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Abstract

Reversible computing has been theoretically shown to be an efficient approach over conven-

tional computing due to the property of virtually zero power dissipation. A major concern

in reversible circuits is the number of circuit lines or qubits which are a limited resource.

In this thesis we explore the line reduction problem using a decision diagram based syn-

thesis approach and introduce a line reduction algorithm— Minimization of lines using

Ordered Kronecker Functional Decision Diagrams (MOKFDD). The algorithm uses a new

sub-circuit for a positive Davio node structure in addition to the existing node structures.

We also present a shared node ordering for OKFDDs. OKFDDs are a combination of OB-

DDs and OFDDs. The experimental results shows that the number of circuit lines and

quantum cost can be reduced with our proposed approach.
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Chapter 1

Introduction

In today’s world power minimization is one of the most concerning issues in electronics.

Traditional computing systems use logically irreversible circuits. In irreversible systems

once a final state of information is reached, the information cannot be traced back to its

initial state. In a logically irreversible system whenever any two inputs have a single out-

put, the two input states transform into one output state as shown in the example given in

Figure 1.1. This results in loss of information bits. According to Frank [12] the irreversible

information loss is explained in detail by Landauer’s principle. According to Landauer’s

principle [18] every logical manipulation of information on an irreversible system results

in the increase of entropy. Entropy defines the state of a system in terms of temperature

and heat transfer. As given in [18] every time a bit is erased KT ln2 amount of energy is

released, where K is the Boltzmann constant and T is the room temperature (for T = 300

Kelvin this energy is about 2.9× 1021 joules). During each operation on an irreversible

system this energy is transferred to the environment. This large amount of energy is pro-

portional to the number of transistors being used on a single integrated chip. Moore’s Law

says that the number of transistors on an integrated chip will double in approximately ev-

ery two years [37]. With this increase in the number of transistors, irreversible circuits are

becoming highly inefficient. In 1973, Charles Bennett of IBM Research showed that any

irreversible computation can be carried out in a reversible manner to avoid energy dissipa-

tion. In reversible circuits no information bits are erased, thus there is potentially nearly

zero energy dissipation depending on the underlying technology.

Recently reversible circuits have emerged to be useful components of quantum comput-

ing. Quantum computations work with unitary matrices [2] imposing a constraint of being
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1.1. MOTIVATION
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Figure 1.1: Irreversible state change

a reversible computation (discussed in 2.2). More information on quantum computers is

given in [28]. Some of the applications of reversible circuits are in the field of digital signal

processing, optical computing [38] and nano-computing technologies [23], communication,

computer graphics, and cryptography [40].

1.1 Motivation

Every resource such as time, energy and distance traveled from a source to destination

to perform a job in a working system always has a price depending on its usage and avail-

ability. Similarly, in reversible circuits qubits (or quantum bits) which are the information

bits used in a quantum circuit are considered to be a very expensive resource. In classical

circuits a bit has to be in one of two states, either 0 or 1. As will be described in Chapter

2 qubits may attain any superposition state i.e. 0, 1 or both at the same time. Each qubit is

represented by a wire or line in a reversible circuit. The components of a reversible circuit

are explained in detail in Chapter 2.

To illustrate the importance of line reduction consider an example where a full adder

with three inputs and two outputs is to be realized by a reversible circuit. To implement

the truth table from Figure 1.2 as a reversible circuit, extra qubits are required to make the

truth table reversible. These extra qubits allow each of the input values of the truth table to

be assigned unique output values. The process of converting an irreversible truth table to

a reversible truth table is known as ‘Embedding’ [46]. An embedding process for the full

adder is shown in Figure 1.3. In the worst case such a function would require four additional

2



1.2. STRUCTURE OF THE THESIS

lines to make a seven-input seven-output circuit. This means seven qubits are required.

It becomes difficult and costly to build a reversible circuit if the process of embedding

causes the number of qubits to increase drastically. The latest quantum computer built is

a 128-qubit computer [52], therefore the necessity to reduce the qubits required in a single

computation is vital.

cin x y cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 1.2: Full adder

0 cin x y cout s g1 g2
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 1 0 0 0
0 1 0 0 0 1 1 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 0
1 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 1 0 0 0 1 1
1 0 1 1 0 1 1 1
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1

Figure 1.3: Embedding

1.2 Structure of the Thesis

In this thesis we detail our investigation into ways to minimize the number of qubits or

circuit lines in a reversible circuit. The remainder of the thesis is structured as follows:

Chapter 2 provides the necessary background to give the basic understanding of re-

versible logic and circuits. It includes the definitions related to reversible logic and the

components of a reversible circuit. It also gives an overview of reversible logic synthesis

techniques such as ESOP (Exclusive-Or Sum of Products) -based synthesis.

The reversible circuit line reduction problem has been tackled with some heuristics in

3



1.2. STRUCTURE OF THE THESIS

the past. To understand the concept behind the heuristics, we explain related works in

Chapter 3.

The Decision-Diagram (DD) -based synthesis approach is described in Chapter 4. This

chapter illustrates the construction of decision diagrams as well as different DD-based syn-

thesis algorithms such as BDD (Binary Decision Diagram) and KFDD (Kronecker Func-

tional Decision Diagrams) -based synthesis methods. Here we deliver the primary concept

of decision diagrams.

In chapter 5 we discuss the existing bounds on the line reduction problem given in [20].

We introduce our algorithm based on decision diagrams for line reduction with suitable

examples. Our approach includes modifications in the KFDD synthesis algorithm. Our

results appear in the proceedings of the 2015 IEEE Pacific Rim Conference [15].

Chapter 6 consists of the experimental results obtained by our algorithm. We compare

our results with the existing approaches. We also compare our results with the lower bound

on the line reduction problem.

The thesis concludes with Chapter 7 summarizing the contributions of this thesis in the

field of reversible logic synthesis. The chapter also suggests some possibilities for future

work.

4



Chapter 2

Background

The research on reversible computing began considering the thermodynamic limits of non-

reversible computing. The inspiration behind the technology shift is already justified in

chapter 1. To understand the significance of the reversible technology, we must compre-

hend the computational model involved. This chapter provides the necessary background

to explore the circuit line minimization problem.

2.1 Basic Definitions

Definition 2.1. A multi-output Boolean Function f : Am → An is reversible if it is

bijective.

Let A be a finite set and f : Am → An be a Boolean function which maps each input

vector to a unique output vector (bijection); then this function is reversible. According to

[39], a gate is reversible if the function it computes is bijective, and a circuit is reversible if

it consists entirely of reversible gates. A cascade of reversible gates implements a reversible

function with no fan-out (an output feeding more than one inputs) or feedback [25]. Fig-

ures 2.1 and 2.2 show an irreversible and a reversible function truth table.

xy f(xy)
00 0
01 0
10 0
11 1

Figure 2.1: Irreversible function

xy x’y’
00 00
01 01
10 11
11 10

Figure 2.2: Reversible function

Definition 2.2. If a gate computes a (Boolean) function which is bijective then the gate
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2.1. BASIC DEFINITIONS

is Reversible.

A necessary condition for a gate to be reversible is that it should have same number of

input and output wires. A gate is a k× k gate if it has k wires [39]. Let X := {x1, ....,xn}

be the set of Boolean variables. Then, a reversible gate has the form g(C,T ) , where C =

{xi1, ....xik} ⊂ X is the set of control lines and, T = {x j1, ....,x jl} ⊂ X with C∩T = φ is

the set of target lines [47] and k+ l = n. The following definitions illustrate examples of

reversible gates.

Definition 3. A k-CNOT Gate is a (k + 1)× (k + 1) gate which leaves the k inputs

unchanged and inverts the k+1th input if all the k inputs are 1.

A 0−CNOT gate is a simple NOT gate which inverts the input without any controls

(x)→ (x⊕1) while a 1−CNOT gate is a Controlled NOT Gate which performs (x,y)→

(x⊕y) where⊕ is the XOR operation. Figures 2.3 and 2.4 illustrate NOT and CNOT gates.

a a′

Figure 2.3: NOT Gate

a • a

b a⊕b

Figure 2.4: CNOT Gate

Definition 2.4. A Multiple Control Toffoli Gate (MCT) with target line x j and control

lines xi1,xi2...xik maps (x1x2...x j...xn) to (x1x2...(xi1xi2...xi1)⊕ x j...xn). All control

lines must be 1 in order for the target qubit to be inverted. A MCT gate with no control is a

NOT gate. A MCT gate with one control gate is a controlled-NOT gate. A MCT with two

control lines is a Toffoli [34] gate.

A MCT gate is identical to the k-CNOT gate by definition given that the value of k > 1.

It is important to note that the MCT can use k-CNOT notation and vice-versa. Generally, a

k-CNOT gate is expressed in terms of Toffoli gates. A k-CNOT gate with k = 0 is said to

be a TOF0 gate or a Toffoli gate with 0 controls (NOT gate), a TOF1 for k = 1 and so on.

