Using Instance-Specific Circuits to Compute Autocorrelation Coefficients

Kenneth B. Kent

University of New Brunswick
Faculty of Computer Science
Fredericton, New Brunswick, Canada
ken@unb.ca


Jacqueline E. Rice

University of Lethbridge
Dept. of Mathematics & Computer Science
Lethbridge, Alberta, Canada
rice@cs.uleth.ca

Abstract

Autocorrelation coefficients have been shown to be useful in gathering information about and identifying characteristics of a logic function. This paper proposes utilizing a FPGA in the computation of the autocorrelation coefficients for a logic function. The approach presented involves generating a hardware solver that is instance-specific to the logic function being analyzed. This technique leverages the parallel capabilities of the FPGA to perform the required computations. Various topics are addressed such as background, motivation, the instance specific hardware design, and several factors of interest in the process.
1 Introduction

Autocorrelation coefficients are useful in identifying characteristics of a logic function. Knowing these characteristics is beneficial for the synthesis process when implementing logic functions. This paper discusses the use of a Field Programmable Gate Array (FPGA) to compute the autocorrelation coefficients of a logic function.

An interesting aspect of this work is that an instance-specific generated circuit solver performs the computation. Previous work on instance-specific computations has shown that despite the overhead of generating and synthesizing the instance-specific solution, they can outperform software solutions [3]. This result is attributable to the parallel capabilities of the FPGA and the solution’s exploitation of it.

The following section provides background on related research including autocorrelation coefficients, reconfigurable computing, and the instance-specific approach. Section 3 describes the hardware architecture used by the circuit solver to compute the autocorrelation coefficients, and Section 4 outlines the design issues that must be addressed. Some of these issues include encoding the logic function to analyze, utilizing the parallelism in the computation, and how to most effectively use the design space available. 
2 Background

This section provides some background information and motivation for this paper.

2.1 Autocorrelation Coefficients

The autocorrelation coefficients provide a measure of the function's similarity to itself, shifted by a given amount. This is also called the cross-correlation, or convolution function. The autocorrelation coefficients have been used in optimization and synthesis of combinational logic [5], in variable ordering for ROBDDs [2], and to compute the estimate C(f) of a function's complexity [5, 6]. The information inherent in the autocorrelation coefficients also has the potential to be of use in many other areas, such as in identifying other types of complexity measures [7], symmetry identification, and most recently in the optimization of decision diagrams [8].  Their use has been limited, however, which is likely due to the fact that the commonly used methods of computation are exponential in the number of inputs to the function(s).

Before defining the autocorrelation coefficients, we first provide some notation that is used throughout.

· f(X) and g(X) are each switching functions in which X = {x1 ... xn-1 xn}. 

· 
[image: image1.wmf]å

=

-

·

=

n

i

i

i

u

u

1

1

2

and 
[image: image2.wmf]å

=

-

·

=

n

i

i

i

v

v

1

1

2


· n is the number of inputs to the switching function f(X). 

The general cross-correlation (convolution) function between two given functions f and g at a distance u is defined as 


[image: image3.wmf]å

-

=

Å

·

=

1

2

0

)

(

)

(

)

(

n

v

g

f

u

v

g

v

f

u

B


When f(X) = g(X), the resulting equation gives the cross-correlation of a function with itself, translated by u. The resulting coefficients that make up the vector B are referred to as the autocorrelation coefficients of the function. The autocorrelation function is defined as follows [6]:


[image: image4.wmf]å

-

=

Å

·

=

1

2

0

)

(

)

(

)

(

n

v

f

f

u

v

f

v

f

u

B


If the superscripts f f are omitted then the autocorrelation function is being computed, rather than the cross-correlation function.

For multiple-output functions a second step must be performed to combine the autocorrelation function for each of the individual functions into the total autocorrelation function. Only single-output functions are considered in this paper.

2.2 ROBDDs

Reduced Ordered Binary Decision Diagrams (ROBDDs) are an efficient data structure for the representation and manipulation of Boolean functions. The original representation, Binary Decision Diagrams (BDDs) were presented by Akers in 1978 [9], and are simply a graphical implementation of the Shannon decomposition of the function.

Restrictions to create ROBDDs were added by Bryant [10]. These restrictions are that all redundant nodes are removed, duplicate nodes are shared, and an ordering is imposed on the variables. This can lead to significant savings in the numbers of nodes required to represent the function. An example of the BDD and ROBDD representations for the function 
[image: image5.wmf]C

A

B

A

x

x

x

x

X

f

+

=

)

(

 is shown in Figure 1.

	[image: image6.wmf]
(a) BDD
	[image: image7.wmf]
(b) ROBDD


Figure 1.  The BDD and ROBDD representation for the same function.

