
Antisymmetries in the Representation of Boolean and Multi-Valued Functions
submitted to ISMVL2005

J. E. Rice
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, Alberta, CANADA

j.rice@uleth.ca

J. C. Muzio
Department of Computer Science

University of Victoria
Victoria, British Columbia, CANADA

jmuzio@cs.uvic.ca

Abstract

Detection methods for a class of symmetries called anti-
symmetries are presented. Additionally, logic synthesis ap-
plications of these symmetries are discussed. Both topics
are extended from binary to multi-valued logic.

1. Introduction

Partial symmetries exist in many functions, particularly
those used in practical applications. Both total and par-
tial symmetry properties are commonly used in synthesis
of digital circuits [4, 6].

There is various literature on partial and total symmetries
in binary logic such as [4, 9, 3]. However, most of the doc-
umented symmetry properties depend on the identification
of two identical subfunctions within a Boolean function. In
this paper we examine partial symmetries that occur when
one of the subfunctions is not identical to the other, but is
instead the inverse of the other. We refer to these as anti-
symmetries, certain types of which were introduced by Tsai
and Marek-Sadowska in [16] as skew-symmetries and by
Falkowski and Kannurao in [5] as complement single vari-
able symmetries.

Due to the increasing popularity of multiple-valued
logic, it seems logical to extend these concepts from the
binary to the multiple-valued domain. Symmetries in
multiple-valued logic have been discussed in various places
in the literature such as [10, 1, 2, 11, 15]. [1] and [2] dis-
cuss only the totally symmetric case, while the remainder
of these references limit their discussions to permutations
of the function’s variables. or of the variable values. We
extend the idea of partial (anti)symmetries of degree two to
multiple-valued logic.

2. Preliminaries

In this section essential notation and background is pre-
sented. We assume throughout this paper that all functions
are completely specified.

2.1. Symmetries

A function f is said to be symmetric with respect to a
set λ ⊆ Vn if f remains unchanged for all permutations of
the variables in λ. If λ = Vn then we say that the function
is totally symmetric, otherwise we say that it is partially
symmetric over the variables in λ [8].

A symmetry of degree two is a partial symmetry in which
the two subfunctions that are identical are independent of
two of the function’s variables. Antisymmetries are based
on Hurst et. al’s. [4] definitions of equivalence, nonequiv-
alence and single-variable symmetries, which are all sym-
metries of degree two.

A Boolean function f is said to possess an equivalence
symmetry if there exist two variables {xi, xj} ⊆ Vn such
that

f(xn−1, . . . , 0, . . . , 0, . . . , x0) = f(xn−1, . . . , 1, . . . , 1, . . . , x0)

Subfunctions such as these that are based on fixing two
variables are used throughout this paper, and so here we
define a shortened notation. Without loss of generality we
label the variables to be fixed as {xn−1, xn−2} allowing us
to simplify the definitions and use the following notation:

fu = (un−1, un−2, xn−3, . . . , x0)

where

u =

n−m−1
∑

i=0

um+i · pi

In this definition n is the number of variables for the p-
valued function and n−m is the number of variables whose
values are fixed, which in this paper is 2.

Using this shortened notation the equivalence symme-
try can then be defined as f0 = f3. and is written
E{xn−1, xn−2}. Non-equivalence symmetries are writ-
ten N{xn−1, xn−2} and are defined as f1 = f2, and a
third type of symmetry called single-variable symmetries
are written S{xn−2|xn−1} or S{xn−2|xn−1} and are de-
fined as f2 = f3 or f0 = f1.

2.2. Spectral Coefficients

In [10] Miller extends a number of spectral tests pre-
sented by Hurst to multiple-valued logic. Here we provide
an overview of this work; however, the reader is directed to
the original paper for details.

As an alternative to the pn entries necessary to define a
function’s truth table we may also specify pn coefficients
that define the function, these coefficients being the spectral
coefficients. In our discussion of the spectral coefficients
we will adopt Miller’s strategy of a matrix notation.