An example of a MCT is given in Figure 2.5:

Definition 2.5. A Multiple Control Fredkin Gate (MCF) with target lines xp and xq

and control lines xi1,xi2, ...xik, maps (x1x2...xp...xq...xn) to (x1x2...xq..xp...xn) if all the

6



2.1. BASIC DEFINITIONS

a • a
b • b
c • c
d • d
e • e
z abcde⊕ z

Figure 2.5: MCT Gate

control lines have value 1. Therefore, it is also called a Swap gate [34]. A MCF gate is

shown in Figure 2.6.

a • a
b × c
c × b

Figure 2.6: MCF Gate

Definition 2.6. A Dual is a gate which reverses the logic function. A gate is Self-

reversible if the dual is identical to the gate itself [29].

Every gate has a dual which transforms the output vectors to input vectors. For example the

dual of the NOT gate is the NOT gate: x′(NOT ) = x.

The Hamming weight is the number of logical 1s in the set of values.

Definition 2.7. A gate is a Conservative gate if the Hamming weight of the set of input

values is similar to the set of output values. Similarly, a Non-Conservative gate has unequal

Hamming weights for its input and output values [29].

Definition 2.8. A gate is Universal if it can implement other basic reversible logic gates

independently.

The NAND gate is a universal gate in Boolean logic. Similarly, the Toffoli gate is also an

example of a universal gate in reversible logic [29].

Definition 2.9. Lines or wires in a reversible circuit represent the variables of a re-

versible truth table.

Definition 2.10. Garbage outputs are additional outputs which do not produce any

desired functionality.

7



2.2. QUANTUM GATES

In [26] it is shown that at least g= dlog2(µ)e garbage outputs are required for converting

an irreversible function to a reversible function, where µ is the maximum number of times

a single output pattern is repeated in an irreversible truth table. Converting an irreversible

function with n inputs and m outputs into a reversible function will require m+ g qubits.

Since m+g > n, c number of additional lines with a constant input for each line are added

to make a function reversible. Thus it becomes n+ c = m+ g. In Figure 2.7 the garbage

outputs are labeled as ‘g’ and the additional line is labeled as ’0’.

a • • • g = a

b • f = a(a⊕ab)⊕b

0 • g = a(a⊕ab)

Figure 2.7: Reversible circuit with garbage outputs.

Definition 11. A Reversible Circuit comprises a cascade of reversible gates on circuit

lines implementing a reversible function. It may contain garbage outputs.

2.2 Quantum Concepts

2.2.1 Quantum States

Qubits exhibit the property of linear superposition of basis states (0,1) as described in

Chapter 1. The state of a qubit |ψ > is defined as [5]

|ψ〉= α|0〉+β|1〉

Here we use the Dirac notations of basis state vectors |0〉 =

 1

0

 and |1〉 =

 0

1


whereas the α and β are complex numbers satisfying the condition |α|2 + |β|2 = 1. In

the vector form the state of a single qubit is shown by the vector

α

β

 . Moreover,

8



2.2. QUANTUM GATES

the principles of quantum mechanics [28] declare that two quantum states are similar if

they differ by a phase factor of eiθ, θ ∈ R. Thus, the quantum state ψ is also written as

|ψ〉 = cos(θ/2)|0〉+ eiφsin(θ/2)|1〉 where 0 ≤ φ < 2π, 0 ≤ θ < π. θ and φ are the angle

coordinates indicating a qubit state in the Bloch sphere [4]. The Bloch sphere, as shown

in Figure 2.8 provides a geometrical representation of a single-qubit state. The north pole

(+Z) represents the state |0〉 while the south pole (-Z) represents the state |1〉. The states on

the equator are the superpositions of the states |0〉 and |1〉 with equal weights θ = π/2 and

different phases [14]. Further information on these concepts can be found in [28].

Figure 2.8: Bloch Sphere representation

2.2.2 Quantum Gates

Quantum gates are small circuits operating on qubits. They are reversible by nature and

are represented by unitary matrices. A matrix U is a unitary matrix provided that UU† = I

where I is the identity matrix. The 2×2 identity matrix is given as:

I =

 1 0

0 1


The unitary operator U−1 =U† ensures the reversible characteristic of a matrix.

9



2.2. QUANTUM GATES

In reversible logic there exists quantum gate libraries such as NCT (NOT, CNOT, Tof-

foli) , GT (Generalized Toffoli) and NCV (NOT, CNOT, V gates) to design quantum cir-

cuits. The use of these libraries affect the cost metrics (explained in 2.3) associated with the

circuit design. The NCT library is the most common library used to design quantum cir-

cuits. In this thesis we will examine synthesis methods utilizing the NCT library for circuit

design. However, the decomposition of the reversible gates to the NCV library provides the

exact computation for quantum cost (explained in Section 2.3). The NCV library consists

of NOT, CNOT, V and V† operators. The NCV operators are defined by the following

quantum gates [28]:

1. NOT gate: The NOT gate simply inverts the t qubit. The gate is denoted by T ( /0, t),

where the control is /0 and target is t. The unitary matrix for the NOT gate is

 0 1

1 0


2. CNOT gate: The Controlled NOT, T (c, t), inverts the qubit at target t only if the

control c is 1. The unitary matrix for CNOT is



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


3. V gate: The controlled V gate, V (c, t), performs the V operation on the target t qubit

when the control c is 1. The V operation is equivalent to square root of NOT. Two

consecutive V operations result in a NOT operation. This qubit operator causes the

half spin of a qubit, as shown in Figure 2.9(b). Thus, two half spins (two V gates) of a

qubit concludes in the inversion of a qubit state. The V gate is depicted as •
V

.

10



2.3. COST METRICS

The matrix for the V gate is

 1+i
2

1−i
2

1−i
2

1+i
2

 .

4. V† gate: The controlled V † gate, V †(c, t), performs the V † operation on the target

qubit t if the control qubit c is 1. The V † operation is similar to the inverse of V

operation i.e. V † = V−1. Thus, V gate and V † gate if applied together form an

identity gate. This operator also results in the half spin of a qubit but in an opposite

direction to the V operator. Similar to the V operation two V † operations in series

produce a NOT operation. The V † gate is depicted as •

V †
. The unitary

matrix for the V † gate is

 1−i
2

1+i
2

1+i
2

1−i
2

 .

The V and V † operations are summarized in Figure 2.9(a). Figure 2.9(b) explains

the spin of a qubit induced by each V or V † gate. The ends of the vertical pole are

labeled as 0 and 1 for |0〉 state and |1〉 state of a qubit respectively. Similarly, the

ends of the horizontal pole are labeled as + and − for any respective positive and

negative imaginary state of a qubit. The imaginary state of a qubit can be defined by

any complex number.

These basic NCV quantum gates can be used to build other quantum gates such as

the Toffoli gate. An example to show the quantum cost calculation of a Toffoli is to

decompose a Toffoli gate into NCV quantum gates. Since there are 5 quantum gates

in the decomposed Toffoli gate we say that the quantum cost of a TOF3 gate is 5.

11



2.3. COST METRICS

V =
√

NOT
V † =

√
NOT †

V 2 =V †2 = NOT
V ·V † = I

(a)

V†

V†

V

V

NOT

V

V

1

0

- +

V†

V†

(b)

Figure 2.9: NOT, CNOT, V and V† operations

a • a
b • b
c ab⊕ c

a • • • a

b • • b

c V V † V ab⊕ c

Figure 2.10: Toffoli gate decomposition

2.3 Cost Metrics

Cost metrics allow a circuit designer to compute a measurement of a reversible circuit

in terms of some cost. The cost computation of every component of a reversible circuit is

calculated according to the standard metrics. The basic parameters for the measurement are

as follows:

1. Quantum Cost: Quantum cost evaluates the cost of gates in a reversible circuit. For

every reversible gate there is an associated cost built on the number of underlying

quantum gates. As an illustration, the cost of a Toffoli gate is 5 based on the con-

struction shown in Figure 2.10. Table 2.1 shows the quantum cost of Toffoli gates of

size n, where n ∈ Z+ [19]. Likewise, the cost of a Fredkin gate of size n is the sum

of the cost of a n-bit Toffoli gate and integer value 2 (for 2 CNOT gates). Therefore,

for any two identical circuits with similar line count, the circuit with a lesser quantum

cost is considered to be more economical compared to the one with a higher quantum

12



2.3. COST METRICS

cost. There has been a lot of study [11] [47] [32] [51] [21] on reducing quantum

cost.

Table 2.1: Quantum cost table

Size (n) Garbage Name Quantum Cost
1 0 NOT, t1 1
2 0 CNOT, t2 1
3 0 Toffoli, t3 5
4 0 Toffoli4, t4 13
5 0 t5 29
5 2 t5 26
6 0 t6 61
6 1 t6 52
6 3 t6 38
7 0 t7 125
7 1 t7 80
7 4 t7 50
8 0 t8 253
8 1 t8 100
8 5 t8 62
9 0 t9 509
9 1 t9 128
9 6 t9 74
10 0 t10 1021
10 1 t10 152
10 7 t10 86
n >10 0 tn 2n - 3
n >10 1 tn 24n - 88
n >10 n-3 tn 12n - 34

2. Gate Count: This parameter refers to the number of gates required for implementing

a function. A change in the gate count may increase or decrease the quantum cost

subject to the size of gates being used. Thus, the gate count is not directly propor-

tional to the quantum cost. As an illustration in Figure 2.11 the function (acd⊕abc)

is implemented in two ways, first with a quantum cost of 23 with gate count of 3 and

secondly with a quantum cost of 26 with gate count of 2 respectively.