It should be noted that in general, the term BDD or ROBDD may be used interchangeably when referring to a ROBDD.

2.3 Reconfigurable Computing

Reconfigurable computing utilizes the flexibility and processing power of reconfigurable devices such as Field Programmable Gate Arrays (FPGAs) in order to achieve an increase in performance. This flexibility is increasingly interesting as it allows the development and implementation of a custom hardware circuit as part of a solution.

Reconfigurable computing is generally identified for use in either a static or dynamic role. In static reconfigurable computing, the device is programmed only once for the entire instance of an application. Dynamic reconfigurable computing solutions re-program the device several times, realizing many different hardware designs during execution. For both of these types of computing it is possible to use custom hardware designs that are either pre-existing or generated specifically for the current problem.

2.4 Instance-Specific Approach

With the flexibility of reconfigurable devices, it is possible to utilize the device not for a general problem, but rather for a specific instance of a problem. This relies upon generating a hardware design that encapsulates some of the inputs of a typically equivalent software solution. This approach may appear at first to render a slower solution, but for certain applications with desirable characteristics it can achieve a high performance increase [3]. 

There are several characteristics that make the calculation of a problem suitable for this computation technique.

i. The computation is intensive and time consuming. This is a required characteristic needed to offset the penalty for generation of the hardware design.

ii. The computation is relatively self-contained. This is suitable to allow the generated hardware design to be compact enough to fit within an available re-programmable device.

The calculation of the autocorrelation coefficients possesses both of these characteristics.

3 Hardware Architecture

The hardware architecture for this solution contains three main components. These are the Function, the Calculator, and the Controller. Figure 2 shows the components of the hardware architecture and their connections.

The Function components must contain the logic function for which the autocorrelation coefficients are to be computed. Two instances of this component are used, one for each function calculation that is required for each summation. This component contains an embedding of the BDD representation of the logic function. This allows relatively quick computation of the function for a given input. Most importantly, it provides a means of storing the function that in general, for functions with n inputs, does not require 2n entries. This is important due to the inherent memory constraints.

The Calculator is responsible for performing the actual computation of the coefficients. This module performs the logic exclusive-or and summations of the autocorrelation function on inputs that are received from the Function component.

The Controller process, as the name suggests, controls the overall computation process and the storing of its results. This process generates the inputs for the Function component to process. It also interacts with the Calculator process to reset the summation and also to extract the result of computing a single coefficient. Upon extraction, the result is pushed out to an external memory that holds all of the autocorrelation co-efficients.








Figure 2. Hardware architecture for computation of the autocorrelation coefficients.

4 Design Issues

This instance-specific approach and corresponding architecture raises many interesting design issues for investigation.

4.1 Logic Function Encoding

A key bottleneck of any solution to compute the autocorrelation coefficients is the lookup technique used for the function under investigation. With any logic function, representation of the function can be both memory and compute intensive, with a trade-off between each. Depending on the desired features of the representation, a representation can be chosen that requires low memory and high computation such as computing the output directly from the inputs, or high memory and low computation such as a lookup table of the function.

Reconfigurable devices and the support available for them currently dictate that computation is preferred over memory. As the number of inputs for the function under investigation increases, the amount of memory that is required quickly becomes infeasible. However, the processing power of the reconfigurable device is vast, and if leveraged appropriately, can provide faster results.

A technique under investigation is to encode the logic function as a BDD within the Function component. This is deemed suitable since a BDD representation is reducible and can directly translate into a finite state machine. Both of these qualities allow for a compact and easy implementation. 

The depth of the BDD is a determining factor in the speed of the computations. In the worst case, the depth of the BDD equals the number of inputs of the function. However, the depth may be decreased through the use of BDD reduction techniques. It is also possible to decrease function lookups by viewing the BDD as a series of levels through which the function inputs must travel, and then pipelining the propagation of the inputs. The length of the pipeline is then equal to the depth of the BDD. Using this technique can significantly reduce the computation time of function lookups, especially in this instance, where there are an exceptionally high number of function calculations. 

4.2 Design Space Utilization

Computation of the autocorrelation coefficients is a highly parallel problem. Many of the tasks performed in the process are not dependent on their ordering. As such, there is much flexibility and potential for performing many of the operations in parallel. Given the basic underlying architecture presented in this paper, there is a great deal of potential for further enhancements. 

Given no restriction on design space, an obvious enhancement to the architecture would be to replicate all of the computation units and split the calculation evenly between them. Replication of the necessary Controller and Calculator functionality is anticipated to require minimal design space. The Function component is more demanding on design space and its size is dependent on the size of the BDD representation.