The spectral coefficient vector for a p-valued function
f is defined as follows: let f(v) denote f(xn−1, ..., x0),
where xi = vi, 0 ≤ i ≤ n − 1 and v =

∑n−1
i=0 vip

i. Then

sw =

pn−1
∑

v=0

tw(v)y(v)

where y(v) = af(v), a = e−j 2π

p and j =
√
−1. We write

this as
S = T n · Y (1)

where Y is the vector whose vth element is y(v), S is the
vector whose wth element is sw, and T n is a matrix whose
element in the wth row and vth column is tw(v). If p = 2
then the rows of T n are the Rademacher-Walsh functions.
If p > 2 then they are the Chrestenson functions.

Based on the subfunctions described in Section 2.1 we
denote Yu as the output vector for fu. We can order Y such
that

Y =

Y0

Y1

...
Yβ

where β = 2n−m − 1. We can partition S similarly into
S0, S1, . . . , Sβ where Su consists of sw for which wi =
ui, m ≤ i ≤ n− 1 and each su is then a subvector with pm

elements.
An alternative spectral coefficient vector may be com-

puted using the following definition:

Su = T n−2 · Yu

where Yu is the output vector resulting from subfunction fu.
The relationship between Su and Su is

[S0S1 · · ·Sβ] =
1

pn−m

[

S0S1 · · ·Sβ
]

T n−m (2)

where T n−m is the complex conjugate of T n−m. These
partitions will be used in Section 6 in demonstrating condi-
tions and tests for the existence of antisymmetries.

3. Antisymmetries

The equivalence, nonequivalence and single-variable
symmetries are specific types of partial symmetries of de-
gree two for binary logic. In [13] we have extended this to
the notion of an antisymmetry. Antisymmetries exist when
a Boolean function f possesses two subfunctions that are
the exact inverse of each other. For instance, a Boolean
function f is said to possess an anti-equivalence symmetry
E{xn−1, xn−2} if

f(0, 0, xn−3, . . . , x0) = f(1, 1, xn−3, . . . , x0)

Table 1 summarizes the various types of antisymmetries in
Boolean functions and their definitions.

Antisymmetry Definition
E{xn−1, xn−2} f(0, 0, xn−3, . . . , x0) = f (1, 1, xn−3, . . . , x0)

N{xn−1, xn−2} f(0, 1, xn−3, . . . , x0) = f (1, 0, xn−3, . . . , x0)

S{xn−2|xn−1} f(1, 0, xn−3, . . . , x0) = f (1, 1, xn−3, . . . , x0)

S{xn−2|xn−1} f(0, 0, xn−3, . . . , x0) = f (0, 1, xn−3, . . . , x0)

Table 1. Definitions and notation for the anti-
symmetries.

4. Two-Variable Symmetries in the Multiple-
Valued Case

The notion of a two-variable symmetry can clearly be
extended to the multi-valued case. Equivalence, non-
equivalence and single-variable symmetries may also be
present in p-valued functions. However, simply denoting
the type of symmetry and variables involved is not suffi-
cient, as there are p possible values that the variables may
take. We use the following notation: fi = fj is denoted

Pi,j{xn−1, xn−2}

where i 6= j and i, j ∈ {0, . . . , p2 − 1}. i and j indicate
the values assumed by xn−1 and xn−2 respectively. Again,
we point out that this does not limit the symmetric variables
to xn−1 and xn−2; however, these variables were chosen
for the sake of simplicity and consistency in the notation. It
would certainly be possible to categorize these symmetries
into types matching those defined for p = 2 as equivalence,
non-equivalence and single-variable symmetries; however,
this has not been deemed necessary for this work.

For example, if p = 3 and n = 3 then a possible two-
variable symmetry can be expressed as f2 = f4, which may
then be expanded to f(0, 2, x0) = f(1, 1, x0). An example
function with this partial symmetry is shown in Figure 1.

x2

0 1 2
0 − − −

x1 1 − a −

2 a − −

x2

0 1 2
0 − − −

x1 1 − b −

2 b − −

x0 = 0 x2 = 1

x2

0 1 2
0 − − −

x1 1 − c −

2 c − −

x0 = 2

Figure 1. A function with a partial symmetry
P2,4{x2, x1}.