13



2.4. REVERSIBLE LOGIC SYNTHESIS TECHNIQUES

a • a
b • • b
c • • • c

d • d

0 acd⊕abc

a • • a
b • b
c • • c
d • d

0 acd⊕abc

Figure 2.11: Toffoli gates for the Boolean function (acd⊕abc)

3. Line Count: The number of lines in a reversible circuit is generally equal to the

number of variables in the truth table. In other words lines represent qubits. Qubits

are particles that demand a controlled system to keep them in a stable initial state and

change states. Thus, they are expensive to sustain. As a result, minimizing circuit

lines is often considered preferable compared to reducing quantum cost [49]. There

is usually a trade-off between reducing quantum cost and circuit lines [50]. The

problem of reducing circuit lines in reversible circuits is discussed in works such as

[48] [20] [9] [49].

2.4 Reversible Logic Synthesis Techniques

Conventional logic synthesis approaches use the classical universal gate library of a

Boolean function— AND, NOT and OR gates. Reversible logic synthesis, unlike classical

logic synthesis techniques, implements a Boolean function using quantum gate libraries

(discussed in 2.2) with no fan-out. Since no fan-out is permitted the output of each gate in a

reversible circuit is used only once. Reversible logic synthesis produces reversible circuits

containing a sequence of gates with no loops [31].

In the literature there are various methods for reversible logic synthesis which are

broadly divided into the following categories.

2.4.1 ESOP-based Synthesis

An Exclusive-or Sum Of Products (ESOP) is a variant of the basic Sum Of Products

(SOP) representation of a Boolean specification. In an ESOP the product of the literals

14



2.4. REVERSIBLE LOGIC SYNTHESIS TECHNIQUES

i.e. OR of the AND terms are Ex-ORed. For example: (ab⊕ cd). A SOP formulation

of a Boolean function is expressed as the sum of the product of the literals. For example:

(a∧b∨c∧d), also written as (ab+cd). The first step of ESOP based synthesis is to obtain

an ESOP expression. A given SOP expression (a+b) is formulated as (a⊕b⊕ab) in ESOP.

An important reason for moving from SOP to ESOP formulation is the efficiency involved.

The worst case complexity of SOP formulation considering the size of the truth table is

O(2n−1), for a n-variable Boolean function, which is greater than the complexity of ESOP

(O(3.2n−3)) [36].

The product of the literals in an ESOP or SOP expression are represented by cubes.

These cubes combine to form a cube-list. A major difference between the cubes of ESOP

and SOP formulations is that the former includes don’t cares resulting in a smaller set

of input values to scan for building a circuit. For both ESOP and SOP representations a

lesser number of cubes result in a smaller circuit. Minimizing the SOP expression is a well

known DNF (Disjunctive Normal Form) minimization problem [1]. The most commonly

used algorithm for ESOP minimization is EXORCISM-4 [27]. The main idea behind both

SOP and ESOP minimization is to work with the Karnaugh Map. A Karnaugh Map or K-

Map is a method to simplify Boolean expressions. The truth table is transfered onto a two

dimensional grid where each cell represents a combination of input conditions while the

value of each cell is the corresponding output value for the input conditions. For an SOP

formulation the 1 bits are covered by a minimum number of cubes (covers). These cubes

are ORed to get the complete SOP expression. However, for an ESOP formulation all the

0 bits are covered by an odd number of cubes and 1 bits are covered by an even number

of cubes [8]. The ESOP cubes are then Ex-ORed to get an ESOP expression. Figure 2.12

(a) and (b) show minimized covers with bold lines. Each rectangle identifies a cube for

their respective formulations. As illustrated the SOP cubes are covered by 3 covers while

in ESOP cubes each 1 bit is covered by a single cover (odd) and 0 bits are covered by two

covers (even) . The initial Boolean expression in Figure 2.12 (a) covered by dashed squares
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in the K-map is f = acd + cd + acd the minimized expression shown by bold squares is

f ′ = ad +ac+ cd. Similarly, in Figure 2.12 (b) the ESOP expression by dashed squares is

f = acd⊕abc⊕abcd⊕abcd and the minimized expression is f ′ = ab⊕ cd. The work on

efficient and exact ESOP minimization is discussed in [30] [35].

a, b

c, d 00 01 11 10

00

01

11

10

0 0 0 0

0 0 1 1

1 1 1 1

0 0 1 1

f a, b

c, d 00 01 11 10

00

01

11

10

0 0 1 0

0 0 1 0

1 1 0 1

0 0 1 0

f

(a) SOP minimization (b) ESOP minimization

Figure 2.12: (a)SOP minimization and (b) ESOP minimization for the given Boolean func-
tions.

The ESOP synthesis algorithm [10] starts with a cube-list, as shown in Figure 2.13. A

reversible circuit is formed by starting with an ESOP cubelist representation of a Boolean

function. The cubelist consists of inputs and outputs similar to a truth table. Initially, an

empty circuit i.e with 2n+m qubits and 0 gates is created. Here n is the number of inputs.

2n covers both positive and negative polarity of the input qubits. m denotes the number of

outputs. Each cube in the cube-list is then mapped on to the circuit. The circuit formation

from the cube-list is performed according to these steps:

1. Create an empty circuit of size 2n+m.

2. Insert input qubits (x0,x1, ...,x2n) in the circuit, where n ∈ Z+, for every comple-

mented and uncomplemented literal in an ESOP formulation such as a and a′. The

outputs of these corresponding inputs are labeled as ‘g’ or garbage value.

3. Insert constant qubits (k0,k1,k2, ....,km) in the circuit, where m ∈ Z+. These qubits

are initialized to a value of 0 or 1 and remain constant throughout. The outputs for

‘m’ inputs are labeled as f 1, f 2, f 3...., f m respectively.

16



2.4. REVERSIBLE LOGIC SYNTHESIS TECHNIQUES

4. Scan the cube-list with the inputs (x0,x1, .....,xi) and outputs (x0,x1, ....x j), where

i, j are positive integers. Add a Toffoli gate to the circuit for each cube in the cubelist

with xi = 1 as a positive control and xi = 0 as a negative control.

An example of a circuit resulting from this process is given in Figure 2.14.

.i 3
.o 2

.type esop
0-0 01
11- 10
-00 00
1-1 11

.e

Figure 2.13: Full adder ESOP cube-list

a • • • g

a′ • g
b • g

b′ g
c • • g

c′ • g

0 f 1

0 f 2

Figure 2.14: Reversible circuit

2.4.2 Transformation-based Synthesis

Transformation-based synthesis takes an n variable reversible function specification as

input and produces an n×n reversible circuit. The approach [24] is more convenient than

the other approaches such as proposed in [17] but requires a reversible function as an input.

There are two algorithms for transformation based synthesis, the basic algorithm and the

bidirectional algorithm. We will only discuss the basic algorithm here. The algorithms

derive Toffoli gates by manipulating the input or output bits of a given truth table. The

transformation techniques avoid an extensive search of the best collection of gates for the

near-optimal reversible circuit.

The basic algorithm is a simple greedy approach which generates Toffoli gates by ex-

ploiting the output side of the specification. According to [24] a reversible function can

be represented by an ordered set of integers such as {4,1,0,7,6,3,5,2}. Thus, the func-

tion over these integers is defined as f (0) = 4, f (1) = 1 and so on. Initially, consider a

reversible function as the mapping over {0,1, ...,2n− 1} bits. The algorithm iterates over

the following steps:
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1. Check the integer function f (0). If f (0) 6= 0, invert the 1-bits of the corresponding to

the f (0) output bits. For each inversion a single Toffoli gate of size one (TOF1) or a

NOT gate is required. Identify the transformed function as f+(0) = 0.

2. For every integer i = {0,1, ...,2n−1}, f+(i) 6= i, a transformation to a new specifi-

cation f++(i) is required and the Toffoli gates map the transformation f+(i)→ i.

Otherwise, if f+(i) = i.

Figure 2.15 illustrates the manipulation of the bits during each transformation of the spec-

ifications in bold. Firstly, a NOT gate is applied to the bit a0 of the specification (i)

function f (0) and then, the corresponding gate TOF1(a0) is added to the circuit. In the

next step, we map f+(5) → 5 with the application of TOF3({c1,b1},a1) on (ii) and

TOF3({a3,c3},b3) on (iii). Lastly, to map f+(6)→ 6 we use TOF3({c4,b4},a4) on

(iv). The mapping of these gates to the circuit shown in the steps above in the process

of transformation is in reverse order. The resultant mapping of the transformation to a

reversible Toffoli gate cascade is shown in Figure 2.16

The algorithm generates the circuit with at most (m− 1)2m + 1 gates for a m variable

specification with the complexity of O(n2n) [24]. Sometimes the final specification does

not map the outputs with their correct inputs. In that case an output permutation [24] is

applied to the specification. In order to reduce the circuit width template matching [24] is

performed on the resultant circuit. The templates are proposed in the paper [24].

