
On the Use of Autocorrelation Coefficients in the Identification of
Three-Level Decompositions

J. Rice
Department of Math & Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

rice@cs.uleth.ca

J. C. Muzio
Department of Computer Science

University of Victoria
Victoria, BC, Canada
jmuzio@cs.uvic.ca

Abstract

Recent advancements have illustrated that three-
level representations of Boolean functions have smaller
upper-bounds on the number of products than either
sum-of-products or AND-XOR representations. In this
work we apply the information available in the func-
tion’s autocorrelation coefficients to the determination
of such a representation. The autocorrelation coeffi-
cients highlight various aspects of the structure within a
function, the presence of XOR logic being one of these.
Based on two theorems relating the autocorrelation co-
efficients to XOR-based decompositions, we have devel-
oped a tool for identifying three-level decompositions.
Results comparing this tool to existing three-level min-
imizers are very promising. This work represents the
first step in an on-going effort to develop a complete
and competitive three-level minimization tool; future
work continues in the extension of this tool

1 Introduction

Boolean functions are functions for which the inputs
and output(s) are restricted to the Boolean domain.
If a function such as the autocorrelation function is
applied to the output vector of the function, the result
is a representation of the function in a non-Boolean
domain. This representation is generally referred to as
the autocorrelation coefficients of the function.

The autocorrelation coefficients provide a measure
of the function’s similarity to itself, shifted by a given
amount. This is also called the cross-correlation, or
convolution function. The autocorrelation coefficients
have been used in various areas including optimisation
and synthesis of combinational logic [9], variable or-
dering for ROBDDs [7], and to compute the estimate

C(f) of a function’s complexity [9, 4]. However, their
use has been limited, likely due to the fact that until re-
cently, methods for computing the autocorrelation co-
efficients were exponential in the number of inputs to
the function(s). New methods for their computation
have recently been introduced by Rice et. al. [6, 5]

Another area that is gaining more attention is
that of three-level representations for switching func-
tions. Traditionally, logic synthesis techniques have at-
tempted to generate a minimal sum-of-products or sim-
ilar representation for a function. However, Dubrova
et. al. have demonstrated in [3] that there exists an
AND-OR-XOR representation for any Boolean func-
tion with upper bound on the number of products
smaller than that for either a sum-of-products or an
AND-XOR expansion. Additionally, with the advent
of field-programmable gate arrays (FPGAs), the cost
of an XOR gate is no more than that of a traditional
AND or OR gate. The problem is to identify where
the XOR is best introduced in order to minimize the
function.

In this paper we introduce a new technique for iden-
tification of XOR logic within a function. This tech-
nique is based on information provided by the func-
tion’s autocorrelation coefficients. We further make use
of this in the early development of a tool for identifying
three-level decompositions. This tool has been tested
on a variety of small benchmarks, with very promising
results as compared to existing three-level minimiza-
tion tools.

2 Background

We first present some notation and background on
areas discussed in this paper.

2.1 Autocorrelation Coefficients

Switching functions can be translated to other do-
mains, such as the spectral domain. In this paper we
consider the calculation of the function’s autocorrela-
tion coefficients, which are one possible representation
in the spectral domain.

The general cross-correlation (convolution) function
between two functions f(X) and g(X) at a distance τ
is defined as

B f g(τ) =
2n−1∑
v=0

f(v) · g(v ⊕ τ) (1)

When f(X) = g(X), the resulting equation gives the
cross-correlation of a function with itself, translated by
τ . The resulting coefficients are referred to as the auto-
correlation coefficients of the function. Based on this,
the autocorrelation function is defined as follows [4]:

B f f (τ) =
2n−1∑
v=0

f(v) · f(v ⊕ τ) (2)

If the superscripts f f are omitted (e.g. as in B(τ))
then it is assumed that an autocorrelation function is
being computed, rather than a cross-correlation func-
tion.

For multiple-output functions a second step must be
performed to combine the autocorrelation function for
each of the individual functions into the total autocor-
relation function; however, multiple-output functions
are not yet considered in this work.

The above definition for B(τ) assumes that the out-
puts of the switching function f are encoded as {0, 1}.
If the function is alternately encoded as {+1,−1} then
the definition of the autocorrelation coefficients is the
same, with the resulting coefficients being referred to
as C(τ).