5. Antisymmetries in the Multiple-Valued Case

In order to extend these partial symmetries to the
p-valued equivalent of our Boolean antisymmetries, the
multiple-valued equivalent of the inverse, or negation oper-
ator must be used. Negation is often extended to multiple-
valued logic as x = p − 1 − x where x is some p-valued
variable, x ∈ {0, . . . , p − 1}. If a balanced, symmetric
encoding of the function outputs is used then this may be
redefined as x = −x, x ∈ {−b p

2c, . . . , b
p

2c}.
However, we may also want to encompass other mod-

ifications of the literals, so we will also consider the fol-
lowing: the cyclic negation of a p-valued variable x ∈
{0, . . . , p− 1} (or a function f) by k is denoted x↑k and is
defined as

x↑k = (x + k) mod p

It follows then, that in multiple-valued logic a number
of possible antisymmetries may be defined. Again, some
defining notation is required.

• A function f possesses an antisymmetry
P

↑k
i,j {xn−1, xn−2} if fi = f

↑k
j , k ∈ {1, ..., p− 1}.

• Alternatively, a function f may possess an antisym-
metry P i,j{xn−1, xn−2} if fi = f j using either of
x = −x, x ∈ {−b p

2c, . . . , b
p
2c} or x = p− 1− x, x ∈

{0, . . . , p − 1}.

For example, Figure 2 illustrates a p = 3, n = 3 function
with the antisymmetry P

↑2
5,0{x1, x0}.

A further comment on notation and labeling is pertinent.
In the p = 2 case, v = (v↑1)↑1; or alternatively, v = v.
However, for most combinations of p > 2 and k 6= 0, v 6=
(v↑1)↑1. Thus it may be necessary to indicate in the notation
for the p-valued cyclic antisymmetry which subfunction is
the operand for the cyclic negation operator. This will be
considered in future work.

x1

0 1 2

0 a↑2 − −

x0 1 − − −

2 − a −

x1

0 1 2

0 b↑2 − −

x0 1 − − −

2 − b −

x2 = 0 x2 = 1

x1

0 1 2

0 c↑2 − −

x0 1 − − −

2 − c −

x2 = 2

Figure 2. An example antisymmetry where
f(x2, 1, 2) = f↑2(x2, 0, 0) for n = 3 and p = 3.

6. Conditions and Tests for the Antisymmetries
in Boolean Functions

In this section we present both conditions and tests for
the antisymmetries of Boolean functions, based on the func-
tion’s spectral coefficients. Until recently, the spectral co-
efficients were considered too expensive to compute and so
this technique was not popular. However, Thornton et. al.
have presented methods for efficient calculation of the spec-
tral coefficients based on BDDs [14], thus making spectral
techniques feasible for many practical functions.

Miller[10] shows that fi = fj has the condition that
Si = Sj and thus a test for the partial symmetries can be
derived to be

[

S0S1 · · ·Sβ
]

(T n−m
i − T n−m

j) = 0]

where T n−m
i is the ith column of T n−m and T n−m

j is the

jth column of T n−m.
Since n−m = 2 and the partition of S =

[

S0S1 · · ·Sβ
]

can be described as follows:

S0 consists of all spectral coefficients sw involving
neither variable at un−1 or un−2;

S1 consists of all spectral coefficients sw involving
only the variable fixed at un−2;

S2 consists of all spectral coefficients sw involving
only the variable fixed at un−1;

S3 consists of all spectral coefficients sw involving
both variables fixed at un−1 and un−2,

we have
[

S0S1S2S3
]

(T 2
i − T 2

j) = 0]

For the antisymmetries this has to be modified, as we
show below. For the antisymmetries the condition is Si =
−Sj or equivalently Si + Sj = 0, as negating a Boolean

function also negates its spectral vector [4]. The test is
therefore

[

S0S1S2S3
]

(T 2
i + T 2

j) = 0] (3)

PROOF:

From Equation 2 we have

Si = 1
pn−m

[

S0S1 · · ·Sβ
]

T n−m
i

Sj = 1
pn−m

[

S0S1 · · ·Sβ
]

T n−m
j .

To detect Si = Sj we look for Si −Sj = 0] and so we have
the test of

1

pn−m

[

S0S1 · · ·Sβ
]

(T n−m
i − T n−m

j) = 0] .

and the constant 1
pn−m is dropped since the desired result is

the 0 vector. This is a slight modification of the general test
for (non anti-) symmetries presented in [10].