The hardware design for the custom circuit is generated specifically based on the function to be analyzed. The interesting question is how to determine the available design space when generating the instance-specific hardware design. This requires some heuristics that can be used by the instance generator to estimate how much design space each component will require. The consequences of decisions made during the instance generation are significant. An inappropriate decision can result in a slower than capable solution with under-utilized resources or a solution that cannot fit within the available reconfigurable device. Future work will address this issue.

5 Analysis & Preliminary Results

The computation process of a single autocorrelation coefficient is dominated by calculation of the function under investigation. One autocorrelation coefficient in a brute force implementation requires on the order of 2n function calculations. While the number of computations is not reduced in this implementation, the time required to compute each function is reduced. In the technique presented, the use of pipelining results in only a constant penalty of 1 hardware clock cycle to perform a function calculation. This is much faster than the time required to perform the same computation in software. The exact time is dependent on the speed of the circuit, which will be known after placement and routing of the hardware circuit design. In the preliminary results shown in Table 1, the speed of the implemented circuits above varied approximately from 37 MHz to 45 MHz.

	File
	Inputs
	% CLB use
	Hardware Time (sec)
	SW Time (sec)

	
	
	
	Generate VHDL
	Synthesize and implement
	Compute 1 coefficient

	9symml
	9
	29
	1
	660
	1.03 e-4
	0.20

	alu4
	14
	33
	1
	720
	0.006
	0.50

	co14
	14
	29
	1
	480
	0.0049
	0.10

	F51m
	14
	33
	1
	660
	0.006
	0.60

	life
	9
	29
	1
	660
	1.0 e-4
	0.20

	max46
	9
	29
	1
	660
	1.0 e-4
	0.10

	mux01
	21
	29
	2
	660
	0.99
	2.70

	parity
	16
	29
	4
	660
	0.024
	30.5

	ryy6
	16
	30
	1
	660
	0.244
	0.10

	t481
	16
	30
	1
	660
	0.233
	0.20


Table 1. Comparison of software and hardware computation times.

Clearly the time required for the synthesis and implementation (~ 600 sec) in hardware is far larger than the time required to compute a single coefficient in software
. However, the hardware advantage is that after completing the placement and routing, the time for computing a single coefficient is almost negligible. For example, to compute all 2n coefficients for the parity function, the hardware implementation will require 2240 seconds, while the software implementation will require 2.00x106 seconds.

6 Summary

This paper presents the approach of using a reconfigurable device in an instance-specific manner to solve the problem of computing the autocorrelation coefficients for a logic function. Various aspects of the approach are discussed including a suitable hardware architecture for the solution. Several of the interesting research aspects of this work are also discussed, including a suitable encoding of the logic function for use in a reconfigurable device and the full utilization of the available design space. These aspects become more critical and difficult because of the instance-specific approach.

References

[1] List of FPGA-based Computing Machines. URL: http://www.io.com/~guccione/HW_list.html
[2] J. E. Rice and J. C. Muzio and M. Serra, “The Use of Autocorrelation Coefficients for Variable Ordering for ROBDDs”, 4th International Workshop on Applications of the Reed-Muller Expansion in Circuit Design (RM99), 1999.

[3] K. B. Kent and M. Serra, “Using FPGAs to Solve the Hamiltonian Cycle Problem”, International Symposium on Circuits and Systems (ISCAS) 2003, May 2003.

[4] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic, “Field-Programmable Gate Arrays”, Kluwer Academic Publishers, 1992.

[5] R. Tomczuk, “Autocorrelation and Decomposition Methods in Combinational Logic Design”, Ph.D. Dissertation, University of Victoria, 1996.

[6] M. Karpovsky, “Finite Orthogonal Series in the Design of Digital Devices”, John Wiley & Sons, 1976.

[7] D. Varma and E. A. Trachtenberg, “Efficient Spectral Techniques for Logic Synthesis”, in “Logic Synthesis and Optimization”, ed. T. Sasao, 1993.

[8] M. Karpovsky, R. Stankovic and J. Astola, “Reduction of Size of Decision Diagrams by Autocorrelation Functions”, submitted to IEEE Trans. on Computers, 2001.

[9] S. Akers, “Binary Decision Diagrams”, IEEE Trans. on Computers, Vol. C-27 No. 6, June 1978, pp. 509-516.

[10] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans. on Computers, Vol. C-35 No. 8, August 1986, pp. 671-691.

[11] J. E. Rice and J. C. Muzio, “Methods for Calculating Autocorrelation Coefficients”, 4th International Workshop on Boolean Problems, Sept. 2000, pp 69-76.

Calculator





Function





Controller





Function








� The software results are taken from [11].





_1101460819.unknown

_1113029224.unknown

_1113030044.unknown

_1103278021.unknown

_1101460764.unknown

