
FIRST THOUGHTS ON DETERMINING A METHOD FOR FAST AUTOCORRELATION
CLASSIFICATION

J. E. Rice

Dept. of Math & Computer Science
University of Lethbridge, Alberta, Canada

j .rice@uleth.ca

ABSTRACT
Classification of Boolean functions is a useful tool; it greatly
reduces the22n Boolean functions to a much more feasible
number. Recent work has suggested the use of the autocor-
relation transform to generate coefficients that may be used
as a classification tool for Boolean functions. An outstand-
ing question, however, is how to quickly identify whether
or not two given functions are in the same class, given that
generating the2n-sized spectrum may not always be feasi-
ble. This work addresses this question, and presents some
preliminary heuristics that are analyzed for their suitability
in solving this problem.

1. INTRODUCTION

It is a well-known problem that for even relatively small
values ofn there are far too many Boolean logic functions
to enumerate or analyze in any useful way. Thus classifica-
tion techniques and identification of useful properties within
classes of functions are useful methods for reducing unman-
ageable numbers of functions to reasonable sizes [1, 2].

A new technique for classifying Boolean functions was
introduced in [3]. This technique is based on the autocorre-
lation spectra. A major problem, however, is that of quickly
identifying which class a function belongs to. Asn grows
larger it becomes infeasible to quickly compute the autocor-
relation spectra, as there are2n coefficients for each func-
tion with n inputs. Thus we must identify some fast pro-
cess for matching a function to another without necessarily
computing the entire spectra. This is an area where much
previous work has been done, as in [4] and other publica-
tions. We re-address the issue for our specific application of
quickly classifying a function; that is, for fast determination
of whether a given function belongs to the same autocorre-
lation class as another.

2. BACKGROUND

The following provides some background and notation that
is pertinent to the remainder of the paper.

2.1. The Autocorrelation Transform

The autocorrelation function is defined as follows [5]:

B ff (τ) =
2n−1∑
v=0

f(v) · f(v ⊕ τ) (1)

The superscriptsff are generally omitted. Values forτ
range from0 to 2n − 1 wheren is the number of inputs to
the Boolean functionf(X). The autocorrelation function or
transform, when applied to the outputs off(X), transforms
the outputs from a two-valued domain to the domain of the
real numbers. The resulting coefficients may be referred to
as the autocorrelation spectra of the function.

The outputs of the function may be encoded as0 for
false and1 for true, or+1 for false and−1 for true. The
first is referred to as{0, 1} encoding, and if used results in
the autocorrelation coefficients being referred to asB(τ).
The{+1,−1} coefficients are referred to asC(τ).

2.2. The Autocorrelation Classes

Work in [6] demonstrated that there are four invariant oper-
ations for the{+1,−1} autocorrelation coefficients. These
invariant operations are as follows:

(i) permutation of any input variablesxi andxj , i, j ∈
1..n, i 6= j,

(ii) negation of any input variablexi, i ∈ 1..n,
(iii) negation of the output of the switching function, and
(iv) replacement of any input variablexi with xi ⊕ xj ,

i, j ∈ 1..n, i 6= j.
Application of these invariant operations leads to a classi-
fication scheme in which certain properties become appar-
ent [3, 7, 8]. Table 1 lists the autocorrelation classes for
n ≤ 4.

2.3. Decision Diagrams

Due to their efficiency at representing Boolean functions
and the speed in which various operations can be carried



k/s/p spectra sop
0/0/0 16x16 f0(X) = 0
8/1/1 16x8 -16x8 f255(X) = x4
4/2/1 16x4 0x12 f15(X) = x3x4
8/3/2 16x2 0x12 -16x2 f831(X) = x1x2 + x1x3 + x2x3
2/3/1 16x2 8x14 f3(X) = x2x3x4
6/3/2 16x2 8x6 -8x8 f63(X) = x3x4 + x2x4
7/4/1 16x1 12x7 -12x8 f127(X) = x1x2 + x1x3 + x1x4
1/4/1 16x1 12x15 f1(X) = x1x2x3x4
3/4/2 16x1 12x3 4x12 f7(X) = x2x3x4 + x1x3x4
5/4/2 16x1 12x3 4x4 -4x8 f31(X) = x1x2x4 + x3x4
7/4/2 16x1 12x1 -12x2 f319(X) = x1x2x3 + x3x4 + x2x4