Since for the antisymmetries we wish to detect Si =
−Sj we therefore test for Si + Sj = 0] and so

Si + Sj =
1

pn−m

[

S0S1 · · ·Sβ
]

(T n−m
i + T n−m

j) = 0] .

7. Conditions and Tests for the Antisymmetries
in Multiple-Valued Functions

The extension of these techniques to the multiple-valued
case is non-trivial. We first examine a number of examples
to illustrate the problem.

7.1. Antisymmetries Using Negation Based on Bal-
anced Symmetric Encoding

The simplest case to examine is that of a function for
which balanced, symmetric encoding of the outputs is used.
In this case, we can illustrate with a small example that the
use of individual columns of the transform matrix may still
be utilized in detecting antisymmetries. Consider a function
for which p = 3 and n = 2. Then we have

Y =





Y0

Y1

Y2



 , Si = T n−1Yi and S =





S0

S1

S2



 .

From (2) we have

[

S0 S1 S2

]

=
1

3

[

S0 S1 S2
]

T
1
.

where

T
1

=





1 1 1
1 a a2

1 a2 a



 .

Let us further define our function such that for some i, j, i 6=
j, Yi = −Yj . Then Si + Sj = 0] which can be written as

[

S0 S1 S2
]

[

T
1

i + T
1

j

]

= 0] .

This gives conditions for the antisymmetry on S0, S1, and
S2. For example, if Y0 = −Y1 then the condition is

[

S0 S1 S2
]

[

T
1

0 + T
1

1

]

= 0]

[

S0 S1 S2
]





2
1 + a

1 + a2



 = 0]

2S0 + (1 + a)S1 + (1 + a2)S2 = 0] .

This then provides conditions for an antisymmetry of degree
1 where the antisymmetry is f(0, x0) = f(1, x0). The other
possible antisymmetries and their conditions would be

Y0 = −Y2 ↔ 2S0 + (1 + a2)S1 + (1 + a)S2 = 0]
and

Y1 = −Y2 ↔ 2S0 + (a + a2)(S1 + S2) = 0] .

We can then extend this to antisymmetries of degree 2.
Let n = 3 and then from (2) we have

[S0 . . . S8] =
1

9

[

S0 . . . S8

]

T
2

where

T
2

=



















1 1 1 1 1 1 1 1 1
1 a a2 1 a a2 1 a a2

1 a2 a 1 a2 a 1 a2 a

1 1 1 a a a a2 a2 a2

1 a a2 a a2 1 a2 1 a

1 a2 a a 1 a2 a2 a 1
1 1 1 a2 a2 a2 a a a

1 a a2 a2 1 a a a2 1
1 a2 a a2 a 1 a 1 a2



















(4)

Again, the antisymmetry can be expressed as Yi + Yj =
0] and so the conditions can be given by

[

S0 · · ·S8
]

[

T
2

i + T
2

j

]

= 0] .

For example, if the antisymmetry is characterized by Y2 +
Y7 = 0] then

S2 + S7 = 0]
[

S0 · · ·S8
]

[

T
2

2 + T
2

7

]

= 0]

and

(T
2

2+T
2

7)
′ = (2a+a2a+a21+a21+a22a1+a2a2a+1)′.

It is worth noting that Moraga [12] determined that if
balanced, symmetric encoding of inputs and outputs is used,
and if p is odd, S′(w) = S(−w) where S(w) is the spec-
trum of the unaltered function and S ′(w) is the spectrum of
the negation of the function. We are still investigating this
distinction in our work.

7.2. Antisymmetries Using Cyclic Negation

The problem is much more difficult when cyclic negation
is used. A similar example illustrates this. Let us define a
function for which p = 3, n = 2, and f(i) = f ↑1(i + 3) for
i ∈ {3, 4, 5}. We will denote the outputs of the function as
αi. Then we have

