2.4.3 Search-based Synthesis

Search-based synthesis methods traverse through a search tree built on the factors of the

Boolean expression. The search tree is explored for the best set of factors in a path con-

sisting of smallest expressions to build a circuit of minimal quantum cost. Positive Polarity

Reed-Muller (PPRM) expansion is the most commonly used method to generate a search

tree for a reversible function. The PPRM expansion is obtained only from uncomplemented

variables available in ESOP form. The expansion has a canonical form of
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(i) (ii) (iii) (iv) (v)
cba c0b0a0 c1b1a1 c2b2a2 c3b3a3 c4b4a4

000 001 000 000 000 000
001 000 001 001 001 001
010 011 010 010 010 010
011 010 011 011 011 011
100 101 100 100 100 100
101 111 110 111 101 101
110 100 101 101 111 110
111 110 111 110 110 111

Figure 2.15: An example of manipulating the truth table in transformation-based synthesis.

a • a0

b • • b0

c • • • c0

Figure 2.16: Reversible circuit for transformation-based synthesis.

f (x1,x2,x3, ....,xn) = a0⊕a1x1⊕anxn⊕a12x1x2⊕a13x1x3....⊕an−1,nxn−1xn.....⊕

a1,2,3,...nx1x2...xn [13]

Here a∈ {0,1}, constant value and xi are all uncomplemented variables. Figure 2.18 shows

the PPRM expansion of the truth table in Figure 2.17.

c b a c0 b0 a0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Figure 2.17: Reversible Function

a0 = a⊕1
b0 = b⊕ c⊕ac

c0 = b⊕ab⊕ac

Figure 2.18: PPRM Expansion

Here we describe a search-based algorithm from [13] which uses PPRM expansion to

derive a reversible circuit from a given Boolean function. The algorithm begins with the

PPRM expansion of the function f (v1,v2,v3, ....,vn). Figure 2.19 shows the expansion of
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an example function. The algorithm works as follows:

1. Create and initialize a root node (Node 0) of the search tree with the PPRM expansion

as shown in Figure 2.19(a).

2. Push Node 0 into a priority queue for further exploration. The root node is set to the

current best solution.

3. For every output variable in the PPRM expansion of the node being explored, con-

sider all the factors vout,i that do not contain vi. For example for aout = a⊕1⊕bc⊕

ac the factors are 1 and bc, as they do not contain the literal a.

4. Substitute vi = vi⊕ f actor to create child nodes for the further exploration. These

factors label the edges of the search tree. Each substitution should reduce the number

of terms of the synthesized child node.

5. The child node is explored further if the terms in the child node are less than the

parent node. Insert the child node into the priority queue and update the best solution

as the child node.

6. The algorithm iterates over these steps until no more nodes in the priority queue are

left to explore and the best solution is found.

7. The algorithm returns the path which consists of best factors for a given function.

The best factors are recognized if the terms are decreased after the substitution. The

path from the root node to the best solution creates the desired reversible circuit. The

path guarantees to construct a circuit with minimal number of gates. Each factor on

the edge of the path in the tree relates to a Toffoli gate in the circuit.

2.4.4 BDD based Synthesis

Most of the logic synthesis techniques discussed above in this chapter lack efficiency to

deal with the large number of variables in a Boolean function. Binary Decision Diagrams
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(BDD) and PPRM based synthesis approaches are more efficient in terms of run-time, since

they use more compact data structures (tree structure). On the other hand all the other

approaches depend on a truth table for the synthesis process.

In BDD a Boolean function f : Bn → B is represented by a directed acyclic graph

G = (V,E) where the Shannon decomposition [45] :

f = xi fxi=0+ xi fxi=1 (1≤ i≤ n) for any integer n,

is carried out on each node v ∈ V labeled by xi of a BDD. Here xi is the variable of a

Boolean function and, ( fxi=0) is the function f when xi = 0 and ( fxi=1) is the function

f when xi = 1. The node v has two types of outgoing edges {0-edge,1-edge} ∈ E. The

0-edge = low( f ) where low( f ) is ( fxi=0) and 1-edge = high( f ) where high( f ) is ( fxi=1)

in a BDD. The low( f ) and high( f ) can be any internal node marked as a sub-function or

a terminal node. The terminal nodes of a BDD have values either 0 or 1. Figure 2.20(a)

illustrates a BDD representing the function x1⊕ x2.

A network of Toffoli gates is created by adding reversible gates for each node v in a

BDD. The reversible gates for each node depend on the type of the node. For a general

case, a node has a cascade of Toffoli gates such as shown in Figure 2.20(b) and (c). Other

types of nodes are specified in Table 2.2 [45].

The size of a BDD is defined by the number of nodes a BDD consists of. Shared nodes

are an important component to significantly reduce the size of a BDD. Any node v with

more than one predecessor is identified as a shared node. Figure 2.21 displays an example of

a BDD with a shared node and the corresponding reversible circuit. Complementary edges

are also considered as a technique to decrease the count of nodes. With complementary

edges the function and its negation can be represented by the same node [7].

The algorithm to generate a reversible circuit using BDDs is as follows:

1. Generate a BDD for the Boolean function f to be synthesized.

2. Scan every node in the BDD. If the node v is the identity of the input variable xi
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Table 2.2: Toffoli gates for BDD node types with additional constant line [45].

BDD Toffoli gates BDD Toffoli gates
f

xi

low(f) high(f)

f

low(f)

xi

0

f

low(f)

xi

1

f

0

xi

high(f)

f

1

xi

high(f)

f

1

xi

0

(low( f ) = 0 or 1 and high( f ) = 0 or 1), then no constant circuit line is added. The

node is represented by the input circuit line.

3. Otherwise the Toffoli gates shown in Table 2.2 for each node type are added to the

circuit.

4. The successors low( f ) and high( f ) of the node v are preserved using an additional

constant line for each if the successors are shared nodes or identity of the input vari-

able. In this case templates shown in Table 2.2 are used. If none of the above cases

apply on the nodes, then the template shown in Figure 2.20(c) is used.

The size of a reversible circuit depends on the size of the corresponding BDD. Consid-

ering a BDD of size k (K nodes) for a Boolean function f of n variables, a reversible circuit

with at most k+n circuit lines is generated. The resultant circuit consists of the maximum

of 3 · k gates since at most 3 gates are added to the circuit for each node in a BDD. In the

worst case scenario a BDD can have 2n nodes for a single output function.
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Node 0

cout = c⊕ ab⊕ ac

bout = b⊕ c⊕ ac

aout = a⊕ 1

(a)

cout = b⊕ ab⊕ ac

bout = b⊕ c⊕ ac

aout = a⊕ 1

a = a⊕ 1 b = b⊕ ac b = b⊕ c

Node 0

Node 1.0 Node 1.1 Node 1.2

cout = c⊕ ab⊕ ac

bout = b⊕ ac

aout = a

cout = b⊕ ab⊕ ac

bout = b⊕ c

aout = a⊕ 1

cout = c⊕ b⊕ ab

bout = b⊕ ac

aout = a⊕ 1

(b)

cout = c⊕ ab⊕ ac

bout = b⊕ c⊕ ac

aout = a⊕ 1

Node0

Node1.0

a = a⊕ 1 b = b⊕ ac b = b⊕ c

b = b⊕ ac
c = c⊕ ac

cout = c⊕ ab⊕ ac

bout = b⊕ ac

aout = a

cout = c⊕ ab⊕ ac

bout = b⊕ c

aout = a⊕ 1

Node1.1

cout = c⊕ ab⊕ ab

bout = b⊕ ac

aout = a⊕ 1

Node1.2

cout = c⊕ ab

bout = b

aout = a

Node2.0

cout = c⊕ ab⊕ ac

bout = b⊕ ab⊕ ac
aout = a

Node2.1 (c)

cout = b⊕ ab⊕ ac

bout = b⊕ c⊕ ac

aout = a⊕ 1

a = a⊕ 1 b = b⊕ ac b = b⊕ c

b = b⊕ ac

c = c⊕ ab

c = c⊕ ab

Node 0

Node 1.0

cout = b⊕ ab⊕ ac

bout = b⊕ ac

aout = a

cout = b⊕ ab⊕ ac

bout = b⊕ c

aout = a⊕ 1

Node1.1

cout = b⊕ c⊕ ab

bout = b⊕ ac

aout = a⊕ 1

Node1.2

cout = b⊕ c

bout = b

aout = a

Node2.0

cout = c⊕ ab⊕ ac

bout = b⊕ ab⊕ ac

aout = a

Node2.1

cout = c

bout = b
aout = a

(d)
Figure 2.19: Search tree using PPRM expansion
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x1

x2 x2

f

f ′ f ′′

0 1 1 0

(a) A BDD for a
function x1⊕ x2

f

xi

low(f) high(f)

(b) A BDD node (c) Equivalent circuit

Figure 2.20: A BDD and Toffoli gates for a node [45].

f1 f2

xi xi

xj
low(f1) high(f1)f ′

low(f ′) high(f ′)

(a) BDD with shared
node

(b) Reversible circuit

Figure 2.21: A BDD with shared node and the equivalent reversible circuit [45].
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Chapter 3

Decision Diagrams

There are several means of evaluating an expression to obtain a value of true or false (1

or 0). One popular way is using decision diagrams to test for the value of a Boolean ex-

pression. As discussed in Chapter 2 Binary Decision Diagrams are one way to represent a

function f ∈ Bn, where Bn states the set of all n variable Boolean functions. Each variable

x1,x2, ....,xi assigned to a node is tested for an input value defining a path from the root to

the leaf node of the tree. The path may consist of a 0-edge or a 1-edge. Leaf nodes give

the output value for the sequence of input values assigned to each node variable. We now

proceed to discuss different categories of binary decision diagrams.