2.2 Three-Level Decomposition

Sum-of-products and product-of-sums representa-
tions are widely used in logic synthesis, and have been
well-researched. However, it has been shown that the
addition of one or more XOR gates may result in a
smaller representation. In this paper we are interested
in AND-OR-XOR representations, which are expres-
sions of the type

f(X) = (P1 ∨ P2 ∨ ... ∨ Pp)⊕ (Pp+1 ∨ Pp+2 ∨ ... ∨ Pm)

where p ∈ 1 ≤ p ≤ m and Pi are product terms. Ex-
isting tools for determining AND-OR-XOR represen-
tations includes AOXMIN-MV [2] and work by Sasao
et. al. [1].

2.3 General Notation

Some additional notation is also required:

• The variable ordering xn, ..., x1 is used through-
out. Thus a coefficient B(001) or C(001) is the
first order coefficient corresponding to x1.

• τi refers to a value whose binary expansion con-
tains a 1 in the ith bit, while the remaining n− 1
bits are 0.

• τiα refers to a set of values for which the bi-
nary expansion contains a 1 in the ith bit while
the remaining n − 1 bits have the value α ∈
{0, ..., 2n−1 − 1}. τ iα refers to a set of values for
which the binary expansion contains a 0 in the ith

bit while the remaining n − 1 bits have the value
α.

• |τ | is the weight, or the number of ones in the
binary expansion of τ . If |τ | = j then B(τ) and
C(τ) are said to be jth order coefficients.

3 Identifying XOR logic

The technique used in this paper is based on the
autocorrelation coefficients for the switching function.
The following two theorems are introduced and proven
in [5]:

Theorem 3.1 C(τi) = −2n if and only if the function
f(X) has a decomposition

f(X) = g(X)⊕ xi

where g(X) is independent of xi and i ∈ {1, ..., n}.

Theorem 3.2 C(τi) = C(τj) = C(τij) = 0, i 6= j if
and only if the function f(X) can be decomposed into
g(X) ⊕ h(X) where h(X) = xi ∗ xj, ∗ ∈ {∧,∨} and
g(X) is independent of both xi and xj, i, j ∈ {1, ..., n}.

These two theorems are applied to determine a
three-level decomposition for the switching function in
question.

4 Implementation

In testing this technique a “proof-of-concept” tool
was implemented. This tool attempts only to identify
a three-level decomposition, and does not perform any
further minimization or optimization. Furthermore,
the tool uses only the above two theorems and so is
limited to identifying decompositions having at most
two variables in the second decomposition. The algo-
rithm is as follows:

readcoeffs(ac_infile, coeffvector, uvector);

// identify xor logic

id_xor(coeffvector, uvector,

single_vars, double_vars);

// generate g1 and g2

generate_g1g2(dd, single_vars,

double_vars, out1, out2);

The majority of the work is done in functions id xor and
generate g1g2. id xor does the following:

for each variable i:

find coeff(2^i)

if the coefficient == -2^n

set a flag for variable i

for each variable i:

if the variable i is flagged then skip it

for each variable j beginning at i+1:

if the variable j is flagged then skip it

int uval1 = twoexp(numvars-1-j);

int uval2 = twoexp(numvars-1-i);

int uval3 = uval1 bitwise-or uval2;

find the coefficients for these values

if all are 0

set a flag for variables i and j

generate g1g2 creates two decision diagrams, one for
the first decomposition (g1) and one for the second
decomposition (g2). The CUDD tool [8] was used for
the creation of the decision diagrams. If no XOR logic
was identified by id xor then this function informs the
user.

// first check if there is ANY usable xor logic:

bool xorflag = false;

check singlevars array

check doublevars array

if (no xor logic)

output "No xor logic to use\n\n";

g1 = original dd; g2 = NULL;

outputfunctions(g1, g2);

else

if singlevars contains xor logic

create g1 = xi

create g2 = dd xor g1

else, using doublevars array,

create g1 = xi or xj

create g2 = dd xor g1

check g1 xor g2 = dd

if not

create g1 = xi and xj

create g2 = dd xor g1

outputfunctions(g1, g2);

5 Results

The pseudocode above was implemented and tested
against the three-level minimization tool AOXMIN-

MV. Both tools were used to determine three-level de-
compositions for a series of benchmarks. The first set of
tests used only benchmarks of 10 or fewer inputs due to
initial limitations of the AC-based tool. Further work
has extended the tool to work with any number of in-
puts. The benchmarks in both cases were limited to
single-output functions.