s0

s1

s2

s3

s4

s5

s6

s7

s8

















=

















α0

α1

α2

α3

α4

α5

α
↑1

3

α
↑1

4

α
↑1

5

















· T 2

where T 2 is as defined above in (4). Then we have, for
instance,

s0 = α0 + α1 + α2 + α3 + α4 + α5 + α
↑1

5
+ α

↑1

6
+ α

↑1

7

s3 = α0 + α1 + α2 + aα3 + aα4 + aα5 + a2α
↑1

5
+ a2α

↑1

6
+ a2α

↑1

7

s6 = α0 + α1 + α2 + a2α3 + a2α4 + a2α5 + aα
↑1

5
+ aα

↑1

6
+ aα

↑1

7

and so on. s3 − s6 results in

aα3 + aα4 + aα5 − a2α3 − a2α4 − a2α5

+a2α
↑1

5
+ a2α

↑1

6
+ a2α

↑1

7
− aα

↑1

5
− aα

↑1

6
− aα

↑1

7

but any simplification is dependent on how the values are
affected by the cyclic negation. Work is ongoing in this
area.

8. Applications

There are, as indicated in the Introduction, many areas
in which symmetries have played a part in improving upon
some aspect of the logic synthesis process.

8.1. Decision Diagrams

In [11] a type of symmetries termed α-symmetries are
introduced. A function f(X) is α-symmetric in the variable
pair (xi, xj) if there is no change when x

↑α
i is substituted

for xj and x
↑p−α
j for xi, or

f(xi, xj , xn−3, . . . , x0) = f(x↑α
i , x

↑p−α
j , xn−3, . . . , x0).

Clearly these are related to what we have identified as par-
tial symmetries Pi,j{xn−1, xn−2}. The authors use α-
symmetries in a technique to create symmetric-variable
nodes in reduced, ordered MDDs (ROMDDs). The effect
this has on the ROMDD is to reduce its depth, something
generally not otherwise possible with traditional decision
diagram manipulation and reduction techniques. We pro-
pose the addition of the notion of antisymmetries to this
technique, to further leverage the (anti)symmetries inherent
in many functions.

w 1 0 1
y -1 0 1 -1 0 1 -1 0 1
x -1 -1 -1 -1 -1 0 1 -1 0 1

0 0 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1

v=-1
w -1 0 1
y -1 0 1 -1 0 1 -1 0 1
x -1 1 0 -1 1 0 -1 1 0 -1

0 0 0 -1 0 0 -1 1 0 -1
1 -1 -1 -1 -1 -1 -1 1 0 -1

v=0
w -1 0 1
y -1 0 1 -1 0 1 -1 0 1
x -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1

v=1

Table 2. An example function where p = 3 and
n = 4.

8.2. Logic Synthesis

The use of antisymmetries in logic synthesis can be best
illustrated through the use of an example. Table 2 gives a
function where p = 3 and n = 4. Clearly there are a num-
ber of symmetries and a number of antisymmetries, includ-
ing P1,2{v, w}, P 2,4{v, w} and P3,4{v, w}. One possible
realization making use of both the symmetries and antisym-
metries is shown in Figure 3. The example uses min, max,
inverters and literal gates. The literal gates are indicated
with superscripts next to the variables. A max of min solu-
tion determined by the authors is

v−1x1 + v0x−1y−1 + v0w1y−1 + v−1w0,1y1

+0(v0x−1,0y−,1,0 + v−1,0w1y0 + v−1x0 + v−1w0y0)

which has 8 terms and can be implemented with a fan-in
cost of 33. In comparison, the sample realization in Fig-
ure 3 has a fan-in cost of 20. It additionally requires many
fewer literal gates, although it makes use of inverters while
the max of min solution does not. Note that in order to de-
termine these implementations both the inputs and the out-
puts used balanced ternary encoding. For the sake of iden-
tifying antisymmetries (and to simplify the notation for the
subfunctions) we assume that only the outputs are generally
encoded in this manner, and that the input variables remain
as values in {0, . . . , pn − 1}.

9. Conclusions

We have presented symmetries of degree two that are
based on identification of subfunctions within a function
that are the exact inverse of each other. Previous work iden-
tifies these antisymmetries in Boolean functions, while this
paper extends the idea to the multiple-valued case. We find,
however, that similarly extending the spectral tests and con-
ditions is a difficult problem. Although computation of the
spectrum for the Boolean case has been considerably im-
proved by decision diagram techniques, it is not clear if

MIN

x

x

y

y
-1

w
0, 1

v
0

w
-1, 0

v
0, -1

w
-1

v
1

w
-1

y

f

MIN

MIN

MIN

MAX

MAX

Figure 3. A possible realization using partial
(anti)symmetries for the n = 4 p = 3 function
specified in Table 2.

these techniques carry over into the multiple-valued case.
Thus the determination of spectral conditions and tests for
multi-valued antisymmetries may only be of use in analysis,
rather than in practical applications.