3.1 Reduced Ordered BDD (ROBDD)

Before understanding the functionalities of a ROBDD it is important to define an OBDD.

The authors of [22] define an OBDD as follows:

Definition 3.1. Considering the order of the variables ρ = (x1,x2, ...,xn) an Ordered Bi-

nary Decision Diagram is a directed acyclic graph with respect to the order ρ. An OBDD

satisfies the following properties:

1. There is exactly one root and two nodes labeled by the constants 0 and 1. These two

nodes do not have any outgoing edges and are called sinks.

2. Each internal node is marked by a variable xi and has two outgoing edges namely its

s1-edge and 0-edge. These edges are labeled by 1 and 0 respectively.

3. The sequence in which the variables occur in a path from the root to the sink is the

same as the order of the variables defined by ρ. This means if there exists a path from
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x1

x2 x2

x3 x3 x3 x3

1 0

x1

x2 x2

x3 x3

1 0

(a) OBDD (b) ROBDD

Figure 3.1: OBDD and ROBDD of f = x2x3+ x1x2 x3

a node xi to x j then xi < x j in ρ.

The variable ordering in a BDD plays an important role to reduce the size of a BDD. Finding

the best variable ordering is a NP-Hard problem [6]. However, the package CUDD [43] has

a feature for implementing variable ordering using a sifting algorithm [33].

A matter of concern with OBDDs is the occurrence of redundancies of the following

types:

1. The 0-edge and 1-edge of a node v lead to the same successor which means no new

information is produced at node v.

2. The same information is represented by the OBDD in the form of similar subgraphs.

Therefore, to resolve these issues we define ROBDDs with the reduction rules.

Definition 3.2. An OBDD is a ROBDD if the following cases exist [22]

1. There must not exist any node v with high(v) = low(v).

2. No two nodes u and v should exist such that the similar subgraphs are rooted at nodes

u and v.

Figure 3.1 displays an OBDD and a ROBDD of the function f = x2x3 + x1x2 x3 with the

variable order of x1 < x2 < x3. The 0-edge and 1-edge is displayed by a dashed edge and
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regular edge respectively. This definition leads to the reduction rules for OBDDs to form

ROBDDs. There are two reduction rules as stated below [22]:

1. Elimination rule: For a node v if the 0-edge and 1-edge have the same successor

node u , then eliminate v and redirect all the incoming edges of node v to node u.

2. Merging Rule: If two internal nodes u and v with the same variable name have their

1-edge directed to the same node and 0-edge directed to the same node, then eliminate

either u or v and redirect all the incoming edges of the removed node to the remaining

node.

Figure 3.2 shows the two reduction rules.

u

v v

(a) Elimination rule

xi xi xi

(b) Merge rule

Figure 3.2: Reduction rules for OBDDs [22].

3.2 Ordered Functional Decision Diagram (OFDD)

Earlier in Chapter 3 in BDD-based synthesis we defined the Shannon’s decomposition

type for constructing BDDs. Here we add two other decomposition types, namely the

PPRM or Davio decompositions.

Consider a Boolean function f for n variables. The functions f0, f1 and f2 are defined

as:

f0(x) = f (x1, ......,xn−1,0)

f1(x) = f (x1, ......,xn−1,1)

f2(x) = f0(x)⊕ f1(x)

Given the above definitions the two decomposition types can be defined by:
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v

u 0 u

Figure 3.3: Elimination rule for OFDDs

f = f0⊕ xn f2 for Positive Davio Decomposition.

f = f1⊕ xn f2 for Negative Davio Decomposition.

Definition 3.4. Ordered Functional Decision Diagrams (OFDD) are similar to OBDDs

except the function fi on node i is computed by the Reed-Muller decomposition as given

below [22]:

1. A node v labeled as 1 or 0 represents the function fv = 1 or fv = 0 respectively.

2. A node v labeled as xi whose low(v) and high(v) denote the functions h and g respec-

tively, defines fv = g⊕ xih.

The nodes of the OBDD in Figure 3.1 for the function f = x2x3 + x1x2 x3 represent an

OFDD for the function f = x1x2x3⊕ x1⊕ x2x3 provided that the node decomposition is

Davio. The nodes of the OFDD represent the following functions:

1. Nodes labeled by x3: fx3,1
(x) = 1⊕ x3 ·0 = 1, fx3,2

(x) = 0⊕ x3 ·1 = x3

2. Nodes labeled by x2: fx2,1
(x) = 1⊕ x2x3, fx2,2

(x) = 0⊕ x2x3 = x2x3

3. Node labeled by x1: f (x) = x2x3⊕ x1(1⊕ x2x3) = x2x3⊕ x1⊕ x1x2x3

The reduction rules for OFDDs are similar to the rules applied to BDDs except:

1. Elimination rule: If the successor of the 1-edge of a node v is 0, then eliminate v

and direct all the incoming edges to the successor of the 0-edge of node v.

Figure 3.3 shows the elimination rule for OFDDs.
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3.3 Ordered Kronecker Decision Diagram (OKFDD)

For some classes of Boolean functions, the OFDD representation is more compact

than OBDD. Furthermore, there are some classes of functions that have polynomial size

OKFDDs but exponential size OBDDs and OFDDs [3]. OKFDDs are an elegant combina-

tion of OFDDs and BDDs which showcase the advantages of each type.

Definition 3.5. The Ordered Kronecker Decision Diagram is a representation type where

each node v labeled by xi is assigned a decomposition type using Decomposition Type List

(DTL) d : {d1,d2, ....dn} where di ∈ {S, pD,nD}. Here S is Shannon decomposition, nD

is negative Davio decomposition and pD is positive Davio decomposition [22].

In Figure 3.4(a) the OKFDD representing a function f = x1x2x4⊕ x1x2x3⊕ x1x3⊕

x1x2x4 is constructed by the variable ordering x1 < x2 < x3 < x4. Each node has a de-

composition type given by the DTL d : {S, pD,nD,S}. The node x1 decomposes f into

fx2,1
= x2x4 and fx2,2

= x2x4⊕ x2x3⊕ x3. The node x2,2 is further decomposed into

fx3,1
= x3 and fx3,2

= x3⊕ x4. Lastly, the node x3,2 factors into fx4 = x4 and 1 while

the node x2,1 factors into fx4 = x4 and 0.

The algorithm to generate the reversible circuit from an OKFDD is similar to the BDD

synthesis algorithm discussed in section 2.4 except that an OKFDD uses all the decomposi-

tion types for node structures such as shown in Table 3.1. Figure 3.4b shows the equivalent

circuit for the OKFDD in Figure 3.4a using the Toffoli gates given in Table 3.1.
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S

pD pD

nD nD

S

0 1

f

x1

x2, 1 x2, 2

x3, 1

x3, 2

x4

f5f4

f2 f3

f1

(a) OKFDD for the func-
tion f = x1x2x4⊕ x1x2x3⊕
x1x3⊕ x1x2x4.

(b) Equivalent circuit.

Figure 3.4: OKFDD with the specified DTL [3] and its equivalent circuit.
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Table 3.1: Toffoli gate circuits for node structures of decomposition types.

Nodes Shannon Positive Davio Negative Davio

1.

f

xi

low(f) high(f)

2.

f
f

f

xi

low(f) high(f)

3.

f

low(f)

xi

1

4.

f

1

xi

high(f)

Nodes Shannon Nodes Shannon

5.

f

0

xi

high(f) 6.

f

low(f)

xi

0

7. ‘

f

1

xi

0 — —
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Chapter 4

Reducing lines using OKFDDs

The demand for an efficient and compact reversible circuit has led to the introduction of

various optimization techniques in the past years. Optimization of a reversible circuit is

carried out based on the parameters discussed in section 2.3. One of these parameters,

which counts the number of lines (qubits) in a reversible circuit is line count. As we know

now qubits are a limited resource and thus it is desirable to have reversible circuits gener-

ated with minimum line count. In this chapter we discuss the upper and the lower bounds

on the number of lines required by a reversible circuit to realize a Boolean function as ex-

plained in [20]. We also propose an algorithm to reduce the number of lines generated using

OKFDDs for reversible logic synthesis.

