
Instance-specific versus Parameter-specific Circuit
Generation

Jacqueline E. Rice & Troy Ronda
University of Lethbridge

Dept. of Math & Computer Science
Lethbridge, Alberta, Canada
{j.rice, troy.ronda}@uleth.ca

Kenneth B. Kent & Zhao Yong
University of New Brunswick
Faculty of Computer Science

Fredericton, New Brunswick, Canada
{ken, b15v3}@unb.ca

Abstract –There exist many computationally intensive problems
for which the use of configurable hardware can provide a satisfactory
solution. This paper examines two approaches to the design of
configurable solutions: an instance-specific and a parameter-specific
approach. We investigate both of these approaches as applied to
the computation of the autocorrelation coefficients for a Boolean
function.

I. I NTRODUCTION

One technique for accelerating computation is to introduce
configurable hardware solutions. This has been done for prob-
lems such as string matching [4] and to solve the Hamiltonian
cycle problem [8]. In this work we use configurable hardware
in the computation of a mathematical transform known as the
autocorrelation (ac) transform. By making use of hardware
to perform all or part of the algorithm it is possible to not
only speed up the computations, but also to do some of them
in parallel. In this paper we compare two approaches to the
problem. The first approach, based on the initial work in
[5], uses an instance-specific approach. Additional work is
introduced that improves resource usage. The second approach
is a parameter-specific approach, also attempting to maximise
resource usage.

II. BACKGROUND

A. The Autocorrelation Transform

The ac function is defined asB(u) =
∑2n−1
v=0 f(v) · f(v ⊕

u) [3]. Values foru range from0 to 2n − 1 wheren is the
number of inputs to the Boolean functionf(X). This results
in 2n coefficientsB(u). There are various techniques that may
be employed that reduce the computation requirements from
the exponential run-time that a naive implementation would
require. Coefficients resulting from the application of the ac
transform have been used in a number of areas including
variable ordering for ROBDDs [7] and testing [1].

B. Instance-specific Approach

In the first approach a Binary Decision Diagram (BDD) [2]
is used to represent the functionf(X) [6]. The theory behind
an instance-specific approach is that for some classes of
problems it may be better to utilise a configurable device to
implement a solution tailored to a specific instance of the

problem. For certain applications with desirable characteris-
tics this can achieve a high performance increase [8]. One
problem that may arise in the circuit generation lies in how
to choose amongst varying levels of parallelism, which must
be based both on the problem and on the characteristics of
the FPGA. Certain amounts of parallelism will be inherent to
the chosen approach; however, the tools used in the generation
of the instance-specific circuit should be aware of the target
environment and how the resulting circuit will be placed and
routed.

C. Parameter-specific Approach

The second approach is based on a significantly different
algorithm, requiring that the the input function be represented
as a list of disjoint cubes for input to the FPGA [6]. This
requires a small amount of preprocessing, currently done in
software. The hardware is then used to implement a series of
comparisons of the disjoint cubes, each of which compute a
contribution to the overall coefficient values. This approach
can best be described asparameter-specific. Rather than
requiring a new circuit for every new instance of the problem,
we design a circuit that may be used for many instances of
the problem, as long as they fall within certain parameters.

III. C IRCUIT ARCHITECTURES

A. Instance-Specific Circuit Architecture

The hardware architecture used in approach 1 is described in
detail in [5]. Briefly, the hardware architecture for this solution
consists of three main components: a function component, the
calculator, and the controller. This architecture is depicted in

Calculator

Controller

Function

Function

Fig. 1. Architecture of the instance-specific design used in approach 1.

Figure 1. The function component contains the logic func-
tion for which the ac coefficients are being computed. Two

instances of this component are used, one for each function
calculation that is required for each summation. This compo-
nent contains an embedding of the BDD representation of the
logic function. The calculator is responsible for performing
the exclusive-or and summation operations.

B. Parameter-Specific Circuit Architecture

The process for computing each ac coefficient from a
disjoint cube-list is as follows:

• for each cube in the disjoint cube list

– compute the exclusive-or of the cube and u;
– search for the new cube or one containing it in the

cube list
– if either is found add 2 to the sum register as the

contribution to the coefficient.

Complete details are given in [6].

C
ubes

D
on’t care counts

C
ontribution registers

C
ontribution counts

Cube
register

Don’t care
counter

Don’t care
register

U generator

comparator

Cube
comparison

Transfer
from
host

64
values

Transfer
to host

SRAM FPGA SRAM

Fig. 2. Architecture of the parameter-specific design used in approach 2.

As shown in Figure 2, a daughterboard with on-board
SRAM for storage of the input function was utilised. One
of the keys to this algorithm is that the number of don’t cares
in each cube must be counted. This is done by the hardware
solution, and is optimised by counting both halves of each
cube word in parallel. There is a limit of one memory access
to the SRAM per clock cycle; thus the design was optimised
to minimise SRAM accesses and store any intermediate results
on-chip.

