisymmetries may
improve even further known heuristics for ROBDD ordering
that are based on partial symmetries of a function, as well as
leading to improved synthesis techniques.

It is thought that these techniques will improve the ex-
isting heuristics for BDD minimization, and lead to the pos-
sible development of new heuristics for ROBDD ordering
based on the antisymmetries. Additionally, this work may
be able to be extended to symmetries of degree for ,
incompletely specified functions, and multi-valued logic.

7. REFERENCES

[1] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral
Techniques in Digital Logic, Academic Press, Inc., Or-
lando, Florida, 1985.

[2] B. Kim and D. L. Dietmeyer, “Multilevel Logic Syn-
thesis of Symmetric Switching Functions,” IEEE
Trans. on CAD, pp. 436–446, Apr. 1991.

[3] C.-C. Tsai and M. Marek-Sadowska, “Generalized
Reed-Muller Forms as a Tool to Detect Symmetries,”
IEEE Trans. on Comp., pp. 33–40, Jan. 1996.

[4] V. N. Kravets and K. A. Sakallah, “Constructive
Library-Aware Synthesis Using Symmetries,” in
DATE, 2000.

[5] L. Heinrich-Litan and P. Molitor, “Least Upper
Bounds for the Size of OBDDs Using Symmetry Prop-
erties,” IEEE Trans. on Comp., pp. 360–368, Apr.
2000.

[6] S. Panda, F. Somenzi, and B. Plessier, “Symmetry de-
tection and dynamic variable ordering of decision dia-
grams,” in ICCAD, 1994.

[7] C. Meinel and T. Theobald, Algorithms and Data
Structures in VLSI Design, Springer-Verlag, 1998.

[8] L. Litan, P. Molitor, and D. Möller, “Least Up-
per Bounds on the Sizes of Symmetric Variable Order
based OBDDs,” in Proceedings of the Great Lakes
Symposium on VLSI, 1996, pp. 680–684.

[9] C. Y. Lee, “Representation of Switching Circuits by
Binary Decision Diagrams,” Bell System Technical
Journal, pp. 958–999, 1959.

[10] S. Akers, “Binary Decision Diagrams,” IEEE Trans.
on Comp., vol. C-27, no. 6, pp. 509–516, June 1978.

[11] K. Karplus, “Using if-then-else DAGs for Multi-Level
Logic Minimization,” Tech. Rep. UCSC-CRL-88-29,
University of California Santa Cruz, Nov. 1988, ftp’d
from ftp.cse.ucsc.edu, 20 pages.

[12] D. Möller, J. Mohnke, and M. Weber, “Detection of
symmetry of boolean functions represented by ROB-
DDs,” in ICCAD, 1993, pp. 680–684.

[13] M. A. Thornton and V. S. S. Nair, “Efficient Calcula-
tion of Spectral Coefficients and Their Applications,”
IEEE Trans. on CAD, Nov. 1995.

[14] R. Drechsler and D. Sieling, “Binary Decision Dia-
grams in Theory and Practice,” STTT, pp. 112–136,
May 2001.

[15] C. Scholl, D. Möller, P. Molitor, and R. Drechsler,
“BDD Minimization using Symmetries,” IEEE Trans.
on CAD, pp. 81–99, Feb. 1999.

[16] Randal E. Bryant, “On the Complexity of VLSI Im-
plementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication,”
IEEE Trans. on Comp., vol. 40, no. 2, pp. 205–213,
Feb. 1991.

[17] R. E. Bryant, “Symbolic Boolean Manipulation with
Ordered Binary-Decision Diagrams,” in ACM Com-
puting Surveys, vol. 24. Sept. 1992.

[18] C. Scholl, S. Melchior, G. Hotz, and P. Molitor,
“Minimizing ROBDD Sizes of Incompletely Specified
Boolean Functions by Exploiting Strong Symmetries,”
in ED&TC, 1997, pp. 229–234.

[19] R. Drechsler and B. Becker, “Sympathy: Fast Exact
Minimization of Fixed Polarity Reed-Muller Expres-
sions for Symmetric Functions,” in ED&TC, 1995.