4.1 Bounds on reversible circuit lines

Theorem 1. For a given function f : Bn→ Bm the number of garbage bits required is

at most log2µ where µ denotes the maximum repetition of an output pattern [20].

Proof. As discussed in Section 1.1 an irreversible function is embedded into a reversible

function to be implemented. Since an irreversible function is not bijective, the outputs of an

irreversible truth table repeat for some input values. To make the output of the truth table

unique additional bits are added. For example if the output pattern (o1,o2, ..om) occurs

most frequently i.e. µ times, then dlog2(µ)e new bits are required to make the output

unique. Therefore, 2dlog2(µ)e extra output patterns are created.

Corollary 1. (Lower Bound) A reversible circuit requires at least m+ dlog2(µ)e lines

to implement an irreversible Boolean function [20].

Let µ be the maximum number of times an output pattern repeats itself in an irreversible
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4.1. BOUNDS ON REVERSIBLE CIRCUIT LINES

truth table of a Boolean function. Then, approximately dlog2(µ)e additional lines (garbage

outputs) are required to convert an irreversible function to a reversible function [20]. There-

fore, to implement a Boolean function Bn→ Bm at least m+ dlog2(µ)e lines are required.

The final circuit consists of n inputs, m outputs and dlog2(µ)e additional constant inputs.

If in any case the number of inputs n is greater than dlog2(µ)e then the minimum number

of lines required is n as the number of lines in a circuit cannot be less than the number of

variables present in the function.

The value of µ is evaluated by scanning the truth table of the function. The computation

involves a two-level description [48] of a SOP truth table of a Boolean function. A two-

level description represents a SOP truth table with ‘1’ for positive variables, ‘0’ for negative

variables and ‘-’ for don’t care values. This representation is similar to ESOP cube-list Fig-

ure 2.13. Each row denotes the conjunction of the variables. In a two-level description a

function is represented by the disjunction of each row while in ESOP a function is repre-

sented by the Ex-OR of each row. The complexity of computing the value of µ depends

on the size of the truth table. Therefore, the complexity is polynomial in the number of

rows of the truth table (or other two-level description); however it may be exponential in

the number of variables if there are no don’t care conditions in the truth table.

Example: Consider the truth table shown in Figure 4.1 in two-description level format.

The first row (11− 01) has two don’t cares so the output 101 is repeated 21 = 2 times.

Similarly, for the second row (10− 01) which represents the conjunction of x1, x2, x4

and x5 the output pattern 110 is repeated 21 = 2 times plus 23 = 8 times in fourth row

(00−−−). Figure 4.1 shows how many times an output pattern is repeated. Since the

output 110 is repeated the maximum number of times (10 times), the value of µ = 10 and

dlog2(µ)e = dlog2(10)e = 4. Thus, the minimum number of lines required to implement

the function is m+ dlog2(µ)e= 3+4 = 7 where m = 3.

Corollary 2. (Upper Bound) A given function f : Bn → Bm requires at most n+m

circuit lines to implement [48].
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x1 x2 x3 x4 x5 f1 f2 f3 Freq
1 1 - 0 1 1 0 1 21 = 2
1 0 - 0 1 1 1 0 21 = 2
0 - - - 1 1 0 1 23 = 8
0 0 - - - 1 1 0 23 = 8
0 - 1 1 1 1 0 0 21 = 2
- - 0 0 1 1 0 0 22 = 4

Figure 4.1: Calculating µ for an irreversible truth table

According to the Theorem 1 the minimal number of lines required to implement a

function is m+ dlog2(µ)e. Considering the worst case the maximum number of times an

output pattern can repeat for 2n i.e. µ = 2n for an n variable Boolean function. Therefore,

in this case the number of lines required is m+ dlog2(2
n)e= m+n.

4.2 The Algorithm

Algorithm MOKFDD is the proposed algorithm for line reduction in OKFDDs. The

algorithm explains the process of synthesizing a Boolean function from a given OKFDD.

Before discussing the algorithm we introduce the shared node ordering for the algorithm.

Shared nodes: Shared node implementation is previously explained in section 2.4 un-

der BDD based synthesis. In OKFDDs the implementation of a shared node structure de-

pends on the decomposition types of the nodes involved. As discussed earlier if two or more

nodes have a same successor node S then S is a shared node. To obtain an optimized circuit

from an OKFDD we introduce the node ordering in case of a shared node. The illustration

of the concept is given in Figure 4.2 using Positive Davio (pD) decomposition where the

function f3 is represented by a shared node.

In Figure 4.2 the node labeled x j is a shared node as it is shared by two xi nodes. In the

case of a shared node, the node (v f1
) with the 1-edge leading to the x j is realized first and

then the node (v f2
) with the 0-edge to x j. In this case the circuit has no additional con-

stant circuit lines but when synthesizing from a OKFDD the shared node implementation
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4.2. THE ALGORITHM

depends on the decomposition type and [45] gives a shared node implementation, but only

for Shannon decomposition types. The cost of the circuit depends on the decomposition

type of the nodes.

f1 f2

xi xi

xj
low(f1) high(f1)f ′

low(f ′) high(f ′)

Figure 4.2: Shared node and equivalent circuit

The algorithm MOKFDD is based on synthesizing reversible circuits using the factors

of a Boolean function through a decision diagram. Our addition to the work in [42] is a new

sub-circuit or template (highlighted in Table 4.1) for positive-Davio decompositions and

an ordering in which the variables are to be addressed when a shared node is encountered

in the OKFDD. A template in the decision diagram is a representation of a node structure

in the form of reversible gates in a reversible circuit according to the given decomposition

type. These templates can be computed using the corresponding decomposition type formu-

las. The algorithm MOKFDD introduces a process of mapping an OKFDD to a reversible

circuit in such a way that the circuit lines are minimized. The input for the algorithm

MOKFDD is the OKFDD or acyclic directed graph G(V,E) generated by the algorithm in

[42]. The output of the algorithm MOKFDD is a reversible circuit termed as rev cascade.

Initially, we take an empty circuit rev cascade and add lines or gates when required. In the

next three steps we define the depth d of the OKFDD, the number of nodes k at each level

and an empty list L respectively. In step 5 we start traversing the graph bottom-up for each

level l from the non-terminal nodes (level d−1) to the root node. In step 6 each unvisited

node vl
j at level l is scanned for the decomposition type. In Step 7 and 8 we implement each

node vl
j with an update in rev cascade and mark it as visited. In the next step we search for
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4.2. THE ALGORITHM

the parent nodes Vj of each node vl
j. Steps 10 to 15 define the cases for a shared node. For

a shared node there can be only two parent nodes (|v j|= 2). Step 11 checks the case where

(considering the Figure 4.2) 0-edge of f2 (vp1
j ) and 1-edge of f1 (vp2

j ) leads to the same

shared node x j. In this case f1 (vp2
j ) is inserted in the L first and then f2 (vp1

j ). The second

case is the alternate case of the first one. Finally in Steps 17 to 19 the list L is traversed and

each element or node in the list v is implemented according to the insertion order before

going to the next level. Each of these nodes are marked visited and rev cascade is updated.

The procedure parent(G,vl
j) searches for the parent nodes vp1

j and vp2
j of the input

node vl
j at level l in the graph by tracking the incoming edges to the input node. In the

procedure sub circuit(v) each node v in an OKFDD is implemented by selecting a sub-

circuit from Table 4.1 depending on the node decomposition type and structure. The most

frequent sub-circuits for each decomposition type shown in Table 4.1 are given in [42]. We

have added a new sub-circuit for Davio decomposition of node structure 3 which requires

no additional lines and only one CNOT gate.

Input: A KFDD (directed acyclic graph) G(V,E) where |V |= n and {0−edge,1−edge} ∈

E.

Output: A reversible circuit rev cascade with minimal lines.

update cascade(rev cascade,sub circuit(v)) procedure evaluates each sub-circuit se-

lected by the procedure sub circuit(v) adds to the main circuit rev cascade. If the rev cascade

has the input states required by the sub-circuit then they merge otherwise new constant ad-

ditional lines are added for the required input states.

Example: Figure 4.3 shows an OKFDD for the function x1(x2⊕ x3)⊕ x2x3 where

ρ = x1 < x2 < x3. Firstly, f decomposes into f3 = x2x3⊕ x3 and f2 = x2⊕ x3 by nD

decomposition type. Then, f3 decomposes into f1 = x3 and terminal node 1 by pD type.

Next, f2 into f1 = x3 and 0 by pD type. Finally, f1 decomposes into terminal nodes 0 and

1 by Shannon type.

36



4.2. THE ALGORITHM

Algorithm 1 MOKFDD(G)

1: rev cascade← /0

2: d← depth of an OKFDD.
3: k← no. of nodes in each level of an OKFDD.
4: L← /0

5: for each level l; d−1≤ l ≤ 0 do
6: for each unvisited node vl

j ∈V ; 0≤ k do

7: rev cascade← update cascade(rev cascade,sub circuit(vl
j))

8: Mark v j visited.