C. Space Utilisation

As was found in both approaches, computation of the ac
transform is a highly parallel problem. In each approach it
was necessary to balance the addition of parallel computing
components with the additional complexity and overhead such
additions required.

In the instance-specific approach the architecture currently
calculates one term of the summation each clock cycle. Given
no restriction on design space, an obvious enhancement to
the architecture would be to replicate the function compo-
nents. This replication would allow for multiple terms of
the summation to be computed in parallel during one clock
cycle. Changes to the controller and calculator in support of

these replications require minimal design space. The function
component, however, is more demanding on design space. The
size requirements of this component is dependent on the size
of the BDD representation of the logic function, and so to
create the design some estimate of the space requirements is
required during circuit generation to determine the optimal
amount of parallelism.

In the parameter-specific design a slightly different approach
to the addition of parallelism was used. As shown in Figure 2,
theu generator generates 64 values in parallel, which are then
passed in one clock cycle to the comparator. The comparator
is designed to have 64 comparator sub-components in order to
support this. Thus for the computation of a single coefficient
there is no real advantage, but for computations of more than
one coefficient up to 64 can be performed in parallel.

IV. EXPERIMENTAL RESULTS

The results given are for a series of single-output bench-
marks from the ISCAS 89 set with a maximum of 32 inputs, as
shown in Table I. This is due to the limitations of a 32-bit word

function inputs BDD size num cubes
(nodes) (disjoint)

9symml 9 25 87
cm152a 11 16 8
co14 14 27 47
ex10 5 6 16
ex20 5 11 7
ex30 5 10 4
life 9 26 512
majority 5 8 5
max46 9 75 46
mux01 21 33 36
ryy6 16 21 112
sym10 10 31 837
xor5 5 6 16

TABLE I

THE FUNCTIONS USED IN THESE EXPERIMENTS AND THEIR SIZES IN

TERMS OF INPUTS, BDD NODES, AND NUMBER OF DISJOINT CUBES.

size and 219 cubes inherent to the parameter-specific approach.
Extensions to larger functions are discussed in Section V.

A. CLB Utilisation

With the design for the instance-specific approach, it is
possible to utilise up to 99.8% of the CLBs for a particular de-
sign. With the best combination of variables for the parameter-
specific approach, 78% of the CLBs were utilised. Analysis
of each approach is given below.

1) Instance-specific Approach:In the instance-specific ap-
proach each test utilised a varying amount of parallelism: 2
function computations (one summation term) in parallel, 4, 6,
8 and so on with the maximum amount computed in parallel
being 252. For each test the percentage of CLBs utilised was
measured, along with the minimum period (giving a maximum
possible frequency) and the speed of computation, calculated
based on the frequency. These experiments were conducted
using the Xilinx ISE 6.3 tool set targeting the Xilinx Virtex-
E 812E FPGA. This chip contains 18,816 4 input LUTs as
CLBs (approximately 200,000 logic gates). Table II presents
the complete results for one of the benchmarks,ryy6. The first

column lists the number of parallel computations that were
attempted. The results show that it is possible to maximize
CLB usage through additional function components, but there
is a side-effect of lowering the clock speed of the device. This
drawback was not encountered in the parameter-specific ap-
proach. These results, while indicative of the general results for

Para- CLB Computation Min. Max.
llelism Usage time (sec) period (ns) freq. (MHz)

2 2.5% 56.9 13.248 56.899
10 5.9% 13.21 15.376 13.208
20 10.2% 12.54 29.191 12.537
30 14.8% 12.002 41.198 12.002
40 19.4% 12.07 56.211 12.071
50 24% 11.636 67.726 11.636
60 28.6% 11.623 81.191 11.623
70 33.6% 11.197 91.247 11.197
80 38.1% 11.016 102.598 11.016
90 42.7% 10.637 111.447 10.637
100 46.9% 10.585 123.232 10.585
110 51.9% 10.355 132.606 10.355
120 55.8% 10.307 143.979 10.307
130 60.3% 10.2 154.358 10.200
140 65.8% 9.964 162.384 9.964
150 69.6% 9.998 174.571 9.998
160 75.2% 9.97 185.708 9.970
170 79.6% 9.867 195.291 9.867
180 84% 9.627 201.747 9.627
190 88.5% 9.542 211.047 9.542
200 93% 9.519 221.647 9.519
210 97% 9.526 232.872 9.526
214 98.9% 9.507 236.877 9.507

TABLE II

COMPLETE CLB USAGE AND TIMING RESULTS FOR THE BENCHMARK

RYY6 USING THE INSTANCE-SPECIFIC APPROACH.