In the first set of tests the benchmarks were gen-
erated by using existing, multiple-output benchmarks
of 10 or fewer inputs that were split into individual
files, one for each output. In these tests both agree on
the detection of XOR logic 74% of the time. However,
the AOXMIN-MV tool only completed successfully for
244 of the single-output benchmark files, while our tool
completed for all 278 of the benchmarks. Additionally,
our tool required an average of approximately 5 sec-
onds to compute the decomposition, while AOXMIN-
MV, for its successful benchmarks, required an aver-
age of over one minute. It should be noted, however,
that AOXMIN-MV requires more time for computing
a decomposition because the tool is also attempting
to find a balanced decomposition, which our tool does
not take into account. The computation of all 2n au-
tocorrelation coefficients is included in this timing fig-
ure, although future improvements could reduce this as
only the first and second order coefficients are required.
These results are summarized in Table 11

num. benchmarks
successes avg. time in which XOR

logic detected

AOXMIN-MV 244 / 278 71.1 sec 54
3LEVEL 278 / 278 5.4 sec 59

Table 1. Results of comparing the
autocorrelation-based three-level level
decomposition tool (3LEVEL) to AOXMIN-MV.

For the second set of tests, a small number of varying
size single-output benchmarks were tested, with the
results as shown in Tables 2 and 3. The input files
were not minimized beforehand.

The purpose of this second set of tests is to give some
detail on how the AC-based tool is performing and test
its performance on larger files. More comprehensive
tests are also underway.

Overall, the results are in agreement with the exist-
ing AOXMIN tool. Clearly the AOXMIN tool is finding
more balanced decompositions; however, the AC-based
tool is performing, on average, faster, and with fewer
errors.

1Complete results could not be included as over 250 bench-
marks were tested.

filename g1 prod g2 prod xor? time
9symml no xor 0.7
cm150a no xor 346.76
cm152a 2 20 0.5
co14 no xor 0.3
ex1 1 8 0.2
ex2 no xor 0.3
ex3 no xor 0.2
life no xor 0.3
majority no xor 0.1
max46 no xor 0.2
mux no xor 364.8
o64 error
parity error
ryy6 no xor 0.6
sym10 no xor 1.7
t481 no xor 2.1
xor5 1 8 0.2

Table 2. Results of testing the AC-based 3-
level decomposition tool on a small number
of single-output functions.

filename g1 prod g2 prod xor? time
9symml error
cm150a no xor 0.1
cm152a no xor 0.2
co14 no xor 0.3
ex1 2 4 43.3
ex2 1 6 0.2
ex3 no xor 0.2
life 20 40 370.4
majority no xor 0.1
max46 no xor 0.4
mux no xor 0.1
o64 error
parity error
ryy6 error
sym10 error
t481 20 9 362.0
xor5 2 4 42.0

Table 3. Results of testing AOXMIN on a small
number of single-output functions.

6 Discussion

In the first set of tests a little more detail can
be provided. It is interesting to note that while our
autocorrelation-based tool detected XOR logic in 59
of the benchmark files, in 32 of those the AOXMIN-
MV tool did not detect XOR logic. Similarly, of
the 54 benchmarks for which AOXMIN-MV detected
XOR logic, our tool did not detect XOR logic in 27 of
those. Thus for only 27 of the benchmarks did BOTH
tools detect XOR logic. The immediate question is
why. For the first situation, when our tool detects
XOR logic while AOXMIN-MV does not, the answer
is that AOXMIN-MV is attempting to find a solution
for which the products are fewer than in the best two-
level minimization solution. If this is not found then
AOXMIN-MV does not provide a decomposition. Our
tool does not take this into consideration, it simply
provides the decomposition based on the theorems in
Section 3. For the second situation, when our tool does
not detect XOR logic while AOXMIN-MV does, the
answer is that AOXMIN-MV takes into account more
possibilities for three-level decompositions than does
our tool; our tool is currently limited to only the two
situations described by Theorems 3.1 and 3.2. Future
work must be done to extend the tool to identify other
types of decompositions.