9: Vj← parent(G,vl
j)

10: if |Vj| equals 2 then

11: Case 1: 0-edge of vp1
j ∈Vj and 1-edge of vp2

j ∈Vj share same node then

12: Insert vp2
j and then vp1

j in L.

13: Case 2: 1-edge of vp1
j ∈Vj and 0-edge of vp1

j ∈Vj share same node then

14: Insert vp1
j and then vp2

j in L.
15: end if
16: end for
17: for each element v ∈ L do
18: rev cascade← update cascade(rev cascade,sub circuit(v))
19: Mark v visited.
20: end for
21: end for

To generate the circuit using MOKFDD, we traverse the OKFDD from node x3 to the

root node x1 level wise starting from l2. The suitable sub-circuit is selected from Table 4.1

for each node. Here node f1 at l2 is a shared node and thus, f3 is implemented before f2.

For node f1 at l2 since the function is x3 (a single variable) we require only a single line in

the circuit. At l1 for node f2 the pD node structure #3 is used from the Table 4.1. Similarly,

for the node f3, the pD node structure 5 is used which is similar to a S decomposition.

Lastly, for node f at l0, the nD node structure #1 is used. Figures 4.3b and 4.3c show

the equivalent circuit implementations using the previous algorithm [42] and our algorithm

respectively. As illustrated our approach produces a smaller circuit (quantum cost = 12 and

line count = 4) as compared to the previous approach (quantum cost = 13 and line count =
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Algorithm 2 Procedure parent(G,vl
j)

Vj← parent nodes of vl
j

Return Vj

Algorithm 3 Procedure sub circuit(v)

if child nodes of v are non-terminal then
circuit(v)← template 1 or 2 from Table 4.1

else
circuit(v)← other matching template from Table 4.1

end if
Return circuit(v)

f

f3 f2

f1

nD

pD pD

S

0 1

x1

x2 x2

x3

l0

l1

l2

(a) OKFDD for the function
x1(x2⊕ x3)⊕ x2x3

(b) Previous approach (c) Our approach

Figure 4.3: OKFDD and its reversible circuit from different algorithms.

5) [42].

In order to compare our approach with the existing BDD based synthesis, consider

the SOP formulation for the function used in the example above i.e. f = x1+ x2+ x3. The
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4.3. DISCUSSION

Algorithm 4 Procedure update cascade(rev cascade,sub circuit(v))

if rev cascade has all the required sub circuit(v) input states then
Merge sub circuit(v) and rev cascade

else
Add extra constant lines for the missing input states to rev cascade and merge

sub circuit(v)
end if
Return rev cascade

OBDD for this function using the order of nodes ρ= x1 < x2 < x3 is shown in Figure 4.4(a).

As illustrated the nodes in an OBDD are more compared to the nodes in an OKFDD for

the same function. This shows that the number of nodes in a decision diagram depend

on the decomposition type being used. The resultant circuit of the OBDD is shown in

Figure 4.4(b). The number of lines in the circuit is 6 and the quantum cost is 29. In this

case the cost of the circuit is more than the cost of the circuit synthesized by OKFDD even

for a simple function with three variables. The comparison of our approach to OBDD based

synthesis for the reversible benchmarks is shown in the results chapter 5. The comparison

f

x1

x2
x2

x3 x3

0 1

S

S S

S S
f1 f2

f3 f4

(a) OBDD (b) Reversible circuit.

Figure 4.4: (a) OBDD for the function f = x1 + x2 + x3 and (b) its equivalent reversible
circuit.

of our approach with other algorithms help to analyze the benefits and limitations of the

proposed algorithm. The next section discusses these points along with the contribution.
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Table 4.1: Toffoli gate circuits for node structures of decomposition types.

Nodes Shannon Positive Davio Negative Davio

1.

f

xi

low(f) high(f)

2.

f
f

f

xi

low(f) high(f)

3.

f

low(f)

xi

1

4.

f

1

xi

high(f)

Nodes Shannon Nodes Shannon

5.

f

0

xi

high(f) 6.

f

low(f)

xi

0

7.

f

1

xi

0 — —

4.3 Discussion

The proposed algorithm MOKFDD uses OKFDD for the synthesis of a reversible cir-

cuit. In OBDD synthesis approach the function is decomposed into smaller sub-functions

using Shannon decomposition until a constant value is reached. These sub-functions are

then mapped on to the reversible circuit. The drawback of using an OBDD based syn-

thesis is that the circuit uses more additional lines to preserve the sub-function for future

use compared to OKFDD based synthesis approach for large functions. However, OBDD

based synthesis is the first hierarchical synthesis approach which can synthesize Boolean
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functions upto 70 variables [42]. The illustration for this is given by an example in the

previous section. This reason motivates us to use an OKFDD based synthesis for the algo-

rithm MOKFDD. In an OKFDD approach the functions are decomposed using the Davio

decomposition types with Shannon type which allows more compact representations of the

sub-functions. Therefore, the advantages of MOKFDD include:

1. The algorithm can take upto 70 variables as input.

2. The resulting reversible circuit is cost effective (reduces line count) compared to other

algorithms.

3. The algorithm does not traverse the truth table to generate the reversible circuit.

The algorithm MOKFDD uses the advantages of an OKFDD based synthesis along with

the reduction in the circuit lines. It overcomes the limitations introduced by other heuristic

methods of synthesis [24], [16], [13] such as limited input variables, scanning of large truth

tables and costly circuits. However, there are few limitations associated with the algorithm.

They are as follows:

1. Although MOKFDD produces cost effective reversible circuits for large inputs, the

circuits are still expensive to implement practically.

2. The size of the decision diagram may increase exponentially with the increase in the

number of input variables.

With all these advantages and disadvantages discussed above MOKFDD significantly re-

duces the number of lines in the reversible benchmarks. The experimental evaluation done

in the next chapter shows the reduction table for the benchmarks. The three important

contributions from this study are:

1. Introduction of a new template in the pD node structure significantly reduces the

number of lines in the circuits.
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2. The proposed ordering for the shared nodes allows to implement the template for the

line reduction efficiently.

3. The level-wise traversal of the decision diagram checks and implements the shared

nodes according to the shared node order in a single pass.

The results form the first contribution depend on the frequency of the presence of the node

structure highlighted in Table 4.1 in the decision diagram. Since the node structure is one

of the most frequently used structure the line reduction in the circuits is notable. The study

can be extended to find more of such node structures with different decomposition types to

furthur reduce the number of circuit lines.
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Chapter 5

Experimental Evaluation

The algorithm MOKFDD is implemented in C++ in Revkit [41]. The reversible functions

in Table 5.1 are from Revlib [44]. The algorithm to generate an OKFDD is given in Revkit

under KFDD-based synthesis algorithms which includes the PUMA package for decompo-

sitions and optimizing algorithms. The sifting algorithm [33] is used by PUMA to find a

variable ordering and DTL that results in the fewest nodes in the OKFDD. The circuits ob-

tained by our algorithm (Table 5.1) have been verified using Revkit’s equivalence checker.

The runtime of the experiment including the verification process for all the benchmarks

shown in Table 5.1 is few seconds. The experiment was performed on a 1.9 GB, Intel Core

2 Duo processor Linux machine.

In Table 5.1 the first column shows the functions. The next two columns consist of the

number of inputs and outputs for corresponding functions. The results of our algorithm are

compared with the results of the previous KFDD approach [42] and BDD approach [45].

The notation ‘L’ denotes the number of lines in the circuit while ‘QC’ and ‘GC’ denote the

quantum cost and gate count respectively. The changes in the metrics are shown by ‘∆ L’,

‘∆ QC’ and ‘∆ GC’. The results show a significant decrease in the number of lines as well

as in quantum cost and gate count. In the best case (e.g. plus127) the line reduction is

42% compared to the KFDD approach and 29% (e.g. tial) compared to the BDD approach.

The average line reduction is approximately 10% in comparison to the KFDD approach.

Comparing the quantum cost values the average reduction is around 7% and 23% for the

KFDD and the BDD approaches respectively.

Since an OKFDD uses all the decomposition types with the variable ordering, this type

of decision diagram is more likely to generate a smaller realization compared to other DD
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based algorithms for large functions. Some of the functions show great improvement such

as plus127 and tial due to the frequent presence of node structure #3. We can see that if a

pD decomposition type #3 is used then only one gate and no additional lines are required.

Although there are a few functions that do not show any improvement compared to lines in

KFDD approach, they display QC or GC minimization such as sqrt8 and ex2. We hypothe-

size that when a node is shared with more than two nodes then an additional line is required

to preserve the function for future use. This compensates for the previous removal of lines.