other benchmarks, do not necessarily hold for all benchmarks
due to the nature of the instance-specific approach. Table III
shows the amount of parallelism (column 2) resulting in the
fastest computation for each of the benchmarks tested with
the instance-specific approach. Figure 3 shows a graph relating

function Para- CLB Computation Max.
llelism Usage Time Freq. (MHz)

9symml 212 93.6% 0.577 ms 4.286
cm152a 226 99.8% 9.128 ms 4.066
co14 214 98.2% 593.224 ms 4.229
ex10 252 99.4% 0.00298 ms 2.726
ex20 250 99.8% 0.00298 ms 2.746
ex30 252 99.3% 0.00299 ms 2.709
life 216 97.1% 0.576 ms 4.214
majority 252 99.6% 0.00298 ms 2.726
max46 158 94.8% 0.597 ms 5.56
mux01 190 99.2% 9941 sec 4.657
ryy6 214 98.9% 9.507 sec 9.507
sym10 192 91.4% 2.340 ms 4.667
xor5 252 99.4% 0.00298 ms 2.726

TABLE III

RESULTS SHOWING THE FASTEST COMPUTATION TIMES AND

CORRESPONDING AMOUNT OF PARALLELISM FOR APPROACH1

(INSTANCE-SPECIFIC).

the percentages of overall CLB usage, performance, and clock
rates to the amount of parallelism introduced. This seems to
indicate that the range of 158 to 252 function components in
parallel will provide an increase in performance, depending
on the function. This corresponds to usage of the device
ranging from 91.4% to 99.8% of the available CLBs. For most

functions, the highest level of performance is attained at the
highest level of parallelism that the development tools could
successfully place and route. The overall maximum clock rate
for all of the generated circuits began to degrade rather quickly
beyond the threshold of 6 function components. An important
contributing factor to the performance is not just the number
of CLBs used, but also the density of the circuit. The rate of
increase in CLB usage in relation to the level of parallelism
is approximately 1% usage per 2 functional units. At this low
rate of increase the circuit does not suffer dramatically from
an increase in density during the place and route process.

0

20

40

60

80

100

2 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

21
4

Functional Units

P
er

ce
nt

ag
e

CLB Usage Performance Clock Rate

Fig. 3. Percentages of overall CLB usage, performance, and clock rates in
relation to the amount of parallelism for approach 1.

2) Parameter-specific Approach:For the parameter-specific
approach a Xilinx Virtex 812E chip was targeted with Xilinx
ISE version 6.3 used for synthesis, place and route. The design
was implemented using a variety of options, namely a varying
number of bits for storage of each cube and a varying number
of coefficients being computed in parallel. Table IV gives
the resulting CLB usage, broken down by logic and routing
requirements. It should be noted that for the instance-specific
approach all results were obtained by simulation, while in
the parameter-specific approach the results were obtained by
actual execution on the targeted device.

Cube parallel LUTs LUTs for LUT
Bits coeffs for logic routing Usage
32 64 13933 891 78%
26 64 12696 696 71%
21 64 11722 502 62%
15 64 10554 307 57 %
10 64 9588 176 51%
32 32 7412 477 41%
10 32 5119 114 27%
32 1 956 81 5%

TABLE IV

SPACE USAGE OF THEX ILINX V IRTEX 812ECHIP FOR VARIOUS

SCENARIOS OF THE SECOND(PARAMETER-SPECIFIC) APPROACH.

B. Timing Comparisons

A straight-forward comparison of timings for the various
approaches is not possible. There is overhead in the various
steps required for each approach. For example, for the bench-
mark ryy6, generating an instance-specific solution with no
parallelism requires 110 seconds while 214 function compo-
nents in parallel results in a much larger circuit that requires
approximately 16 minutes to process. Table V provides a
comparison of the run-times for the instance-specific approach,

sequential and parallel versions of the parameter-specific ap-
proach and a software solution implemented on a Pentium
4. These timing results do not include any preprocessing
or solution generation/configuration. The software solution is
based on the same algorithm as the parameter-specific circuit,
utilising a disjoint cube list. From the tables several interesting

approach 1 approach 2 approach 2 software
best result 64 parallel no parallel Pentium 4

(varied) (26 MHz) (26 MHz) 2.66 GHz
9symml 0.000577 0.2940 1.0069 0.4160
cm152a 0.009128 0.2680 0.3181 0.0400
co14 0.593224 0.2490 0.4480 0.1050
ex10 0.00000298 0.2650 0.3024 0.0001
ex20 0.00000298 0.2680 0.2934 0.0170
ex30 0.00000299 0.3010 0.2968 0.0001
life 0.000756 0.2760 0.6843 0.1790
majority 0.00000298 0.2680 0.3102 0.0001
max46 0.000597 0.2750 0.3349 0.0430
mux01 9941 24.5830 309.2230 440.4620
ryy6 9.507 2.1330 32.8776 15.6440
sym10 0.002340 1.1740 27.9384 14.1680
xor5 0.00000298 0.2700 0.3058 0.0001

TABLE V

TIMES IN SECONDS TO COMPUTE ALL2n COEFFICIENTS FOR EACH OF THE

VARIOUS APPROACHES.

results are obtained. When comparing the two versions of the
parameter-specific approach, with and without parallelism, the
parallel version outperformed the sequential version in every
benchmark exceptex30. This is attributed to the small size of
the benchmark.