4x6 -4x6
4/4/2 16x1 8x6 0x9 f23(X) = x2x3x4 + x1x3x4 + x1x2x4
8/4/3 16x1 -16x1 8x7 -8x7 f383(X) = x1x2x3 + x3x4 + x2x4+

x1x4
6/4/2 16x1 8x3 -8x3 0x9 f287(X) = x3x4 + x1x2x4 + x1x2x3
8/4/2 16x1 8x2 -8x4 0x9 f863(X) = x2x3 + x1x4 + x3x4
5/4/2 16x1 4x10 -4x5 f279(X) = x2x3x4 + x1x3x4 + x1x2x4+

x1x2x3
7/4/2 16x1 4x6 -4x9 f855(X) = x2x3 + x1x4
6/4/2 16x1 0x15 f854(X) = x1x2x3 + x1x2x4 + x1x3x4+

x2x3x4

Table 1. Then ≤ 4 autocorrelation classes and their under-
lying functions.

out using this representation, we decided to use decision di-
agrams as our primary representation for the functions in
question. Decision diagrams were first introduced as bi-
nary decision diagrams (BDDs) by Lee [9] and later by Ak-
ers [10], and were popularized more recently as reduced, or-
dered BDDs (ROBDDs) by Bryant [11]. Many other types
of decision diagrams have since been proposed [12]. The
reader is directed to these references for details and imple-
mentation for this data structure.

3. COMPARISON TECHNIQUE

It seems logical, when attempting to determine whether or
not two functions lie in the same class, to eliminate certain
factors as quickly as possible. Thus we suggest a step-by-
step process, based first on information that is readily appar-
ent and moving from there to information that may require
additional computation. The goal is to eliminate the pos-
sibility of a match as quickly as we can, and hence with a
minimal amount of work.

Some factors that are quickly identifiable when using
BDDs are

1. the number of true minterms,
2. the support size, and
3. the shortest path length.

These criteria are listed in Table 1 for representatives of the
n ≤ 4 autocorrelation classes. In this tablek refers to the
number of true minterms,s refers to the support size andp
refers to the shortest path length after minimization of the
BDD.

We begin with the computation ofk, or, the number of
true minterms in the function. For the remainder of this
work we will refer to the two functions being compared

asfi andfj , and any data related to these functions with
appropriate subscripts. If we determine thatki = kj or
ki = 2n − kj then the functions may be in the same class,
and so we must continue on with the process. However,
if neither of these equalities hold then we can immediately
state thatfi andfj do not belong to the same autocorrelation
class. We can see that in the 18 functions in Table 1 there
are at most 4 for which the functions will have the same
value ofk = 8 and yet potentially be in different classes.
For k = 0, 1, 2, 3 and5 this first step is sufficient to iden-
tify, for n ≤ 4, which class a function belongs to, and thus
indicate whether a functionfi belongs to the same class as
any functionfj from one of these classes.

If, as in the case ofk = 8, the values ofk for each
function cannot rule out a class match then we continue to
the next criteria, that of variable support. For the cases of
k = 4 andk = 6 this is enough to separate the two classes.
Indeed, fork = 8 although there are still two classes that
we have not differentiated between, there are two classes
which have been ruled out. However, for the case ofk = 7
there are still 3 remaining classes between which we have
not distinguished.

Finally, we compare the shortest path length in the DD
for the functions. For ourn ≤ 4 classes this has the effect
of eliminating overlaps between the two classes for which
k = 8 ands = 4. Fork = 7 ands = 4, however, there are
still 2 classes with the same length shortest path. Short of
generating the autocorrelation spectra, at this point we have
not yet identified the distinguishing factors between these
two classes.

4. DISCUSSION

The selection of criteria for determining whetherf1 andf2

belong to the same autocorrelation class is fairly common-
sense: we require criteria easy to compute, but that will rule
out non-matches as quickly as possible. We also desire cri-
teria that will not be affected by many of the invariant op-
erations, such as, at the very least, variable permutation and
negation.

4.1. Comparison ofk

We first prove the following theorem.

Theorem 1 If k1 6= k2 andk1 6= 2n − k2 thenf1 andf2

must belong to different autocorrelation classes.

Proof: The invariant operations for the autocorrelation classes
consist of the following:

(i) permutation of any input variablesxi andxj , i, j ∈
1..n, i 6= j,

(ii) negation of any input variablexi, i ∈ 1..n,
(iii) negation of the output of the switching function, and



(iv) replacement of any input variablexi with xi ⊕ xj ,
i, j ∈ 1..n, i 6= j.

k, the total number of true minterms in the function is not
changed by any of these operations except for operation
(iii). In this case the modified function will have2n−k true
minterms. Thus two functionsf1 andf2 with true minterm
counts respectively ofk1 andk2, k1 6= k2 andk1 6= 2n−k2

must belong to different autocorrelation classes, as there is
no way to transform functions within a class that affects the
counts of the minterms.