7 Future Work

There are many areas in which this work may be
extended, some of which are detailed below.

The first item to address is that of identification of
balanced decompositions, so that a more even com-
parison with the work done by AOXMIN may be per-
formed. This entails extension of the theorems relat-
ing the autocorrelation coefficients to the presence of
exclusive-or logic to more general cases, which is cur-
rently underway.

Another modification possibly resulting in a more
balanced decomposition would be to re-apply the tech-
nique to the g(X) part of the decomposition, compar-
ing the resulting number of products with the original
to determine if there are any savings. However, with
such a process the resulting decomposition would not
strictly match the format of an AND-OR-XOR repre-
sentation, as there is the possibility that more than one
XOR gate may be required.

Finally, this work applies only to single-output func-
tions; it is important to extend it to multiple-output
functions for it to be a truly useful tool.

For all of the above situations, additional heuristics
to examine the identified decompositions and identify

Table 4. Further details on the benchmarks
used in the second set of tests.

filename inputs products
9symml 9 86
cm150a 21 17
cm152a 11 8
co14 14 47
ex1 5 16
ex2 5 7
ex3 5 4
life 9 512
majority 5 5
max46 9 46
mux 21 36
o64 130 65
parity 16 32768
ryy6 16 112
sym10 10 837
t481 16 481
xor5 5 16

the “best” possibility, either for a single output or for
multiple outputs, would be of use, and can certainly be
developed even with the current limitations of the two
known theorems.

8 Conclusion

This work discusses a new application of the auto-
correlation coefficients. Based on two theorems relat-
ing patterns in the autocorrelation coefficients to the
presence of XOR logic in a switching function, a three-
level decomposition of the type AND-OR-XOR is de-
termined. The initial implementation is limited to the
identification of only two “flavours” of AND-OR-XOR
decomposition. However, even with this limitation, it
compares quite favourably with existing tools. Work is
currently underway to extend the theorems to a more
general case and in the development of heuristics to
choose the best decomposition based on the informa-
tion provided by the autocorrelation coefficients. With
such extensions we feel that this tool has great poten-
tial in this and many other areas.

References

[1] D. Debnath and T. Sasao. A Heuristic Algorithm to
Design AND-OR-EXOR Three-Level Networks. In Pro-
ceedings of ASP-DAC, pages 69 –74, 1998.

[2] E. Dubrova. AOXMIN-MV: A Heuristic Algorithm for
AND-OR-XOR Minimization. In Proceedings of the 4th

International Workshop on Applications of Reed-Muller
Expansions in Circuit Design (RM99), pages 37–53,
1999.

[3] E. V. Dubrova, D. M. Miller, and J. C. Muzio. Upper
Bound on Number of Products in AND-OR-XOR Ex-
pansion of Logic Functions. IEE Electron. Lett., 31:541–
542, 1995.

[4] M. Karpovsky. Finite Orthogonal Series in the Design
of Digital Devices. John Wiley & Sons, 1976.

[5] J. Rice. Autocorrelation Coefficients in the Represen-
tation and Classification of Switching Functions. PhD
thesis, University of Victoria, 2003.

[6] J. E. Rice and J. C. Muzio. Methods for Calcu-
lating Autocorrelation Coefficients. In Proceedings of
the 4th International Workshop on Boolean Problems,
(IWSBP2000), pages 69–76, 2000.

[7] J. E. Rice, J. C. Muzio, and M. Serra. The Use of Auto-
correlation Coefficients for Variable Ordering for ROB-
DDs. In Proceedings of the 4th International Workshop
on Applications of the Reed-Müller Expansion in Cir-
cuit Design, 1999.

[8] F. Somenzi. CUDD: Colorado University Decision Dia-
gram Package, version 2.3.0. Department of Electrical
and Computer Engineering, University of Colorado at
Boulder, Fabio@Colorado.EDU.

[9] R. Tomczuk. Autocorrelation and Decomposition Meth-
ods in Combinational Logic Design. PhD thesis, Uni-
versity of Victoria, 1996.