We introduce two potential applications for multiple-
valued antisymmetries; one in the ever-popular area of deci-
sion diagram reduction and one in the more traditional area
of logic synthesis.

In addition to solving the problems yet unsolved in this
paper, there are many other directions in which this work
may evolve. These include extensions to symmetries of de-
gree n, n > 2, and to incompletely specified functions. Ad-
ditionally, it may be of interest to examine whether a sym-
metry of one or more particular cycle(s) are of greater or
lesser use than other cycles in various areas of logic synthe-
sis.

References

[1] J. T. Butler, D. S. Herscovici, T. Sasao, and R. J. Barton
III. Average and Worst Case Number of Nodes in Decision
Diagrams of Symmetric Multiple-Valued Functions. IEEE
Trans. on Comp., pages 491–494, 1997.

[2] J. T. Butler and T. Sasao. On the Properties of Multiple-
Valued Functions That Are Symmetric in Both Variable Val-
ues and Labels. In Proceedings of the 28th International
Symposium on Multiple-Valued Logic (ISMVL), pages 83–
88, 1998.

[3] L. Heinrich-Litan and P. Molitor. Least Upper Bounds for
the Size of OBDDs Using Symmetry Properties. IEEE
Trans. on Comp., pages 360–368, Apr. 2000.

[4] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Tech-
niques in Digital Logic. Academic Press, Inc., Orlando,
Florida, 1985.

[5] S. Kannurao and B. J. Falkowski. Identification of Com-
plement Single Variable Symmetry in Boolean Functions

through Walsh Transform. In Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages
V–745 – V–748, 2002.

[6] B. Kim and D. L. Dietmeyer. Multilevel Logic Synthesis
of Symmetric Switching Functions. IEEE Trans. on CAD,
pages 436–446, Apr. 1991.

[7] V. N. Kravets and K. A. Sakallah. Constructive Library-
Aware Synthesis Using Symmetries. In Proceedings of De-
sign Automation and Test in Europe (DATE), pages 208–
213, 2000.

[8] L. Litan, P. Molitor, and D. Möller. Least Upper Bounds on
the Sizes of Symmetric Variable Order based OBDDs. In
Proceedings of the Great Lakes Symposium on VLSI, pages
680–684, 1996.

[9] C. Meinel and T. Theobald. Algorithms and Data Structures
in VLSI Design. Springer-Verlag, 1998.

[10] D. M. Miller. Spectral Symmetry Tests. In Proceedings of
the 11th International Symposium on Multiple-Valued Logic
(ISMVL), pages 130–134, 1981.

[11] D. M. Miller and N. Muranaka. Multiple-Valued Decision
Diagrams with Symmetric Variable Nodes. In Proceedings
of the 26th International Symposium on Multiple-Valued
Logic (ISMVL), pages 242–247, 1996.

[12] C. Moraga. Complex Spectral Logic. In Proceedings of
the 8th International Symposium on Multiple-Valued Logic
(ISMVL), pages 149–157, 1978.

[13] J. E. Rice and J. C. Muzio. Antiymmetries in the Realization
of Boolean Functions. In Proceedings of the International
Symposium on Circuits and Systems (ISCAS), pages IV–69 –
IV–72, 2002.

[14] M. A. Thornton and V. S. S. Nair. Efficient Calculation of
Spectral Coefficients and Their Applications. IEEE Trans.
on CAD, pages 1328 – 1341, Nov 1995.

[15] A. M. Tomaszewska, P. Dziurzanski, S. N. Yanushkevich,
and V. P. Shmerko. Two-Stage Exact Detection of Symme-
tries. In Proceedings of the 31st International Symposium
on Multiple-Valued Logic (ISMVL), pages 213–216, 2001.

[16] C.-C. Tsai and M. Marek-Sadowska. Generalized Reed-
Muller Forms as a Tool to Detect Symmetries. IEEE Trans.
on Comp., pages 33–40, Jan. 1996.