Given a BDD representation using a product such as
CUDD [13] this information is readily available and has a
large chance of identifying immediately that the functions
cannot belong to the same class.

4.2. Comparison of Support Size

The determination of the support, or alternatively, of which
variables the function is independent can distinguish be-
tween functions for whichni 6= nj . Differing values of
n need not lead to differing values ofk, and yet may not
be known before building the BDD. Hence we generate this
information only if it is needed.

If ki = kj andsi 6= sj then we have determined that
the two functions have the same number of true minterms,
yet the functions depend on differing numbers of variables.
For instance,f1 = x1x2x3 + x0x1x2 hask1 = 4 and
s1 = 4. f2 = x2x3 hask2 = 4 and s2 = 2. These
two functions are in different autocorrelation classes. How-
ever, if we apply invariant operation (iv), replacement of
any input variablexi with xi ⊕ xj , to f2 we can generate
f3 = x0x2x3 + x0x2x3 which hask3 = 4 ands3 = 3. Al-
though the support size differs betweenf2 andf3 they are
in the same autocorrelation class.

Despite this, we felt this test still to be useful; if we as-
sume that invariant operation (iv) is NOT applied then any
two functions for whichsi 6= sj can be assumed to be in dif-
fering classes, as none of the other three invariant operations
can affect the support size of the function. It should be noted
that we are, in effect, identifying the NPN classes [14]. At
the end of the elimination process it will be necessary to ap-
ply invariant operation (iv) to combine some of the classes
into the smaller set of autocorrelation classes.

The identification of support size is a trivial matter with
the use of DD representations, at least for single-output func-
tions to which we are currently are restricting our work.
Any DD not containing any node with a variable labelingi
does not depend on variablei, and soi is not in the support
of the function. Thus it is a matter of counting the unique
node labelings in the DD, which can be done in time linear
to the length of the longest path in the DD.

4.3. Comparison of Shortest Path Length

The determination of the shortest path length, in this work,
was done after sifting was performed. That there was a dif-
ference in this criteria, even in these relatively small func-
tions, is indicative that this does indeed reflect the difference
in the structures of the functions in question.

It is a much more difficult matter to argue the efficacy of
this test. It is dependent on the results of the sifting heuris-
tics, and is reflective of the structure of the function rather
than a fixed property such as the number of true minterms
or the support size. Indeed, changing the variable ordering
may cause the structure of the function to appear to change
in a drastic manner. However, it has been our experience
that in the autocorrelation classes functions with visibly dif-
ferent structures result in a BDD that is more (or less) com-
pact. For example, we can examine the functionf383, which
has 8 true minterms, support size of 4, and a shortest path
length of 3. If we compare this to functionf863 which also
has 8 true minterms, a support size of 4, but a shortest path
of 2 it may be possible to see a difference in their struc-
tures. The Karnaugh maps for these functions are shown in
Figure 1.

x3x4!
x1x2 00 01 11 10

00
01
11
10

0 0 1 0
0 1 1 0
0 1 1 1
0 1 1 0

x3x4
x1x2 00 01 11 10

00
01
11
10

0 0 1 0
0 0 1 1
0 1 1 1
0 1 1 0

a) b)

Fig. 1. a) f383 = x1x2x3 + x3x4 + x2x4 + x1x4 and b)
f863 = x2x3 + x1x4 + x3x4.

However, a different in structure is not always identified
by the shortest path measure. For example, let us exam-
ine the functionsf279 andf31 from Table 1. The Karnaugh
maps for these functions are shown in Figure 2. Both of

x3x4!
x1x2 00 01 11 10

00
01
11
10

0 0 0 0
0 0 1 0
0 1 1 1
0 0 1 0

x3x4
x1x2 00 01 11 10

00
01
11
10

0 0 1 0
0 0 1 0
0 1 1 0
0 0 1 0

a) b)

Fig. 2. a) f279 = x1x2x3 + x1x3x4 + x1x2x4 + x2x3x4

and b)f31 = x1x2x4 + x3x4.



these functions have 5 true minterms, support size of 4 and
a shortest path in the BDD (after sifting) of 2. Yet they are
in different autocorrelation classes, and a visual inspection
of the Karnaugh maps can identify a significant structural
difference in the grouping of the true minterms. We hy-
pothesize that this is related to the functional complexity of
the underlying circuit, and so known estimation techniques
such as those in [15] may play a role. Work is continuing in
this area.