In comparisons of the results from the various hardware
and software implementations we can see that it is possible
to achieve a performance gain of approximately 100 times
through the use of parallelism. However, as above, given a
small benchmark, the parallel parameter-specific version can
provide a performance decrease. For theex30 benchmark
software outperformed the hardware approach.

The parameter-specific version provides more “consistent”
results while the instance-specific version provides a great deal
of speed-up in some cases, and yet a significant performance
decrease in some other cases. Most notably is the decrease
in performance for the benchmarkmux01. It is likely that
the BDD representation is not an optimal choice for this
particular benchmark. In all comparisons between the various
approaches we must take into account that the underlying
approach of either a BDD or a cube-list will perform better for
some benchmarks and worse for others. In these experiments
the instance-specific BDD-based approach out-performed the
parameter-specific cube-list approach for 10 out of the 13
benchmarks. These correspond loosely to the smaller of the
benchmarks, in terms of numbers of inputs. BDD node-count
does not, however, seem to be a factor.

V. CONCLUSION & FUTURE WORK

This paper reports the results of implementing the compu-
tation of a Boolean function’s ac transform. Two configurable
hardware approaches are used and are compared to a software
implementation.

Our results show that the use of configurable hardware can
provide some speed-up in the computation of this problem.

Further work is required to identify which approach, instance-
specific or parameter-specific, would be most beneficial and
furthermore, which underlying algorithm is best suited to
compute the solution. We have also demonstrated that the
addition of parallelism in each approach can lead to a speed-
up of the computation, but that there is a limited amount that
may be added beyond which the additional complexity of the
circuit can outweigh the advantage of the added circuitry.

These tests were restricted to fairly small functions; how-
ever, the instance-specific approach is limited only by the size
of the BDD for the logic function. The parameter-specific
approach is currently limited by a 32 bit word size for storing
cubes, but this could be modified to allow larger word sizes,
and if necessary, multiple downloads to the daughterboard’s
SRAM from the host computer. Thus neither of these current
limitations present a major drawback to the hardware tech-
niques.

The major drawback, at least in the case of the instance-
specific approach, is the time required to generate an instance
circuit and then to configure the target device. This is a
drawback of any instance-specific approach, and requires that
the instance of the application being targeted be utilised often
enough that the overhead is offset by the time saved in
using a hardware approach. The parameter-specific circuit still
requires this overhead, but the additional time requirements are
further offset due to the fact that more instances can be solved
without having to configure the device.

An interesting line of research started in this paper is the
development of heuristics to predict the optimal amount of
parallelism to introduce to a instance-specifc circuit. Some
knowledge of the solution design and the target environment is
required, as shown by the improvements in Table II. With such
knowledge the approach of circuit generation can be optimally
applied to other application problems.

REFERENCES

[1] S. Aborhey. Autocorrelation Testing of Combinational Circuits.Com-
puters and Digital Techniques, IEE Proceedings E, 136(1):57–61, Jan.
1989.

[2] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. on Comp., C-35(8):677–691, Aug. 1986.

[3] M. Karpovsky.Finite Orthogonal Series in the Design of Digital Devices.
John Wiley & Sons, 1976.

[4] H. Lee and F. Ercal. RMESH Algorithms For Parallel String Matching.
In Proceedings of the 3rd International Symposium on Parallel Architec-
tures, Algorithms and Networks (I-SPAN’97), pages 223–226, 1997.

[5] J. Rice and K. Kent. Using Instance-Specific Circuits to Compute Au-
tocorrelation Coefficients. InProceedings of the First Annual Northeast
Workshop on Circuits and Systems (NEWCAS), 2003.

[6] J. E. Rice and J. C. Muzio. Methods for Calculating Autocorrelation
Coefficients. In Proceedings of the 4th International Workshop on
Boolean Problems, (IWSB P2000), pages 69–76, 2000.

[7] J. E. Rice, J. C. Muzio, and M. Serra. The Use of Autocorrelation
Coefficients for Variable Ordering for ROBDDs. InProceedings of the 4th
International Workshop on Applications of the Reed-Müller Expansion in
Circuit Design (RM99), 1999.

[8] M. Serra and K. Kent. Using FPGAs to Solve the Hamiltonian Cycle
Problem. InProceedings of the International Symposium on Circuits and
Systems (ISCAS), 2003.