A comparison of our experimental results to the lower bound discussed in section 4.1

on the number of lines in a reversible circuit is shown in Table 5.2. Column 1 and 2 show

the number of inputs and outputs of a function respectively. Column 3 shows the lower

bound (dlog2(µ)e) or the least additional lines required for a function. Column 4 shows

the total number of lines (m+ dlog2(µ)e) required. The last column in the table shows the

number of lines required by a function using our approach. The difference in the values

for some of the functions is small such as ex1 and rd 32, and large in other functions such

as plus63 and sqn. The difference in the values may depend on the decomposition of a

function. Importantly, the comparison shows that there is scope for more improvement.

The variable ordering of a DD plays an important role in the designing of a reversible

circuit. The size of a DD depends on the chosen variable order [33]. The number of gates

and lines in a reversible circuit depends on the number of the non-terminal nodes in a DD.

If a DD has k nodes and each node needs at least a single extra line then at most k+n lines

are required to implement an n input Boolean function [45]. Similarly, 3× k Toffoli gates

are required to realize a DD with k nodes considering that each node can have at most 3

Toffoli gates [45]. In order to minimize the size of DD, the sifting algorithm [33] is used to

obtain the best possible variable ordering for a DD. The algorithm tests for all the possible

variable orderings and selects the best ordering to minimize the size of a DD. It initially

takes a variable and swaps it with other variables until the best position is confirmed. Since
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each position is checked for the best results the algorithm is a brute force algorithm. Each

variable is swapped until no significant decrease in the size of the DD occurs.

Considering the fact that the variable ordering reduces the size of the DD, we can further

investigate the changes in a DD by comparing the variable ordering to favor a particular set

of node structures. In Figure 5.1 an OKFDD for a function f = x1(x3⊕x4)⊕x3x4⊕x2x3⊕

x2x4 is given with the variable order of x1 < x2 < x3 < x4 and pD decomposition on all the

nodes. This variable ordering for the function is best according to the sifting algorithm due

to the minimum number of nodes. Randomly testing the other variable orders an OKFDD

with the structure shown in Figure 5.1 is obtained. The quantum cost is 17 while the line

count is 4. This is a case where the number of nodes is increased compared to the original

OKFDD to favor the pD node structure #3 from Table 5.2. Comparing the resultant circuits

from both OKFDDs Figure 5.2 gives a more compact and less expensive circuit with a

quantum cost of 12 and line count 4. The reason behind the cost reduction in spite of

an increase in the number of nodes is that the increased number of nodes represents the

variable itself as a function such as x1 and x2. Therefore, these nodes require a single input

line (no additional line) to represent the function in the circuit. There may be other different

cases where an increase in the number of nodes may increase the cost of the circuit.
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x1

x2

x3 x3

x4

0 1

f1

f2f3

f1

f

(a) (b)

Figure 5.1: (a) OKFDD with the variable order x1 < x2 < x3 < x4 and (b) its equivalent
circuit.
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Figure 5.2: (a) OKFDD with the variable order x4 < x3 < x2 < x1 and (b) its equivalent
circuit.
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Table 5.1: Experimental Results for the Algorithm

Function Name #in #out Our approach OKFDD approach [42] BDD approach [45]
L QC GC L QC GC ∆ L ∆ QC ∆ GC L QC GC ∆ L ∆ QC ∆ GC

Rd 32 3 2 6 16 8 8 20 12 -2 -4 -4 6 22 10 0 -6 -2
mod10 4 4 12 60 24 14 64 28 -2 -4 -4 13 80 28 -1 -20 -4
one two three 3 3 9 35 15 10 37 17 -1 -2 -2 9 44 16 0 -9 -1
plus127 13 13 26 85 41 37 97 53 -11 -12 -12 25 98 54 1 -13 -13
plus63 12 12 24 78 38 34 89 49 -10 -12 -11 23 89 49 1 -11 -11
radd 8 5 17 59 27 21 68 36 -4 -9 -9 28 217 73 -11 -158 -46
rd53 5 3 14 64 32 15 69 37 -1 -5 -5 - - - - - -
rd73 7 3 23 107 51 25 115 59 -2 -8 -8 25 217 73 -2 -110 -22
rd84 8 4 30 153 69 33 161 77 -3 -8 -8 34 304 104 -4 -151 -35
root 8 5 51 413 153 52 415 159 -1 -2 -6 45 444 140 6 -31 13
sqr6 6 12 48 304 112 50 315 123 -2 -11 -11 49 486 154 -1 -182 -42
sqrt8 8 4 28 166 62 28 170 66 0 -4 -4 - - - - - -
z4 7 4 14 46 22 20 56 32 -6 -10 -10 14 66 30 0 -20 -8
z4ml 7 4 14 46 22 20 56 32 -6 -10 -10 14 66 30 0 -20 -8
add6 12 7 40 183 79 39 184 80 1 -1 -1 54 499 159 -14 -316 -80
adr4 8 5 16 54 26 23 65 37 -7 -11 -11 16 74 34 0 -20 -8
bw 5 28 78 581 237 81 593 249 -3 -12 -12 87 943 307 -9 -362 -70
cm82a 5 3 10 31 15 12 36 20 -2 -5 -5 13 82 30 -3 -51 -15
con1 7 2 15 94 30 17 100 36 -2 -6 -6 - - - - - -
cycle 12 12 28 97 49 34 104 56 -6 -7 -7 39 202 78 -11 -105 -29
dc1 4 7 21 141 45 22 146 50 -1 -5 -5 20 160 56 1 -19 -11
inc 7 9 56 442 158 58 447 171 -2 -5 -13 53 579 187 3 -137 -29
xor195 5 1 6 6 6 10 10 10 -4 -4 -4 6 8 8 0 -2 -2
sym9 9 1 30 150 70 28 154 74 2 -4 -4 27 206 62 3 -56 8
ex1 5 1 6 6 6 10 10 10 -4 -4 -4 6 8 8 0 -2 -2
ex2 5 1 11 50 18 11 48 20 0 2 -2 11 73 25 0 -23 -7
max46 9 1 62 664 216 67 684 228 -5 -20 -12 54 598 190 8 66 26
sym10 10 1 38 259 103 40 266 110 -2 -7 -7 32 253 77 6 6 26
life175 9 1 26 159 67 31 168 76 -5 -9 -9 27 204 64 -1 -45 3
9syml 9 1 30 150 70 28 154 74 2 -4 -4 27 206 62 3 -56 8
sao 10 4 74 562 186 73 568 192 1 -6 -6 74 667 211 0 -105 -25
tial 14 8 410 4185 1681 419 4179 1703 -9 6 -22 578 7609 2253 -168 -3424 -572
urf1 9 9 384 4320 1628 390 4372 1672 -6 -52 -44 374 6080 1848 10 -1760 -220
urf2 8 8 206 2276 920 209 2304 948 -3 -28 -28 209 3187 983 -3 -911 -63
wim 4 7 18 93 37 19 95 39 -1 -2 -2 18 107 39 0 -14 -2
mjority 5 1 10 37 17 10 38 18 0 -1 -1 10 41 13 0 -4 4
sym6 6 1 16 76 28 16 77 29 0 -1 -1 14 93 29 2 -17 -1
cordic 23 2 52 264 104 53 264 108 -1 0 -4 - - - - - -
cm85a 11 3 35 161 61 35 164 64 0 -3 -3 36 275 87 -1 -114 -26
clip 9 5 66 546 214 69 566 226 -3 -20 -12 66 704 228 0 -158 -14
e64 64 64 195 897 385 195 899 387 0 -2 -2 - - - - - -
cps 24 109 619 5677 2305 625 5668 2332 -6 -9 -27 - - - - - -
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Table 5.2: Lower bound Table

Function name #inputs (n) #outputs (m)
Lower Bound
LB = dlog2(µ)e

#Total Lines (LB + m)
Our Approach
#Lines

Rd 32 3 2 2 4 6
mod10 4 4 4 8 12
one two three 3 3 2 5 9
plus127 13 13 0 13 26
plus63 12 12 0 12 24
radd 8 5 9 14 17
rd53 5 3 5 8 14
rd73 7 3 9 12 23
rd84 8 4 7 11 30
root 8 5 8 13 51
sqn 7 3 7 10 41
sqr6 6 12 7 19 48
sqrt8 8 4 9 13 28
z4 7 4 8 12 14
z4ml 7 4 8 12 14
add6 12 7 13 20 40
adr4 8 5 9 14 16
bw 5 28 8 36 78
cm82a 5 3 5 8 10
con1 7 2 7 9 15
cycle 12 12 0 12 28
dc1 4 7 2 9 21
inc 7 9 3 12 56
xor195 5 1 4 5 6
sym9 9 1 10 11 30
ex1 5 1 4 5 6
ex2 5 1 4 5 11
max46 9 1 7 8 62
sym10 10 1 10 11 38
life175 9 1 9 10 26
9syml 9 1 10 11 30
sao 10 4 10 14 74
tial 14 8 15 23 410
urf1 9 9 0 9 384
urf2 8 8 0 8 206
wim 4 7 4 11 18
mjority 5 1 5 6 10
sym6 6 1 6 7 16
cordic 23 2 26 28 52
cm85a 11 3 11 14 35
clip 9 5 10 15 66
e64 64 64 63 128 195
cps 24 109 28 137 619
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