At this point in the research we have examined a very
small set of experimental result that seem to indicate that
our measure of shortest path length may help distinguish
between autocorrelation classes. However, before any proof
of the validity of this hypothesis can be determined we must
formally describe this structural difference that seems to be
present in functions such asf383 andf863, and relate this
difference to the autocorrelation invariant operations.

5. CONCLUSIONS AND FUTURE WORK

As we continue to pursue research on the uses and appli-
cations of the autocorrelation classification, we have found
that it is absolutely essential to have some fast method for
determining if a function lies in the same class as another.
Computation of the entire spectrum of autocorrelation coef-
ficients is not feasible, when performed on every function,
although it may be possible to use this as a last resort, or to
use fast hardware methods [16] when absolutely necessary.

This work presents our initial investigations into deter-
mining a set of heuristics for fulfilling these requirements; a
series of steps that, with the use of BDDs, can be performed
quickly and will in most cases distinguish between Boolean
functions belonging to distinct autocorrelation classes. Anal-
ysis of our first choice of heuristics has highlighted some
problems with them; for instance, the support size of two
functions in the same class may be different due to the ap-
plication of invariant operator iv, and the shortest path mea-
sure does not at this time have any formally defined reason
for determining whether or not two functions belong to the
same class. Clearly these are areas in which future work
will be concentrated.

Future work in this area will also focus on refining and
building upon these heuristics. We intend to perform anal-
ysis to determine exactly how many cases may cause these
heuristics to fail, as well as generating experimental results.

6. REFERENCES

[1] C. Edwards, “The Application of the Rademacher-Walsh
Transform to Boolean Function Classification and Threshold

Logic Synthesis,” IEEE Trans. on Comp., pp. 48–62, Jan.
1975.

[2] C.-C. Tsai and M. Marek-Sadowska, “Boolean Functions
Classification via Fixed Polarity Reed-Muller Forms,”IEEE
Trans. on Comp., pp. 173–186, Feb. 1997.

[3] J. E. Rice and J. C. Muzio, “Use of the Autocorrelation
Function in the Classification of Switching Functions,” in
Euromicro Symposium on Digital System Design: Architec-
tures, Methods and Tools (DSD), 2002, pp. 244–251.

[4] J. Mohnke, P. Molitor, and S. Malik, “Limits of Using Signa-
tures for Permutation Independent Boolean Comparison,” in
Proceedings of the Asian and South Pacific Design Automa-
tion Conference (ASP-DAC), 1995, pp. 459 –464.

[5] M. Karpovsky, Finite Orthogonal Series in the Design of
Digital Devices, John Wiley & Sons, 1976.

[6] J. E. Rice, Autocorrelation Coefficients in the Representa-
tion and Classification of Switching Functions, Ph.D. thesis,
University of Victoria, 2003.

[7] J. E. Rice and R. Jansen, “Symmetrical, Dual and Linear
Functions and Their Autocorrelation Coefficients,” into ap-
pear in the Proceedings of the International Workshop on
Logic Synthesis (IWLS), 2005.

[8] J. E. Rice, “Making a Choice Between FDDs and BDDs,” in
to appear in the International Workshop on Logic Synthesis
(IWLS), 2005.

[9] C. Y. Lee, “Representation of Switching Circuits by Bi-
nary Decision Diagrams,”Bell System Technical Journal,
pp. 958–999, 1959.

[10] S. Akers, “Binary Decision Diagrams,”IEEE Trans. on
Comp., vol. C-27, no. 6, pp. 509–516, June 1978.

[11] R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. on Comp., vol. C-35, no. 8, pp.
677–691, Aug. 1986.

[12] R. Drechsler and D. Sieling, “Binary Decision Diagrams
in Theory and Practice,”Int. Journal on Software Tools for
Technology Transfer (STTT), pp. 112–136, May 2001.

[13] F. Somenzi, “CUDD: Colorado University Decision Dia-
gram Package,” version 2.3.0, Department of Electrical and
Computer Engineering, University of Colorado at Boulder,
Fabio@Colorado.EDU.

[14] S. L. Hurst, D. M. Miller, and J. C. Muzio,Spectral Tech-
niques in Digital Logic, Academic Press, Inc., Orlando,
Florida, 1985.

[15] S. Aborhey, “Functional Complexity Estimation for Large
Combinational Circuits,”Computers and Digital Techniques,
IEE Proceedings-, vol. 149, no. 2, pp. 39–45, March 2002.

[16] J. E. Rice, K. Kent, T. Ronda, and Z. Yong, “Con-
figurable Hardware Solutions for Computing Autocorre-
lation Coefficients: a Case Study,” inProceedings of
the 15th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2005.


